生物化学-生化知识点_第十二章 基因工程
基因工程知识点总结归纳(更新版)
基因工程绪论1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。
作动词:基因的分离和重组的过程。
2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。
供体、受体和载体是基因工程的三大要素。
3、基因工程诞生的基础三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。
以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。
三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。
2、限制酶的命名:属名(斜体)+种名+株系+序数3、II型限制性内切酶识别特定序列并在特定位点切割4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。
5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。
6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。
7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。
8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。
9、S1核酸酶:特异性降解单链DNA或RNA。
10、RNAH降解与DNA杂交的RNA,用于cDNA文库建立时除去RNA以进行第二链的合成。
生物基因工程知识点总结
生物基因工程知识点总结一、概述生物基因工程是指利用生物学、生物化学、分子生物学等多学科知识和技术手段对生物体的基因进行改造和调控的科学技术。
通过对基因的修饰、转移和表达,可以改变生物体的遗传特性,实现对生物体的功能和性状的改良。
生物基因工程在农业、医药、环境保护等领域具有广泛的应用前景。
二、基因工程的主要技术1.重组DNA技术重组DNA技术是指利用DNA分子重组、剪接和合成等手段,将来自不同生物体的DNA片段进行组合,构建新的DNA分子。
重组DNA技术的核心是DNA的克隆,包括DNA片段的插入、DNA连接和DNA复制等步骤。
重组DNA技术为基因工程的实施提供了基础和工具。
2.基因克隆技术基因克隆技术是指通过重组DNA技术将目标基因从一个生物体中提取并扩增,然后将其插入到另一种生物体的染色体中,使目标基因在新的宿主中得到表达。
基因克隆技术可以用于基因的纯化、基因的表达以及基因功能的研究等方面。
3.基因转导技术基因转导技术是指将外源基因导入到目标细胞或生物体中的技术。
常用的基因转导技术包括病毒介导的基因转导、质粒介导的基因转导和基因枪介导的基因转导等。
基因转导技术可以用于将特定基因导入到细胞中,实现基因表达或基因敲除等目的。
4.基因编辑技术基因编辑技术是指通过直接修改生物体的基因组,实现对基因的精确编辑和修饰。
常用的基因编辑技术包括CRISPR-Cas9系统、TALEN 和ZFN等。
基因编辑技术可以实现基因的插入、删除、修改和替换等操作,用于研究基因功能和治疗基因相关疾病具有重要意义。
三、应用领域1.农业领域生物基因工程在农业领域的应用主要包括转基因作物的培育和农业生物技术的开发。
转基因作物通过引入抗虫、抗病、抗逆性等基因,提高作物的产量和品质,降低农药使用量,改善农业生产环境。
农业生物技术的开发包括农业生物育种、无性繁殖和抗病虫害等方面的技术创新。
2.医药领域生物基因工程在医药领域的应用主要包括基因药物的研发和基因诊断技术的应用。
生物基因工程知识点总结
生物基因工程知识点总结生物基因工程是一种通过改变生物体的遗传物质来改变其性状的技术。
它涉及到许多关键的知识点,如下:1. 基因:基因是生物体内控制特定性状的遗传信息单位。
它是DNA分子中的一个特定序列,负责编码产生蛋白质。
2. DNA:脱氧核糖核酸(DNA)是生物体内存储遗传信息的分子。
它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的两条螺旋状链结构。
3. 基因表达:基因表达是指基因通过转录和翻译的过程将DNA的遗传信息转化为蛋白质的过程。
4. 转基因:转基因是指将外源基因导入到另一种生物体的基因组中,使其表达新的性状。
转基因技术是生物基因工程的核心。
5. 基因编辑:基因编辑是一种通过直接修改组织或细胞中的基因序列来改变生物体遗传信息的技术。
常用的基因编辑工具包括CRISPR/Cas9、TALENs和ZFNs。
6. 载体:载体是一种用于将外源基因导入到生物体中的工具。
常用的载体包括质粒、病毒和细胞。
7. 克隆:克隆是指通过人工手段复制一个生物个体的基因组。
克隆技术可以用于繁殖优良的动植物品种和疾病模型的制备。
8. 基因检测:基因检测是一种用于检测个体的遗传信息的技术。
它可以用于遗传病的筛查、个体的亲缘关系鉴定和种群遗传学的研究。
9. 合成生物学:合成生物学是一种基于工程原理设计和构建新的生物系统的学科。
它通过组合基因和其他生物部件来设计具有特定功能的新生物体。
10. 生物安全:生物安全是指在进行生物基因工程研究和应用时保护人类和环境的安全。
它包括对实验室条件的控制、对转基因生物体的监管和对风险评估的实施。
以上是生物基因工程的一些主要知识点,它们一起构成了生物基因工程这个学科的基础和核心。
基因工程名词解释
基因工程名词解释1、基因工程:对不同的遗传物质在体外进行剪切、组合和拼接,使遗传物质重新组合,然后通过载体转入微生物、植物和动物细胞内,进行无性繁殖,并使所需的基因在细胞中表达,产生人类所需的产物或新生物类型。
2、重组DNA技术:是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后再转入另一个生物体(受体)内,按照人们的意愿稳定遗传并表达新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
3、基因xx:经无性繁殖获得基因许多相同拷贝的过程。
通常是将单个基因导入宿主细胞中复制而成。
(包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组的DNA,然后送入受体生物中去表达。
从而产生遗传物质和状态的转移和重新组合。
)4、限制性内切核酸酶:一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。
5、修饰酶:体内有些酶可在其他酶的作用下,将酶的结构进行共价修饰,使该酶活性发生改变,这种调节称为共价修饰调节(covalentmodificationregulation),这类酶称为修饰酶(prosessing enzyme)。
6、同裂酶:识别相同序列的限制酶称同裂酶,但它们的切割位点可能不同。
(同序同切酶、同序异切酶、“同功多位”等)7、同尾酶:切割不同的DNA片段但产生相同的粘性末端的一类限制性内切酶。
8、位点偏爱:某些限制酶对同一底物中的有些位点表现出偏爱性切割,即对不同位置的同一个识别序列表现出不同切割效率。
9、星星活性:极端非标准反应条件下,限制酶能够切割与识别序列相似的序列,这个改变的特殊性称星星活性。
10、甲基化酶:原核生物甲基化酶是作为限制与修饰系统中的一员,用于保护宿主DNA不被相应的限制酶所切割。
11、DNA聚合酶:以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。
DNA聚合酶的主要活性是催化DNA的合成(在具备模板、引物、dNTP等的情况下)及其相辅的活性。
生物基因工程知识点总结
生物基因工程知识点总结
生物基因工程是一门研究和应用生物技术的学科,利用DNA重组技术和其他分子生物学工具来研究和改造生物体的基因,并开发新的生物技术和产品。
以下是生物基因工程的一些主要知识点:
1. DNA重组技术:包括限制性内切酶、DNA连接酶、DNA合成酶、PCR等技术,用于切割、连接和合成DNA分子。
2.基因克隆:通过将目标基因从某个来源分离并插入到载体DNA中,然后将该重组DNA导入到宿主细胞中进行复制来克隆基因。
3. 变异体制备:利用基因工程技术对生物体的基因进行人为的改变,以获得具有特定功能或性状的变异体。
4. 基因表达调控:通过控制基因的转录和翻译过程,调节基因在细胞中的表达量和时机。
5. 载体构建:选择合适的载体并将目标基因插入到载体中,以便在宿主细胞中进行复制和表达。
6. 基因传递和转导:将重组的DNA导入到宿主细胞中,使其被接受和表达。
7. 基因组编辑:利用CRISPR-Cas9等工具,直接编辑生物体的基因组,实现精确的基因改造。
8. 蛋白质表达和纯化:利用重组DNA技术在宿主细胞中表达目标蛋白,并通过纯化技术获得高纯度的蛋白质。
9. 基因治疗:通过导入功能性基因修复或取代某种疾病引起的基因缺陷,用于治疗遗传性疾病。
10. 转基因技术:将外源基因导入到生物体中,使其具有特定的新功能或性状。
以上只是生物基因工程的一些主要知识点,实际上这只是冰山一角。
随着生物技术的不断发展,生物基因工程领域的知识不断增加和更新,我们需要不断学习和掌握新的技术和知识。
生物学知识点 基因工程
生物学知识点基因工程基因工程是生物学中的一个重要分支,它涉及到对基因的操作和改造,以达到改良生物体的目的。
本文将介绍基因工程的基本概念、技术方法以及应用领域。
一、基因工程的概念与原理基因工程是指通过对生物体的基因进行人为的操作和改造,以达到改良生物体的目的的一门学科。
其基本原理是利用现代分子生物学的技术手段,对生物体的基因进行剪接、克隆、转移等操作,从而实现对生物体特性的调控和改变。
基因工程的核心技术是基因重组技术,即将不同生物体的基因进行重组,形成新的基因组合,然后将其导入目标生物体中,使其表达出新的特性。
基因重组技术主要包括以下几个步骤:1. DNA提取:从生物体中提取出含有目标基因的DNA片段。
2. 基因剪接:利用限制酶将目标基因与载体DNA进行剪接,形成重组DNA。
3. 转化:将重组DNA导入到宿主细胞中,使其表达出目标基因。
4. 选择与筛选:通过选择性培养基或标记基因等方法,筛选出带有目标基因的转基因细胞或生物体。
5. 鉴定与分析:对转基因细胞或生物体进行鉴定和分析,确认其是否成功表达目标基因。
二、基因工程的应用领域1. 农业领域:基因工程在农业领域的应用十分广泛。
通过基因工程技术,可以改良农作物的抗病性、耐逆性和产量等性状,提高农作物的品质和产量。
例如,转基因水稻可以提高抗虫性和耐盐碱性,转基因玉米可以提高抗除草剂和杂草的能力。
2. 医学领域:基因工程在医学领域的应用主要包括基因治疗和基因诊断。
基因治疗是指利用基因工程技术,将正常的基因导入到患者体内,以治疗遗传性疾病或其他疾病。
基因诊断是指通过对患者的基因进行检测和分析,以确定患者是否携带某种疾病的遗传基因。
3. 环境保护领域:基因工程可以应用于环境污染治理和生物修复。
通过基因工程技术,可以改造微生物,使其具有降解有机污染物的能力,从而实现对环境污染物的清除和修复。
4. 工业领域:基因工程在工业领域的应用主要包括生物制药和生物能源。
生物化学中的基因工程和生物技术
生物化学中的基因工程和生物技术基因工程和生物技术,作为生物化学领域的重要分支,在当今科学研究和生产实践中扮演着至关重要的角色。
基因工程是指利用分子生物学和细胞生物学的原理和技术,对生物体的遗传信息进行操作和改造的一门学科;而生物技术则是应用基因工程技术,研发各种产品和服务的综合学科。
本文将就基因工程和生物技术的原理、应用及伦理问题进行探讨。
首先,基因工程技术的原理主要包括基因克隆、DNA重组、基因突变和基因表达等过程。
基因克隆是指将某种具有特定功能的DNA片段复制多份,形成多个完全相同的基因片段。
而DNA重组则是利用限制酶和DNA连接酶等酶类工具,将两个或多个不同DNA片段连接在一起,形成新的DNA组合。
基因突变则是通过诱发DNA序列发生变异,改变生物的遗传信息。
而基因表达是指基因转录和翻译的过程,使得基因的信息转化为特定蛋白质的生物过程。
其次,生物技术的应用领域广泛,包括医疗保健、农业、食品工业、环境保护等多个领域。
在医疗保健方面,基因工程技术已经被应用于基因治疗、药物研发和生产等方面,为许多疾病的治疗提供了新的希望。
在农业领域,生物技术可以用于育种改良,提高农作物的产量和抗病性,以满足不断增长的人口需求。
在食品工业中,转基因技术可以帮助提高食品的营养价值和品质,增加作物产量,解决粮食短缺问题。
在环境保护方面,基因工程技术可以处理废水、净化空气、治理污染等,为人类改善生活环境做出贡献。
然而,随着基因工程和生物技术的日益发展,也伴随着一些伦理问题的产生。
例如,转基因食品的安全性和风险性引发了广泛的争议;基因编辑技术的道德约束和风险管理也值得深思。
同时,遗传信息的隐私保护和滥用、生物资源的公平分配等问题也需要引起足够重视。
因此,科学家、政府和公众需共同努力,建立健全的生物伦理学框架,确保基因工程和生物技术的发展不违背伦理道德,维护人类和自然生态的和谐共处。
综上所述,基因工程和生物技术作为生物化学领域的重要研究方向,对人类社会和生态环境的发展有着重要的影响。
基因工程知识点总结
基因工程知识点总结基因工程知识点是生物的学科,那么,基因工程知识点总结是小编为大家整理的,在这里跟大家分享一下。
基因工程知识点总结(一)生物基因工程简介基因工程又称基因拼接技术和DNA重组技术。
所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。
重组DNA:重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
因此,供体、受体、载体是重组DNA技术的三大基本元件。
(二)生物基因工程特征1)跨物种性外源基因到另一种不同的生物细胞内进行繁殖。
2)无性扩增外源DNA在宿主细胞内可大量扩增和高水平表达。
优点:基因工程最突出的优点是打破了常规育种难以突破的物种之问的界限,可以使原核生物与真核生物之间、动物与植物之间,甚至人与其他生物之间的遗传信息进行重组和转移。
人的基因可以转移到大肠杆菌中表达,细菌的基因可以转移到植物中表达。
(三)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分离纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E•coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E•coliDNA连接酶来源于T4噬菌体,只能将双链DNA 片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
高中生物基因工程核心知识点总结
高中生物基因工程核心知识点总结
一、生物工程基本概念
1、生物工程:是以生物学知识、生物技术手段,对细胞、微生物、生物分子和其它生物材料进行改造,以及利用工程原理和技术解决或优化生物学问题的学科。
2、分子工程:建立、组装和修饰分子,应用分子的变化来把控和调整生命过程的学科。
3、基因工程:建立、组装和改变基因,应用基因的变化来把控和调整生命过程的学科。
二、基因工程的基本理论和实践
1、基因工程的概念:基因工程是对物种细胞的基因结构进行改变,使细胞依据调控的要求合成想要的物质或达到目的的技术。
2、基因组:基因组指细胞或组织中基因组成的细胞总和,它可以表达出一种物种所拥有的特性并参与各种活动。
3、转基因技术:利用质粒载体从一种生物体中取出基因,放入另一种生物体中,实现基因重组来改变生物遗传特性。
4、基因测序:利用核酸聚合酶酶切基因片段,用多种技术和设备测定其结构,分析基因的种类、数目、排布、重组等相关内容。
5、基因扩增技术:利用催化剂体外实现DNA的复制,改变或增加基因的数量,从而改变功能,调控细胞表达活动,引入新功能。
6、蛋白质工程:合成、结晶和组装蛋白质,改变其结构和性质,以达到改造表型的目的,从而实现新的功能。
基因工程知识点梳理
生物选修3知识点专题1 基因工程基因工程的概念基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。
基因工程是在上进行设计和施工的,又叫做。
(一)基因工程的基本工具1.“分子手术刀”——(1)来源:主要是从中分离纯化出来的。
(2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:和。
2.“分子缝合针”——(1)两种DNA连接酶()的比较:①相同点:都缝合键。
②区别:来源于大肠杆菌,来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而能缝合两种末端,但连接的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
必须需要模板3.“分子运输车”——(1)载体具备的条件:①。
②,供外源DNA片段插入。
③,供重组DNA的鉴定和选择。
(2)最常用的载体是 ,它是一种。
(3)其它载体:(二)基因工程的基本操作程序第一步:1.目的基因是指:基因。
2.原核基因采取获得,真核基因是。
人工合成目的基因的常用方_ 和_。
3. 从基因文库中获取基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。
(2)类型:基因组文库和部分基因文库(如cDNA文库)(1)原理:(2)过程:第一步:加热至90~95℃;第二步:冷却到55~60℃,;第三步:加热至70~75℃,。
第二步:(核心步骤)1.目的:使目的基因在受体细胞中,并且可以,使目的基因能够。
2.组成:+++(1)启动子:是一段有特殊结构的,位于基因的,是识别和结合的部位,能驱动基因,最终获得所需的蛋白质。
(2)终止子:也是一段有特殊结构的,位于基因的。
生物化学第12章-分子生物学常用技术
第十二章分子生物学常用技术及应用【授课时间】3学时【目的要求】1.掌握基因工程与重组DNA技术相关概念,核酸分子杂交、探针、PCR、DNA 芯片技术、基因诊断和基因治疗的概念。
2.熟悉重组DNA技术、PCR的基本原理及基本反应步骤。
3.了解基因工程在医学中的应用,PCR 的主要用途。
4.了解DNA芯片技术的原理与方法,基因诊断与基因治疗的应用。
【教学内容】1.一般介绍:基因工程2.一般介绍:核酸分子杂交技术3.一般介绍:聚合酶链反应4.一般介绍:DNA芯片技术5.一般介绍:基因诊断与基因治疗【授课学时】3学时第十二章分子生物学常用技术及应用第一节基因工程第二节核酸分子杂交技术第三节聚合酶链反应第四节 DNA芯片技术第五节基因诊断与基因治疗第一节基因工程噬菌体(bacteriophage,phage)是感染细菌的一类病毒,因其寄生在细菌中并能溶解细菌细胞,所以称为噬菌体。
用于感染大肠杆菌的λ噬菌体改造成的载体应用最为广泛。
(一)目的基因的制备目的基因是指所要研究或应用的基因,也就是需要克隆或.基因组DNA文库cDNA文库.聚合酶链式反应(polymerase chain reaction.化学合成(二)目的基因与载体的连接将目的基因或序列插入载体,主要通过DNA(二)Northern 印迹杂交Northern 印迹杂交是指将待测RNA 样品经电泳分离后转移到固相支持物上,然后与标记的核酸探针进行杂交,检测的方法。
其基本原理和基本过程与印迹杂交主要用于检测各种基因转录产物的大小、转录的量及其变化。
(三)斑点及狭缝印迹杂交分子杂交实验①②③目录三、探针的标记(一)探针的特征探针的特点:①要加以标记、带有示踪物,便于杂交后检测,②应是单链,若为双链用前需先行变性为单链;③具有高度特异性,只与靶核酸序列杂交;④标记的探针应具有高灵敏度、稳定、标记方法简便、安全。
(二)探针的种类及制备探针第四节 DNA芯片技术第五节基因诊断与基因治疗。
基因工程知识点总结
基因工程知识点总结基因工程是现代生物技术的核心领域之一,它为人类带来了前所未有的机遇和挑战。
接下来,让我们一起深入了解基因工程的相关知识点。
一、基因工程的定义和基本原理基因工程,又称重组 DNA 技术,是指按照人们的愿望,进行严格的设计,通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
其基本原理是基于不同生物的 DNA 都具有相同的化学组成和双螺旋结构,并且遵循相同的碱基互补配对原则。
通过提取目的基因,将其与适当的载体连接形成重组 DNA 分子,然后导入受体细胞,使目的基因在受体细胞中得以表达。
二、基因工程的操作工具(一)“剪刀”——限制性核酸内切酶限制性核酸内切酶能够识别特定的核苷酸序列,并在特定的切点上切割 DNA 分子。
它就像一把精准的剪刀,能够在 DNA 链上剪出我们需要的片段。
(二)“针线”——DNA 连接酶DNA 连接酶能将被限制酶切割开的两个 DNA 片段的末端连接起来,从而形成重组 DNA 分子。
(三)“运载体”常用的运载体有质粒、噬菌体和动植物病毒等。
运载体需要具备多个条件,如能够在宿主细胞中稳定保存并自我复制;具有多个限制酶切点,以便与外源基因连接;具有标记基因,便于重组 DNA 分子的筛选等。
三、基因工程的基本操作程序(一)目的基因的获取获取目的基因的方法有多种,比如从基因文库中获取、利用 PCR技术扩增目的基因以及通过化学方法人工合成等。
(二)基因表达载体的构建这是基因工程的核心步骤。
将目的基因与运载体结合,构建基因表达载体,目的是使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时能够表达和发挥作用。
(三)将目的基因导入受体细胞根据受体细胞的不同,导入的方法也有所不同。
例如,将目的基因导入植物细胞可以采用农杆菌转化法、基因枪法和花粉管通道法等;导入动物细胞常用的方法是显微注射法;导入微生物细胞则通常使用感受态细胞法。
第十二章 基因工程 分子克隆
第十二章基因工程第一节概述基因工程:又称重组体DNA技术或基因操作,是指在体外将不同来源的DNA分子进行重新组合,并使它们在适当的宿主细胞中实现增殖表达的遗传操作。
在分子水平上进行操作,在细胞水平上实现表达。
基因工程的过程主要包括:①获得目的基因片断;②连入合适的载体;③转入受体系统;④筛选重组子;⑤表达外源基因等五个步骤。
特点:1.不受亲缘关系的限制,即打破了物种界限,把不同种类生物的遗传物质组合在一起,人为的将高等生物的基因引入细菌。
2.可以定向地改变生物的遗传特性:利用基因工程技术可以有目的地去的某种基因,并将该基因引入原本没有这种基因的生物,从而改变后者的遗传特性。
3.增加目的基因剂量:大幅度提高了基因产物的水平。
克隆DNA是指得到与目的DNA完全相同的许多DNA分子应用:基因工程在科学研究、医药和工农业生产等多方面都有广泛地应用,为基础研究和生产实际提供了强有力地技术支持。
第二节工具酶及基因工程相关技术一、用于基因科隆地核酸酶分类:1.将DNA切开的酶,主要包括限制性内切酶;2.将四种碱基连接起来成为高分子DNA聚合物的酶,其中主要包括DNA聚合酶、Klenow酶、反转录酶等;3.将双链DNA片断连接起来的酶,主要包括E.coli DNA连接酶和T4连接酶等;4.将DNA片断末端进行修饰的酶,主要包括:末端转移酶、碱性磷酸酶、外切酶、多核苷酸激酶等。
限制性核酸内切酶:与降解作用有关的酶称之为限制性核酸内切酶。
修饰酶:起修饰作用的酶称作修饰酶。
在限制酶识别序列的个别碱基发生甲基化作用,所以修饰酶又称之为甲基化酶。
限制修饰系统:甲基化酶和限制酶共同组成“限制修饰系统”目前的限制修饰系统可分为Ⅰ、Ⅱ、Ⅲ型1.Ⅰ型它的酶含有三个亚基:(1)H sdS-识别特定DNA序列;(2)H sdM-具有甲基化功能;(3)H sdR-具有限制性内切酶功能。
只有当三个亚基组成复合体后,全酶才有活性。
其甲基化及内切酶活性紧密偶联。
基因工程名词解释生物化学
基因工程名词解释生物化学
嘿,咱今儿个就来讲讲基因工程这档子事儿!基因工程啊,简单来说,就好比是一个超级厉害的魔法棒,能对生物的基因进行各种神奇
操作。
比如说吧,就像你有个玩具,你可以按照自己的想法去改造它,让它变得更酷更厉害,基因工程就是对生物的基因做这样的事儿。
咱来具体瞅瞅,基因工程包括了好多方面呢。
像基因克隆,这不就
像是给基因找个一模一样的“双胞胎”嘛!还有基因编辑,哎呀呀,那
简直就是在基因的世界里当“雕刻大师”呀,想怎么雕琢就怎么雕琢。
你想想看啊,要是能通过基因工程让农作物长得更好、更抗病,那
农民伯伯们得多开心呀!这可不是开玩笑的,这是真有可能实现的呢!就好像给农作物穿上了一层超级铠甲,啥病虫害都不怕啦。
再比如说,在医学领域,基因工程可以用来制造救命的药物,这多
了不起呀!难道不是吗?这就像是给病人送来了一颗“救命仙丹”呀。
还有啊,基因工程还能帮助我们更好地了解各种生物的特性和秘密呢。
这就像你拿到了一把解开生物世界大门的钥匙,能进去一探究竟。
我觉得呀,基因工程就是未来的希望,它有着无限的可能性!它能
让我们的生活变得更加美好,更加充满惊喜!咱可得好好关注它,说
不定哪天它就给我们带来了超级大惊喜呢!。
整理基因工程
精品文档一、名词解释1、感受态细胞:就是处于能吸收外源DNA分子的生理状态的细胞2、转化:是指以质粒为载体,将外源DNA分子引入受体细胞,使之获得新的遗传性状的一种过程3、回文序列:从5,一3,端两条链中的核甘酸碱基排列顺序完全相同的序列4、粘性末端:是指DNA分子在限制性内切核酸酶的作用下形成的具有互补减记的单链延伸形成的末端结构,它们能够通过互补碱基间的配对而重新连接起来5、平齐末端:限制性核酸内切酶在识别序列的对称轴上切割,形成的片段末端为平末端6、Ti质粒:是根癌农杆菌中发现的可引发植物产生冠瘿瘤的质粒;7、质粒:是独立于染色体以外的能自主复制的双链闭合环状DNA分子。
8、cos位点:入DNA两端各有12bp的粘性末端,粘性末端形成的双链区域称为cos位点。
9、lacZ'基因:大肠杆菌lacZ的a -肽链序列,是LacZ的氨基端片断。
10、克隆载体:以繁殖外源DNA片段为目的载体通称为克隆载体11、clone:含有目的DNA片段的重组DNA分子或含有该重组分子的无性繁殖12、同尾酶:它们的来源不同,识别的靶序列也不同,但切割后能产生相同的粘性末端的一类限制性核酸内切酶13、同切点酶:又称同裂酶,是一类来源不同而能识别相同靶序列的限制性内切核酸酶14、星号活性:当条件改变时,许多酶的识别位点会改变,导致识别与切割序列的非特异性的现象15、转导:由噬菌体和细胞病毒介导的遗传信息的转移的过程16、转染:以噬菌体为载体,不经过蛋白包装成病毒颗粒,用DNA连接酶使噬菌体DNA环化,在通过质粒转化方式导入受体菌的过程17、感染:以入噬菌体DNA为载体的DNA重组分子包装成病毒颗粒,使其感染受体菌的过程18、基因枪法:又称微弹轰击法、粒子轰击法,是一种借助高速金属微粒将DNA分子引入活细胞的转化技术19、转化率:每微克载体DNA在最佳转化条件下进入受体细胞的分子数,是衡量转化效率的重要指标20、限制性内切核酸酶简称限制酶,是一类能够识别双链DNA分子中的某种特定核甘酸序列(4-8bp),并由此处切割DNA双链的核酸内切酶。
高二生物基因工程知识点
高二生物基因工程知识点基因工程是一门综合性的科学技术,将基因技术、生物工程技术和细胞工程技术等相结合,通过对生物体遗传物质DNA的操作和改造,实现对基因的人为调控和改变。
基因工程技术已经在医学、农业、环境保护等诸多领域展现出巨大的应用潜力。
下面将就高二生物课程中相关的基因工程知识点进行分析和介绍。
一、基因工程的基本概念及原理基因工程是指通过基因重组技术、DNA合成技术等手段,对目标生物体的遗传物质进行操作和改造,实现对基因的人为调控和改变的技术。
基本原理是在人工条件下,将需要操作和改变的目标基因体外扩增、定位,再重新导入目标生物体中,从而实现对基因的调控和改变。
二、常见的基因工程技术1. 基因克隆技术:利用限制酶切剪切DNA、连接酶连接DNA片段,将所需基因插入载体DNA中,形成重组DNA。
然后,将重组DNA转入宿主细胞中,并筛选出目标基因。
2. 基因转导技术:利用病毒、细菌等载体,将目标基因导入宿主细胞,实现对宿主的基因的转导和改造。
3. 基因敲除技术:利用CRISPR/Cas9等技术,针对特定基因进行敲除,从而观察敲除后的生理和生化效应,进一步研究该基因的功能。
4. 基因转基因技术:利用植物农艺改良、昆虫抗虫基因等,将外源基因导入作物基因组,从而提高作物的抗病虫能力和产量。
三、基因工程在医学领域的应用1. 基因诊断技术:利用PCR等技术,进行基因突变的检测和诊断,为临床治疗提供准确的遗传背景信息。
2. 基因治疗技术:利用载体将正常基因导入患者体内,修复或替代患者遗传缺陷的基因,从而治疗遗传性疾病。
3. 基因药物研发:通过基因工程技术,制备具有特定疗效的蛋白质药物,如重组人胰岛素、重组人生长激素等。
四、基因工程在农业和环境保护领域的应用1. 转基因作物的培育:利用基因工程技术将昆虫抗虫基因导入作物基因组,提高作物的抗病虫能力和产量。
2. 基因改良动物的培育:利用基因工程技术改变小鼠、牛、猪等动物的遗传特征,改进乳品品质、肉品品质等。
基因工程及其在医学中的应用AMP细胞信号转导AMP肝的生物化学AMP钙
第十二章基因工程及其在医学中的应用基因工程(genetic engineering)从20世纪70年代开始逐渐兴起。
基因工程是在分子水平上按照人们的设计对基因进行人工操作,使基因得以改造,扩增和表达等的一系列技术。
运用这些技术,人们可以从细菌的数千个基因、哺乳类动物的数万个基因中分离某一个基因,在受体细胞或宿主体内成功地表达有特殊生物学意义的蛋白质;基因工程的许多研究成果和产品也已经用于人类疾病的诊断和治疗。
第一节基因工程的概念一、克隆、克隆化克隆(clone)克隆化(cloning):指创立无性繁殖的过程。
分子克隆专指DNA克隆。
二、DNA克隆、基因克隆和重组DNADNA克隆(DNA cloning): 应用酶学的方法,在体外使某种基因或DNA 片段与合适的DAN载体进行人工重组,形成具有自我复制能力的DNA分子,再通过导入合适的宿主细胞,筛选出含重组DNA细胞,使其扩增和繁殖,以获得该DNA 分子的大量拷贝,即DNA克隆。
基因克隆(gene cloning): DNA克隆早期的研究是在从较大的染色体分离并扩增特异性基因,因此,DNA克隆又叫基因克隆。
重组DNA(reombinant DNA):克隆某一基因或DNA的过程中,该基因或DNA 插入载体分子形成了嵌合DNA,所以DNA克隆或基因克隆又称重组DNA。
三、转化、转染和感染转化(transformation):宿主细胞接纳外源DNA后,其生物学特性发生可遗传的改变,此过程称为转化。
根据载体性质和宿主细胞性质的不同,导入重组DNA分子有转化、转染和感染等不同手段,但三者没有本质区别。
四、复制子、转化子复制子(replicon): 是具有自我复制能力的DNA。
转化子(transformant): 是通过转化过程接纳了外源DNA的细胞。
五、基因工程(genetic engineering)基因工程:为实现基因克隆所采用的方法和相关技术。
目标:通过导言调动学生学习兴趣。
生物基因工程知识点
生物基因工程知识点基因工程,这个听起来颇具科幻色彩的词汇,其实已经在我们的生活中发挥着越来越重要的作用。
那么,到底什么是基因工程呢?基因工程,简单来说,就是在分子水平上对基因进行操作的技术。
它就像是一个神奇的“基因剪刀”,让我们能够按照自己的意愿去裁剪、拼接和重组基因。
要理解基因工程,首先得了解基因。
基因是具有遗传效应的 DNA片段,它就像是生命的密码,决定着生物的各种性状。
而基因工程的核心,就是对这些基因密码进行解读和修改。
基因工程的操作流程大致可以分为几个主要步骤。
第一步是获取目的基因。
这就好比在一个巨大的基因图书馆里,找到我们需要的那本书。
目的基因可以从生物体内直接提取,也可以通过人工合成的方法得到。
接下来是基因载体的选择和构建。
基因载体就像是一辆运输基因的“卡车”,要把目的基因送到指定的地方。
常见的基因载体有质粒、噬菌体和病毒等。
我们需要对这些载体进行改造,使其能够与目的基因完美结合。
然后是将目的基因导入受体细胞。
这就像是把货物卸到指定的仓库。
受体细胞可以是细菌、真菌、植物细胞或者动物细胞。
导入的方法也多种多样,比如对于植物细胞,可以使用农杆菌转化法或者基因枪法;对于动物细胞,则常用显微注射法等。
导入之后,还需要检测和鉴定目的基因是否成功导入以及是否表达。
这就像是检查货物是否已经安全到达并且能够正常使用。
常用的检测方法有 DNA 分子杂交技术、核酸分子杂交技术以及抗原抗体杂交技术等。
基因工程的应用领域非常广泛。
在农业方面,通过基因工程,我们可以培育出具有抗病虫害、抗逆性强的农作物品种。
比如,将抗虫基因导入棉花,就培育出了抗虫棉,大大减少了农药的使用,降低了环境污染,同时也提高了棉花的产量和质量。
在医学领域,基因工程更是为许多疑难杂症的治疗带来了希望。
例如,利用基因工程生产胰岛素、生长激素等药物,为糖尿病、侏儒症等患者带来了福音。
此外,基因治疗也是一个重要的发展方向,通过将正常基因导入患者体内,来纠正或补偿缺陷基因,从而达到治疗疾病的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章基因工程下册 P580
12-1 基因工程
是对携带遗传信息的分子进行设计和施工的分子工程,包括基因重组、克隆和表达。
核心是构建重组体DNA的技术。
一一一DNA克隆
将DNA限制酶切片段插入克隆载体,导入宿主细胞,经无性繁殖以获得相同的DNA扩增分子。
一1一DNA限制酶和连接酶:
限制酶可将DNA切割成平末端或黏性末端,互补黏性末端之间碱基配可促使连接反应容易进行。
相容的限制片段可用DNA连接酶相连接,DNA的黏性末端和平末端连接见P5
82 图40-1。
一2一分子克隆的载体与宿主系统:
载体:将外源DNA带入宿主细胞并进行复制的运载工具。
克隆载体通常是由质粒、病毒(如λ-噬菌体)或一段染色体DNA改建而成。
质粒是染色体外自主复制的遗传因子,多为共价闭环DNA分子,常用作细菌与真菌的克隆载体。
如用限制性酶切割环形质粒DNA,制备一个具黏性末端的
开环质粒分子。
作为克隆载体应具有自主复制能力,有易于筛选的选择标记,如含有抗药基因等。
宿主细胞应根据载体的性质来选定,应易于接受外源DNA,且易于生长和筛选。
一3一外源基因导入宿主细胞:
欲引入的外源目标DNA经限制酶切割后应与载体有同样的黏性末端,用连接酶将外源DNA片段和载体连接成外源基因。
用CaCl2等方法,使E. coli等宿主细胞处于感受态,从而将外源基因导入细胞。
此外还有电穿孔法等使外源DNA高效导入细胞。
最后分离筛选出带有目的基因的重组体并进行克隆(可按重组体某种特征,如抗药性选择、营养标记选择等在特定培养基上进行筛选后繁殖形成菌落。
每
个菌落的细胞将含有同样的重组质粒DNA,这些质粒DNA又含有同样外源DN
A片段)。
一一一基因文库
一1一基因文库的构建: P589
基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆之总和。
理想情况下基因文库应包含该基因组的全部遗传信息。
基因文库的构建包括基因组DNA的随机片段化、载体DNA的制备、重组DNA 的体外包装、重组噬菌体感染大肠杆菌、基因文库的鉴定和扩增等步骤。
一2一cDNA文库的构建:
真核生物基因是断裂的,需经RNA转录后加工过程才使编码序列拼接在一起。
若将加工成熟的mRNA经逆转录合成互补的DNA(cDNA),接上原核生物表达
控制元件,在原核生物表达。
通过cDNA还可研究不稳定的mRNA。