中考数学专题:例+练——第6课时 图表信息题(含答案)
中考数学复习常考图表信息类题型解析(题目类型解析+真题反馈)(共19张PPT)

2019/3/9
请根据图中提供的信息,解答下列问题: (1) 在这次抽样调查中,共调查了___________名学生; (2) 补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的 度数; (3) 根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与” 的人数。
2019/3/9
各类情况条形统计图 人数 240 200 160 120 80 40 240
2019/3/9
a元,蓝色地砖每块b元, 解: (1)设红色地砖每块 4000a 6000b 0.9 86000,
答:红色地砖每块8元,蓝色地砖每块10元. (2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为 y元. 由题意知x≥(12000-x),得x≥4000,又x≤6000, ∴ 4000≤x≤6000. 当4000≤x<5000时,y=10x+8×0.8(12000-x),即y=76800+3.6x, ∴ x=4000时,y有最小值91200; 当5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800. ∴ x=5000时,y有最小值89800. ∵89800<91200,∴购买蓝色地砖5000块,红色地砖7000块,费用最少,
2019/3/9
典例选讲
例1 实数a,b,c在数轴上的对应点的位置如图所示,则正确 的结论是 (B )
A. a>4
B.c-b>0
C.ac>0
D.a+c>0
2019/3/9
典例选讲
例2 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系 统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表 示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生 所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从 左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示 该生为5班学生.表示6班学生的识别图案是 ( B )
中考数学冲刺:图表信息型问题--知识讲解(基础)(附答案)

中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离为S (km )和行驶时间t (h )之间的函数关系的图象如图所示,根据图中提供的信息,回答下列问题:(1)甲乙两个同学都骑了 (km ).(2)图中P 点的实际意义是 . (3)整个过程中甲的平均速度是 . 【思路点拨】利用函数图象,结合问题可得出甲乙两个同学骑车距离,甲的平均速度等. 【答案与解析】 解:(1利用图象可得:s 为18千米,即甲乙两个同学都骑了18千米, (2)图中P 点的实际意义是:甲,乙相遇,此时乙出发了0.5小时, (3)整个过程中甲的平均速度是 18÷2.5=7.2千米每小时. 故填:(1)18 ;(2)乙出发0.5小时后追上甲,(3)7.2km/h . 【总结升华】此题主要考查了利用函数图象得出正确的信息,题目解决的是实际问题,比较典型. 举一反三:【高清课堂:图表信息型问题 例2】【变式】为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 【答案】解:(1)六月份应缴纳的水费为:1.5102831⨯+⨯=(元) (2)当010x ≤≤时, 1.5y x =当10x m <≤时,152(10)25y x x =+-=-当x m >时,152(10)3()35y m x m x m =+-+-=--。
2020年九年级数学中考复习——图表信息题专题训练(一)(有答案)

2020中考复习——图表信息题专题训练(一)班级:___________姓名:___________ 得分:___________一、选择题1.某校八(1)班全体同学喜欢的球类运动如图所示,下列说法正确的是()A. 从图中可以直接看出喜欢各种球类的具体人数B. 从图中可以直接看出全班的总人数C. 从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D. 从图中可以直接看出全班同学现在喜欢各种球类人数的百分比2.某校机器人社团共有30名学生,他们的年龄分布如下表:年龄/岁13141516人数613由于表格污损,部分数据无法识别.在30名学生年龄这组数据中,可以确定的是()A. 平均数、中位数B. 平均数、方差C. 中位数、方差D. 众数、中位数3.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率为()七年级学生人数步行人数骑车人数乘公交人数其他方式人数30060913299A. 0.2B. 0.3C. 0.4D. 0.54.如图,利用相同的两块长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两块木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A. 73cmB. 74cmC. 75cmD. 76cm5.小明根据演讲比赛中8位评审所给的分数制作了如下表格:平均分中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差6.某省受台风袭击,大部分地区发生强降雨,某河受暴雨袭击,一天的水位记录如下表所示:时间(时04812162024 )水位(m)2 2.534568观察表中数据,水位上升最快的时段是().A. 8~12时B. 12~16时C. 16~20时D. 20~24时7.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.下图描述了他上学时的情景,下列说法错误的是()A. 用了5分钟来修车B. 自行车发生故障时离家的距离为1000米C. 学校离家的距离为2000米D. 到达学校时的骑行时间为20分钟8.某烤鸡店在确定烤鸡的烤制时间时,主要依据的是下面表格的数据:设鸡的质量为x千克,烤制时间为t分,则当x=3.2千克时,t=()A. 140B. 138C. 148D. 1609.已知A、B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示.由图中的信息可知,乙到达A地的时间为()A. 上午8:30B. 上午8:35C. 上午8:40D. 上午8:4510.小明打算购买气球装扮“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图,则第三束气球的价格为()A. 16B. 16C. 14D. 13二、填空题11.新吴区举行迎五一歌咏比赛,组委会规定:任何一名参赛选手的成绩ⅹ需满足60≤ⅹ<100,赛后整理所有参赛选手的成绩如下表.根据表中提供的信息得到n=_________.12.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了______场.13.为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是______ mg/L.14.一次函数y=kx+b的图象如图所示,其中b=____,k=____.15.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第________届夏季奥运会.16.小张和小李练习射击,两人10次射击训练成绩(环数)的统计结果如下表所示,平均数中位数众数方差小张7.27.57 1.2小李7.17.58 5.4通常新手的成绩不稳定,根据表格中的信息,估计小张和小李两人中新手是______.17.数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…−2−1012…y…−612−4−212−2−212…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=________.18.下表列出了国外几个城市与北京的时差.如果现在北京时间是10:00,现在巴黎时间是________19.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是________.20.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差________km/ℎ.三、解答题21.为迎接“六一”儿童节,某学校准备举办绘画比赛.为了了解学生对不同颜色的喜欢情况,从不同年级随机抽取部分学生进行了调查,针对红色、黄色、绿色、蓝色和其他五个选项,每人选择一种自己最喜欢的颜色,并把统计数据制成了如下统计图表:喜欢不同颜色的人数调查结果统计表喜欢颜色频数频率红色240.30黄色m0.15绿色160.20蓝色20n其他80.10合计1喜欢不同颜色的人数调查结果条形统计图请根据统计图表中的信息解答下列问题:(1)填空:m=________,n=________,这次活动一共调查了________名学生;(2)补全条形统计图;(3)小明同学根据统计表中的数据进一步制作了扇形统计图,发现自己喜欢的颜色所在扇形的圆心角度数为72°,请你通过计算说明小明喜欢的是哪种颜色;(4)若把喜欢红色和蓝色的同学组成“紫色团队”,已知该学校共有学生1800人,请你估计“紫色团队”的人数.22.某校从初二(1)班和(2)班各选拔10名同学组成甲队和乙队,参加数学竞赛活动,此次竞赛共有10道选择题,答对8题(含8题)以上为优秀,两队选手答对题数统计如下:(1)上述表格中,a =________,b =_______,c =________,m =________; (2)请根据表格中的平均数、中位数、众数、方差,对甲、乙两队选手进行评价.23. 我们将d b c a&这样的式子称为二阶行列式,它的运算法则用公式表示就是:bdac d bc a-=&例如2-32-41423&1=⨯⨯=(1)请你依此法则计算二阶行列式324&3(2)请化简二阶行列式422&32+-x x ,并求当x =4时此二阶行列式的值.24.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中所给的数据信息,解答下列问题.(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式.(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?25.春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.如图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.答案和解析1.D解:因为总体的具体数量短缺,所以A、C错误,又因为在扇形统计图中,所占的百分比越大它对应的具体数量就越多,但看不出全班的总人数,所以B错误,D正确.2.D解:因为共有30位同学,14岁有13人,所以14为众数,第15个数和第16个数都是14,所以数据的中位数为14.3.A解:60÷300=0.2.4.C解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:ℎ−y+x=80,由第二个图形可知桌子的高度为:ℎ−x+y=70,两个方程相加得:(ℎ−y+x)+(ℎ−x+y)=150,解得:ℎ=75cm.5.B解:由题意可知:去掉一个最高和一个最低分,只有中位数一定不发生变化.6.D解:由表可以看出:在相等的时间间隔内,20时至24时水位上升最快.解:A.由图可知,修车时间为15−10=5分钟,正确;B .自行车发生故障时离家距离为1000米,正确;C .学校离家的距离为2000米,正确;D .到达学校时的骑行时间为20−5=15分钟,故D 错误.8. C解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b , 解得所以t =40x +20.当x =3.2千克时,t =40×3.2+20=148.9. C解:因为甲60分走完全程4千米,所以甲的速度是4千米/时,由图中看出两人在走了2千米时相遇,那么甲此时用了0.5小时,则乙用了(0.5−13)小时, 所以乙的速度为:2÷16=12,所以乙走完全程需要时间为:4÷12=13(时)=20分,此时的时间应加上乙先前迟出发的20分,现在的时间为8点40.10. C解:设笑脸形的气球x 元一个,爱心形的气球y 元一个,由题意,得:{3x +y =12x +3y =16, 解得:2x +2y =14.k +b =60 2k +b =100, k =40 b =20,解:n =1−0.45−0.15−0.1=0.3.12. 27解:由统计图可得,比赛场数为:10÷20%=50,胜的场数为:50×(1−26%−20%)=50×54%=27,13. 1解:由题意可得,第3次检测得到的氨氮含量是:1.5×6−(1.6+2+1.5+1.4+1.5)=9−8=1mg/L ,14. 3,−32解:由函数的图象可知,图象与两坐标轴的交点坐标为(0,3),(2,0),设函数的解析式为y =kx +b(k ≠0),把(0,3),(2,0)代入得,{b =32k +b =0,解得b =3,k =−32;15. 29解:观察统计图可得:与上一届相比增长量最大的是第29届夏季奥运会.16. 小李解:∵小李的平均数为7.1,小张的平均数为7.2,7.1<7.2,小张的方差为1.2,小李的方差为5.4,5.4>1.2,∴小李的成绩不稳定,∴小李是新手.17. −4解:观察表格可知,当x =0或2时,y =−212,根据二次函数图象的对称性,(0,−212),(2,−212)是抛物线上两对称点, 对称轴为x =0+221,顶点(1,−2),根据对称性,x =3与x =−1时,函数值相等,都是−4.18. 3:00解:∵巴黎与北京的时差−7, 北京时间为10:00,∴巴黎时间为10−7=3(时),19. 21:05解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.20. 4解:根据图象可得:∵甲行驶距离为100千米,行驶时间为5小时;乙行驶距离为80千米,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20−16=4(千米/时).21. 解:(1)12,0.25,80;(2)条形统计图如图所示:(3)∵小明发现自己喜欢的颜色所在扇形的圆心角度数为72°,=0.2,频率0.2是在绿色的范围中,则小明喜欢的是绿色;∴72360(4))样本中“紫色团队”的人数为24+20=44(人),×1800=990(人).则4480故该学校“紫色团队”的人数约为990人.解:(1)因为红色的频数为24,所占的频率为0.30,=80,所以抽取的学生人数为:240.30=0.25,则m=80×0.15=12人,n=2080故答案为12,0.25,80;22.解:(1)8;8;7;60%(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队等.解:(1)由表格可得,=8,a=7×4+8×3+9×2+10×110b=8,c=7,×100%=60%,m=3+2+110故答案为8;8;7;60%.(2)甲乙两队的平均数都为8,说明两队的平均水平相同,甲队的众数为8,乙队的众数为7,说明出现人数最多的答对题数中,甲队大于乙队,若仅从平均数和众数分析,甲队优于乙队.23. 解:(1)根据题意得:∣∣∣3243∣∣∣=3×3−2×4=9−8=1.∴ 二阶行列式∣∣∣3243∣∣∣的值为1 .(2)∣∣∣2x −3x +224∣∣∣=4(2x −3)−2(x +2) =8x −12−2x −4=6x −16将x =4代入上式,原式=8.24. 解:(1)设y =kx +b ,则解得∴y =1.5x +4.5;(2)当x =11时,y =1.5×11+4.5=21(cm).25. 解:根据图象可知:0时~5时的一次函数关系式为y 1=−65x +3,5时~8时的一次函数关系式y 2=83x −493,当y 1、y 2分别为0时, x 1=52,x 2=498.而|x 2−x 1|=298>3,∴应采取防霜冻措施.。
中考数学专题:例练——第6课时图表信息题详解详析试题(共7页)

第6课时 图表(t úbi ǎo)信息题 类型之一 图形信息题找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理才能。
在解决图形问题的时候应从图形的个数、形状以及图形的简单性质入手。
1.〔·〕观察以下图形的构成规律,根据此规律,第8个图形中有 个圆. 2.〔·〕如下左图是某用地板铺设的局部图案,HY 是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是〔 〕A .54个B .90个C .102个D .114个 3.(·)如上右图,矩形A 1B 1C 1D 1的面积为4,顺次连结各边中点得到四边形A 2B 2C 2D 2,再顺次连结四边形A 2B 2C 2D 2四边中点得到四边形A 3B 3C 3D 3,依此类推,求四边形A n B n C n D n ,的面积是 。
4〔·襄樊〕如图,在锐角内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角个.类型之二 图象信息题此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进展分类、提取加工,再合成.5.〔•〕如图表示一艘轮船和一艘快艇沿一样道路从图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:〔1〕注重整体阅读。
先对材料或者图表资料等有一个整体的理解,把握大体方向。
要通过整体阅读,搜索有效信息;〔2〕重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;〔3〕注意图表细节。
图表中一些细甲港出发到乙港行驶过程随时间是变化的图象,根据图象以下结论错误的选项是〔〕A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船 6.〔•〕如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停顿,设点P运动的路程为x,△ABP的面积为y,假如y关于x的函数图象如图2所示,那么△ABC的面积是〔〕A.10B.16C.18D.207.〔·〕下表为抄录奥运会官方票务网公布的三种球类比赛的局部门票价格,某公司购置的门票种类、数量绘制的条形统计图如以下图.根据上列图、表,答复以下问题:〔1〕其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的 %;〔2〕公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张〔假设所有的门票形状、大小、质地等完全一样且充分洗匀〕,问员工小亮抽到足球门票的概率是;〔3〕假设购置乒乓球门票的总款数占全部门票总款数的,试求每张乒乓球门票的价格.类型(lèixíng)之三从表格、数字中寻求规律能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探究规律的时候,如对于数字问题,可以把等式横向、纵向进展比拟,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.8.〔·) 根据图中数字的规律,在最后一个图形中填空.9.〔·自治州〕将杨辉三角中的每一个数都换成分数,得到一个如图4所示的分数三角形,称莱布尼茨三角形.假设用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是 .10.〔·〕我某工艺厂为配合奥运,设计了一款本钱为20元∕件的工艺品投放场进展试销.经过调查,得到如下数据:〔1〕把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜测y与x的函数关系,并求出函数关系式;〔2〕当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?〔利润=销售总价-本钱总价〕〔3〕当地(dāngdì)物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?第6课时图表信息题答案1.【解析】观察图形,第1个图形中“○〞的个数为2=1+1;第2个图形中“○〞的个数为5=4+1=;第3个图形中“○〞的个数为10=9+1=;第4个图形中“○〞的个数为17=16+1=;…第n个图形中“○〞的个数为.【答案(dáàn)】65.2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第层:〔2n-1〕×6,所以第8层中含有正三角形个数是102.【答案】B【解析】由中点四边形性质得:四边形A 2B 2C 2D 2,的面积是矩形A 1B 1C 1D 1的一半,四边形A 3B 3C 3D 3的面积是四边形A 2B 2C 2D 2的面积的一半,依此类推,得到四边形A n B n C n D n 的面积是。
2011年中考数学专题复习教学案--图表信息专题(附答案)

解析:(1)设 .
由图可知:当 时, ;当 时, .
把它们分别代入上式,得 ,
解得 , .∴一次函数的解析式是 .
(2)当 时, .
即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.
类型二从统计图中体验与获取
例2:(2009年衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.
(2)请解释图中点 的实际意义;
图象理解:
(3)求慢车和快车的速度;
(4)求线段 所表示的 与 之间的函数关系式,并写出自变量 的取值范围;
解之,得
∴直线AB的函数关系式为:
(2)在 中,令S=0,得 .解得:t=20.
即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟.∵20<25,∴小明能在比赛开始前到达体育馆.
同步测试:如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:
(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;
设线段 所对应的函数关系式为 ,则 解得
所以线段 所对应的函数关系式为 .
(3)线段 .
同步测试:(2008年南京市)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 ,两车之间的距离为 ,图中的折线表示 与 之间的函数关系.根据图象进行以下探究:
信息读取:
(1)甲、乙两地之间的距离为km;
图表信息专题
图表信息题是近几年中考热点内容之一,也是今后中考的出题方向。这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的图象、图表中,我们只有通过对图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型。图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型。
(word)浙教版七年级下数学第六章《数据与统计图表》中考试题(解答题二)——顾家栋

浙教版七年级下数学第六章?数据与统计图表?中考试题——顾家栋解答题二题型:解答题1.〔2021辽宁大连中考〕某地为了解气温变化情况,对某月中午12时的气温〔单位:℃〕进行了统计.如表是根据有关数据制作的统计图表的一局部.分组气温x天数A4≤x<8aB8≤x<126C12≤x<169D16≤x<208E20≤x<244根据以上信息解答以下问题:1〕这个月中午12时的气温在8℃至12℃〔不含12℃〕的天数为_____天,占这个月总天数的百分比为______%,这个月共有_______天;2〕统计表中的a=_____,这个月中行12时的气温在___________范围内的天数最多;3〕求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.答案:〔1〕6,20%,30〔2〕3,12≤x<16〔3〕40%方法技巧:关键是结合频数分布表和扇形统计图,通过B组的数据求得总天数.解析:解:〔1〕这个月中午12时的气温在8℃至12℃〔不含12℃〕的天数为6天,占这个月总天数的百分比为20%,这个月共有6÷20%=30〔天〕;〔2〕a=30-6-9-8-4=3〔天〕,这个月中行12时的气温在12≤x<16范围内的天数最多;8+4〔3〕气温不低于16℃的天数占该月总天数的百分比是:30×100%=40%.知识点:频数分布表;扇形统计图.题目难度:普通题目分值:12分1题型:解答题2.〔2021江苏盐城中考〕某校课外兴趣小组在本校学生中开展“感动中国2021年度人物〞先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解〞,B类表示“比较了解〞,C类表示“根本了解〞,D类表示“不太了解〞,划分类别后的数据整理如下表:类别A B C D频数304024b频率a〔1〕表中的a=______,b=______;〔2〕根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;〔3〕假设该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?答案:〔1〕,6〔2〕144°〔3〕240方法技巧:〔1〕根据B类频数和频率求出总数,再根据频数、频率、总数之间的关系分布进行计算即可;〔2〕用类别为B的学生数所占的百分比乘以360°,即可得出答案;〔3〕用1000乘以类别为C的人数所占的百分比,即可求出该校学生中类别为C的人数.解析:解:〔1〕问卷调查的总人数是:40=100〔名〕,30a=100=,b=100×=6〔名〕,故答案为:,6;〔2〕类别为B的学生数所对应的扇形圆心角的度数是:360°×=144°;〔3〕根据题意得:1000×=240〔名〕.答:该校学生中类别为C的人数约为240名.知识点:频数〔率〕分布表;用样本估计总体;扇形统计图.题目难度:普通题目分值:8分题型:解答题23.〔2021浙江湖州中考〕2021年3月份在某医院出生的20名新生婴儿的体重如下〔单位:kg〕〔1〕求这组数据的极差;〔2〕假设以为组距,对这组数据进行分组,制作了如下的“某医院2021年3月份20名新生婴儿体重的频数分布表〞〔局部空格未填〕,请在频数分布表的空格中填写相关的量某医院2021年3月份20名新生儿体重的频数分布表组别〔kg〕划记频数略略﹣正一6略略略合计20〔3〕经检测,这20名婴儿的血型的扇形统计图如下列图〔不完整〕,求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.答案:〔1〕2〔kg〕〔2〕见解析〔3〕①9〔人〕②54°方法技巧:〔1〕根据求极差的方法用这组数据的最大值减去最小值即可;2〕根据所给出的数据和以为组距,分别进行分组,再找出各组的数即可;3〕①用总人数乘以A型血的人数所占的百分比即可;②用360°减去A型、B型和AB型的圆心角的度数即可求出O型血的扇形的圆心角度数.解析:解:〔1〕这组数据的极差是-=2〔kg〕;〔2〕根据所给出的数据填表如下:某医院2021年3月份20名新生儿体重的频数分布表组别〔kg〕划记频数﹣略2﹣略7﹣正一63﹣略2﹣略2﹣略1合计20〔3〕①A型血的人数是:20×45%=9〔人〕;②表示O型血的扇形的圆心角度数是360°-(45%+30%)×360°-36°=360°-270°-36°=54°..知识点:频数〔率〕分布表;扇形统计图;极差.题目难度:普通题目分值:8分题型:解答题4.〔2021内蒙古呼伦贝尔中考〕九〔1〕班同学为了解2021年某小区家庭月均用水情况,随机调查了该小区局部家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x〔t〕频数〔户〕频率0<x≤565<x≤1010<x≤151615<x≤201020<x≤25425<x≤3021〕把上面的频数分布表和频数分布直方图补充完整;2〕假设该小区用水量不超过15t的家庭占被调查家庭总数的百分比;〔3〕假设该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?答案:〔1〕见解析〔2〕68%〔3〕120方法技巧:总数=频数÷频率.解析:解:〔1〕如下列图:根据0<x≤5中频数为6,频率为,那么6÷=50,50×=12户,4÷50=,4故表格从上往下依次是:12和;2〕6+12+16×100%=68%;503〕1000×(+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.知识点:频数〔率〕分布直方图;用样本估计总体;频数〔率〕分布表.题目难度:简单题目分值:7分题型:解答题5.〔2021江苏宿迁中考〕为了了解某市初三年级学生体育成绩〔成绩均为整数〕,随机抽取了局部学生的体育成绩并分段〔A:~;B:~;C:~;D:~;E:~〕统计如下体育成绩统计表分数段频数/人频率A12B36aC84D bE48根据上面提供的信息,答复以下问题:5〔1〕在统计表中,a=_______,b=_______,并将统计图补充完整;〔2〕小明说:“这组数据的众数一定在C中.〞你认为小明的说法正确吗?_______〔填“正确〞或“错误〞〕;〔3〕假设成绩在27分以上〔含27分〕定为优秀,那么该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?答案:〔1〕,60,统计图见解析〔2〕错误〔3〕21600方法技巧:掌握频数、频率、样本总数三者间的关系;理解众数的含义.解析:解:〔1〕∵抽取的局部学生的总人数为12÷=240〔人〕,a=36÷240=,b=240×=60;统计图补充如下:〔2〕C组数据范围是~,由于成绩均为整数,所以C组的成绩为25分与26分,虽然C组人数最多,但是25分与26分的人数不一定最多,所以这组数据的众数不一定在C中.故小明的说法错误;〔3〕48000×(+0.20)=21600〔人〕.即该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有21600人.知识点:频数〔率〕分布直方图;用样本估计总体;频数〔率〕分布表;众数.题目难度:简单题目分值:6分题型:解答题6.〔2021江西抚州中考〕某校举行“汉字听写〞比赛,每位学生听写汉字39个.比赛结束后随机抽查局部学生的听写结果,以下是根据抽查结果绘制的图1统计图的一局部.组别听写正确的个数x组中值A0≤x<84B8≤x<1612C16≤x<2420D24≤x<3228E32≤x<40366根据以上信息解决以下问题:1〕本次共随机抽查了______名学生,并补全图2条形统计图;2〕假设把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?〔3〕该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.答案:〔1〕100,统计图见解析〔2〕〔3〕1500方法技巧:掌握频数、频率、样本总数三者间的关系解析:解:〔1〕15÷15%=100人,的人数为:100×30%=30人,的人数为:100×20%=20人,补全统计图如下列图;2〕A组被查出的学生所占的百分比为:C组被查出的学生所占的百分比为:.25×100%=10%,100×100%=25%,100所以,4×10%+12×15%+20×25%+28×30%+36×20%=;3〕估计这所学校本次比赛听写不合格的学生人数为:3000×(10%+15%+25%)=1500人.知识点:频数〔率〕分布直方图;用样本估计总体;频数〔率〕分布表;扇形统计图.7题目难度:普通题目分值:8分题型:解答题7.〔2021山东聊城中考〕为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水平安〞为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如下列图.〔1〕试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;〔2〕把图中每组用水量的值用该组的中间值〔如0~6的中间值为3〕来替代,估计该小区5月份的用水量.答案:〔1〕52%〔2〕3960方法技巧:用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后乘以该小区总的户数即可得出答案.解析:解:〔1〕根据题意得:6+2050×100%=52%;答:该小区5月份用水量不高于12t的户数占小区总户数的百分比是52%;〔2〕根据题意得:300×(3×6+9×20+15×12+21×7+27×5)÷50=3960〔吨〕,答:该小区5月份的用水量是3960吨.知识点:频数〔率〕分布直方图;用样本估计总体.题目难度:简单题目分值:8分题型:解答题〔2021山东济南中考〕在济南开展“美丽泉城,创卫我同行〞活动中,某校建议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了局部同学的劳动时间,并用得到的数据绘制不完整的统计图表,如下列图:8劳动时间〔时〕频数〔人数〕频率12130x218y合计m11〕统计表中的m=_______,x=______,y=______.2〕被调查同学劳动时间的中位数是______时;3〕请将频数分布直方图补充完整;4〕求所有被调查同学的平均劳动时间.答案:〔1〕100,40,〔2〕〔3〕见解析〔4〕方法技巧:掌握频数、频率、样本总数三者间的关系;理解中位数的概念.解析:解:〔1〕m=12÷=100,x=100×=40,y=18÷100=;2〕中位数是:小时;3〕〔4〕被调查同学的平均劳动时间是:12×+30×1+40×+18×2=〔小时〕.100知识点:频数〔率〕分布直方图;频数〔率〕分布表;加权平均数;中位数.9题目难度:简单 题目分值:8分题型:解答题〔2021江苏镇江中考〕为了了解“通话时长〞〔“通话时长〞指每次通话时间〕的分布情况,小强收集了他家 1000个“通话时长〞数据,这些数据均不超过 18〔分钟〕.他从中随机抽取了假设干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.“通话时长〞 0<x ≤33<x ≤66<x ≤99<x ≤1212<x ≤1515<x ≤18〔x 分钟〕次数36 a 8 12 812根据表、图提供的信息,解答下面的问题: 1〕a =_______,样本容量是_______;2〕求样本中“通话时长〞不超过9分钟的频率:_______;3〕请估计小强家这1000次通话中“通话时长〞超过15分钟的次数. 答案:〔1〕24,100〔2〕〔3〕120方法技巧:掌握频数、频率、样本总数三者间的关系 .( 解析:解:〔1〕根据直方图可得: a =24,样本容量是:36+24+8+12+8+12=100;2〕根据题意得:36+24+8×100%=,100 答:样本中“通话时长〞不超过9分钟的频率是 ; 3〕根据题意得:1000×12=120〔次〕,100答:小强家这 1000次通话中“通话时长〞超过15分钟的次数是 120次.知识点:频数〔率〕分布直方图;用样本估计总体;频数〔率〕分布表 .题目难度:简单 题目分值:6分10题型:解答题〔2021湖南衡阳中考〕小敏为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了假设干天的空气质量情况作为样本进行统计,绘制了如下列图的条形统计图和扇形统计图〔局部信息未给出〕.请你根据图中提供的信息,解答以下问题:1〕计算被抽取的天数;2〕请补全条形统计图,并求扇形统计图中表示“优〞的扇形的圆心角度数;3〕请估计该市这一年〔365天〕到达“优〞和“良〞的总天数.答案:〔1〕60〔2〕见解析,72°〔3〕292方法技巧:读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.解析:解:〔1〕扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60〔天〕;〔2〕轻微污染天数是60-36-12-3-2-2=5天;表示优的圆心角度数是12×360°=72°,60如下列图:;11〔3〕样本中优和良的天数分别为:12,36,一年〔365天〕到达优和良的总天数为:12+36×365=292〔天〕.60答:估计本市一年到达优和良的总天数为292天.知识点:条形统计图;用样本估计总体;扇形统计图.题目难度:简单题目分值:6分12。
中考数学图表题解析

中考数学图表题解析1. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?2. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?3. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?4. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?5. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?6. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?7. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?8. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?9. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?10. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?11. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?12. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?13. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?14. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?15. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?16. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?17. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?18. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?19. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?20. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?21. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?22. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?23. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?24. 请根据下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?25. 请分析下面的图表,回答问题:a) 图表显示的是什么数据?b) 图表中的数据是如何表示的?c) 图表中的数据有哪些特点?。
初中数学中考总复习冲刺:图表信息型问题--巩固练习题及答案(基础)

中考冲刺:图表信息型问题—巩固练习(基础)【巩固练习】一、选择题1.已知一次函数y=kx+b的图象如图所示,当x<1时,y的取值范围是( )A.-2<y<0 B.-4<y<0 C.y<-2 D.y<-42.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A.5 B.7 C.6 D.33第1题第2题第3题3. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船二、填空题4.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.5.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550学生中,三种传播途径都知道的大概有________人.内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不6.如图,在锐角AOB同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.三、解答题7.下列是某一周甲、乙两种股票每天的收盘价(收盘价:股票每天交易结束时的价格):收盘价(元/股)名称 时间星期一 星期二 星期三 星期四星期五甲 12 12.5 12.9 12.45 12.75 乙13.513.313.913.413.15某人在该周内持有若干甲、乙的股票,若按照两种股票每天收盘价计算(不计手续费,税费等),该人帐户上星期二比星期一获利200元,星期三比星期二获利1300元,试问该人持有甲、乙股票各多少股?8.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).图(1)、图(2)是2000年该市各民族人口统计图.请你根据图(1)、图(2)提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的少数民族学生人数?9.某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.(图1)85%15%少数民族汉族(图2)少数民族其他布依族侗族苗族百分比(%)5101520253035404550根据上述信息,回答下列问题:(1)该厂第一季度哪一个月的产量最高? ________月.(2)该厂一月份产量占第一季度总产量的________%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格产品?(写出解答过程)10.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y(吨)与工作时间x(小时)之间的函数图象,其中OA段只有甲、丙两车参与运输,AB段只有乙、丙两车参与运输,BC段只有甲、乙两车参与运输.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨?【答案与解析】一、选择题1.【答案】C;【解析】由图象可得:(0,-4),(2,0),代入得:b=-4, 2k+b=0,解得得k=2,b=-4,所以y=2x-4,x=1时,y=-2,所以x<1时,y<-2.2.【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.3.【答案】D;【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.二、填空题4.【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人; 捐50元的人数=50×16%=8人; 捐100元的人数=50×12%=6人; 捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.5.【答案】275;【解析】由表可知:三种传播途径都知道的人数为25,占样本总人数50人的2550=50%. 所以550名学生中三种传播途径都知道的人数即可解答. 550×2550=275(名). 6.【答案】66.【解析】按如图这样画n 条射线得到的锐角个数为(1)(2)2n n ++.三、解答题 7.【答案与解析】设该人持有甲、乙股票分别是x ,y 股,由题意,得 ⎩⎨⎧=-+-=-+-1300)3.139.13()5.129.12(200)5.133.13()125.12(y x y x , 解这个方程组,得 ⎩⎨⎧==15001000y x .8.【答案与解析】(1)∵15%×370=55.5(万人), ∴2000年贵阳市少数民族总人口是55.5万人. (2) 55.5×40%=22.2(万人), 又∵22.2÷370=0.06=6%(或15%×40%=6%), ∴2000年贵阳市人口中苗族占的百分比是6%. (3) 40000×15%=6000(人),∴2000年贵阳市参加中考的少数民族学生人数为6000人.9.【答案与解析】解:(1)三;(2)30;(3)(1900÷38%)×98%=4900;答:该厂第一季度大约生产了4900件合格的产品. 10.【答案与解析】解:(1)由OA 段可知,每小时的进库量为4÷2=2吨,因为只有甲丙工作,故甲丙中有一辆进库,有一辆出库,并且每小时进库量-每小时出库量=2吨又由“每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨”可知:丙车运输量>甲车运输量>乙车运输量=6吨故丙车是进货车,甲车是出货车,并且丙车运输量-甲车运输量=2吨又由AB段只有乙丙工作,且进库量大于6吨;BC段只有甲乙工作,(8-3)小时的出库量较小,故乙车是进货车;故进货车是乙车和丙车,甲车是出货车(2)根据(1)丙车运输量-甲车运输量=2吨设甲车运输量为x吨,则丙车运输量为(x+2)吨设B对应的库存量为y吨对于AB段:y-4=(x+2)+6对于BC段:y-10=5(x-6)∴ x=8即:甲车运输量为8吨,则丙车运输量为10吨故如甲乙丙三车一起工作,一天工作8小时,仓库的库存量为(10+6-8)×8=64吨.。
2022年中考特训浙教版初中数学七年级下册第六章数据与统计图表专项训练试题(含答案解析)

初中数学七年级下册第六章数据与统计图表专项训练(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确...的是()A.第四小组有10人B.本次抽样调查的样本容量为50C.该校“一分钟跳绳”成绩优秀的人数约为480人D.第五小组对应圆心角的度数为452、在下列四项调查中,方式正确的是()A.了解本市中学生每天学习所用的时间,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.了解某市每天的流动人口数,采用全面调查的方式D.了解全市中学生的视力情况,采用抽样调查的方式3、小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:则通话时间不超过15 min的频率为( )A.0.1 B.0.4 C.0.5 D.0.94、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图5、下列调查中,适合采用全面调查(普查)方式的是()A.对綦江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查6、以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高7、今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名学生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的中考数学成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000. 其中说法正确的有( )A.4个B.3个C.2个D.1个8、以下调查中,适宜全面调查的是()A.调查某批次汽车的抗撞击能力B.调查某班学生的身高情况C.调查春节联欢晚会的收视率D.调查济宁市居民日平均用水量9、下列采用的调查方式中,不合适的是()A.了解澧水河的水质,采用抽样调查.B.了解一批灯泡的使用寿命,采用全面调查.C.了解张家界市中学生睡眠时间,采用抽样调查.D.了解某班同学的数学成绩,采用全面调查.10、以下调查中,最适合采用全面调查的是()A.检测长征运载火箭的零部件质量情况 B.了解全国中小学生课外阅读情况C.调查某批次汽车的抗撞击能力D.检测某城市的空气质量二、填空题(5小题,每小题4分,共计20分)1、某兴趣班有A、B、C、D、E五个小组,如图是根据各小组人数分布绘制成的不完整统计图,则该班学生人数为___人.2、一次统计七年级若干名学生每分钟跳绳次数的频数分布直方图如图,数据分组时,组距是25,自左至右最后一组的频率是____.3、第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:根据以上信息求得“非常清楚”所占扇形的百分比为__%.4、在调查中,考察全体对象的调查叫做________,________是指从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况;要考察的全体对象称为________,其中的每一个考察对象称为________,被抽取的那些考察对象组成一个________,其数目称为________.5、分析数据的频数分布,首先计算出这组数据中________的差,参照这个差值决定________和________,对数据进行分组;然后列________来统计数据,进而画________更直观形象的反映数据的分布情况.三、解答题(5小题,每小题10分,共计50分)1、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?2、为了了解你们学校的学生是否吃早饭,下列这些抽取样本的方式是否合适?(1)早上7:00至7:30在校门口随机选择50名同学进行调查;(2)选择全校每个班级中学号是5和15的同学进行调查;(3)选择七(1)班全体学生进行调查.3、某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是多少?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?4、2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)表2:小静随机抽取10名学生居家减压方式统计表(单位:人)表3:小新随机抽取60名学生居家减压方式统计表(单位:人)根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.5、为了了解某地区新生儿体重状况,某医院随机调取了该地区60名新生儿的出生体重,结果(单位:g)如下:将数据适当分组,并绘制相应的频数直方图,图中反映出该地区新生儿体重状况怎样?---------参考答案-----------一、单选题1、D【分析】结合条形图和扇形图,求出样本人数,进行解答即可.【详解】根据直方图可知第二小组人数为10人,根据扇形图知第二小组占样本容量数的20%,则抽取样本人数为1020%50÷=人,故B选项正确;所以,第四小组人数为50410166410-----=人,故A选项正确;第五小组对应的圆心角度数为636043.250︒⨯=︒,故D选项错误;用样本估计总体,该校“一分钟跳绳”成绩优秀的人数约为1064120048050++⨯=人,故C选项正确;故选:D.【点睛】本题综合考查总体、个体、样本、样本容量,以及扇形统计图和频数(率)分布直方图.准确理解总体、个体、样本、样本容量、扇形统计图和频数(率)分布直方图等的相关概念是关键.2、D【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、D【分析】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【详解】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,∴通话时间不超过15min的频率为4550=0.9,故选D.【点睛】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.4、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.5、C【详解】对綦江河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C6、C【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.【详解】解: A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;故选C7、C【详解】试题解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选C.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、B【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合抽样调查,故A选项错误;B、调查某班学生的身高情况,适合全面调查,故B选项正确;C、调查春节联欢晚会的收视率,适合抽样调查,故C选项错误;D、调查济宁市居民日平均用水量,适于抽样调查,故D选项错误.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、B【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A.检测长征运载火箭的零部件质量情况,必须全面调查才能得到准确数据;B.了解全国中小学生课外阅读情况,量比较大,用抽样调查;C.调查某批次汽车的抗撞击能力,具有破坏性,用抽样调查;D.检测某城市的空气质量,不可能全面调查,用抽样调查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、50【分析】根据A组人数和所占的百分比,可以计算出该班学生人数.【详解】解:5÷10%=50(人),即该班学生有50人,故答案为:50.【点睛】本题考查了条形统计图、扇形统计图,掌握条形统计图与扇形统计图的特点并能读懂统计图中的相关信息是解题的关键.2、0.2【分析】先求出样本容量,再用第4组的频数除以样本容量即可.【详解】解:样本容量为246315+++=,∴自左至右最后一组的频率是3150.2÷=,故答案为:0.2.【点睛】本题主要考查频数(率)分布直方图,解题的关键是掌握组距的概念,并根据分布直方图得出样本容量.3、30【分析】由“清楚”扇形所对应的圆心角可得其占总体的百分比,再根据各项百分比之和为1可得答案.【详解】解:∵“清楚”的人数占总人数的百分比为90360×100%=25%,∴“非常清楚”扇形所占的百分比为1﹣(30%+15%+25%)=30%,故答案为:30.【点睛】本题主要考查扇形统计图,掌握整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键.4、全面调查抽样调查总体个体样本样本容量【分析】依据全面调查,抽样调查,总体,个体,样本,样本容量的定义直接解答即可【详解】解:在调查中,考察全体对象的调查叫做全面调查,从总体中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查叫抽样调查,要考察的全体对象称为总体,其中的每一个考察对象称为个体,被抽取的那些考察对象组成一个样本,其数目称为样本容量;故答案为:全面调查,抽样调查,总体,个体,样本,样本容量;【点睛】本题主要考查了全面调查,抽样调查及相关概念,熟练掌握有关概念是解答本题的关键.5、最大值与最小值组距组数频数分布表频数分布直方图【分析】根据频数分布直方图的步骤即可得出【详解】分析数据的频数分布,首先计算出这组数据中最大值与最小值的差,参照这个差值决定组距和组数,对数据进行分组;然后列频数分布表来统计数据,进而画频数分布直方图更直观形象的反映数据的分布情况.故答案为:最大值与最小值;组距;组数;频数分布表;频数分布直方图【点睛】本题考查频数直方分布图,掌握频数直方分布图的步骤与画法是解题关键,三、解答题1、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.2、(1)(2)可以,(3)不合适.【分析】(1)符合样本抽取的代表性,广泛性,全面性的特点;(2)符合样本抽取的代表性,广泛性,全面性的特点;(3)不符合样本抽取的代表性,广泛性,全面性的特点.【详解】(1)符合样本抽取的代表性,广泛性,全面性的特点,故可以;(2)符合样本抽取的代表性,广泛性,全面性的特点,故可以;(3)不符合样本抽取的代表性,广泛性,全面性的特点,故不可以.【点睛】本题考查了样本抽取,熟练掌握抽取样本的基本条件和基本特点是解题的关键.3、(1)50;见解析;(2)36°;(3)200名【分析】(1)根据折扇的人数和所占的百分比,求出调查的学生总人数,再用总人数减去其它课程的人数,求出剪纸的人数,从而补全统计图;(2)用选择“陶艺”课程的学生数除以总人数,再乘以360°即可得出答案;(3)用八年级的总人数乘以选择“刺绣”课程的学生所占的百分比即可.【详解】解:(1)参加问卷调查的学生人数为:1530%50÷=(名),剪纸的人数有:501510520---=(名),补全统计图如下:故答案为:50;(2)“陶艺”课程所对应的扇形圆心角的度数是53603650⨯︒=︒.(3)根据题意得:10100020050⨯=(名),答:估计选择“刺绣”课程的学生有200名.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差;(2)260.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占2660,因此估计总体600人的2660是采取室内体育锻炼减缓压力的人数.【详解】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)26600260⨯=(人),60答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【点睛】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.5、图中可以看出该地区新生儿体重在 3 250~3 500 g的人数最多,见解析【分析】根据绘制频数分布直方图的步骤进行求解即可.【详解】解:(1)确定所给数据的最大值和最小值:上述数据中最小值是1900,最大值是4160;(2)将数据适当分组:最大值和最小值相差4160-1900=2260,考虑以250为组距(每组两个端点之间的距离叫组距),2260÷250=9.04,可以考虑分成10组;(3)统计每组中数据出现的次数(4)绘制频数直方图:从图中可以看出该地区新生儿体重在 3250g~3500 g 的人数最多.【点睛】本题主要考查了绘制频数分布直方图,解题的关键在于能够熟练掌握绘制频数分布直方图的步骤.。
中考特训浙教版初中数学七年级下册第六章数据与统计图表章节练习试题(含答案及详细解析)

初中数学七年级下册第六章数据与统计图表章节练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、要调查你校学生学业负担是否过重,选用下列哪种方法最恰当( )A.查阅文献资料B.对学生问卷调查C.上网查询D.对校领导问卷调查2、为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工3、在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调查4、下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解衢州市每天的流动人口数,采用抽查方式C.了解衢州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式5、某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四6、党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,20122019年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务7、为了了解青海湖自然保护区中白天鹅的分布数量,保护区的工作人员捕捉了40只白天鹅做记号后,放飞在大自然保护区里,过一段时间后又捕捉了40只白天鹅,发现里面有5只白天鹅有记号,试推断青海湖自然保护区里有白天鹅( )A.40只B.1600只C.200只D.320只8、下列调查工作需采用普查方式的是()A.环保部门对长江某段水域的水污染情况的调查;B.电视台对正在播出的某电视节目收视率的调查;C.质检部门对各厂家生产的电池使用寿命的调查;D.企业在给职工做工作服前进行的尺寸大小的调查.9、九年级一班同学根据兴趣分成 A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人10、为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.频数直方图C.折线统计图D.扇形统计图二、填空题(5小题,每小题4分,共计20分)1、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:(1)全班同学最感兴趣的课外活动项目是______;(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.2、为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.3、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.4、开学之初,七(1)班的张老师为了安排座位,需要了解全班同学的视力情况,你认为张老师应采取_________(填“全面调查”或“抽样调查”)的统计方法较为合适.5、在一个组数为4的频数分布直方图中,已知样本容量为80,第一、二、三、四组所对应的各个长方形高的比为2:3:4:1,那么第四组的频数是 ___.三、解答题(5小题,每小题10分,共计50分)1、制作适当的统计图表示下列数据.(1)全世界受到威胁的动物种类数:(2)对某城市家庭人口数的一次统计结果表明:2口人家占23%,3口人家占42%,4口人家占21%,5口人家占9%,6口人家占3%,其他占2%.(3)1949年以后我国历次人口普查情况:2、第41届世界博览会于2010年5月1日至2010年10月31日在上海举办,其中7月31日(截至18:00),经后滩、上南路、长清路、高科西路入园游客人数如下(数据来源:www.expo.cn):(“△”表示和2010年7月30日(截至18:00)相比入园人数增加的百分比)(1)2010年7月31日(截至18:00),以上4个入口共有多少游客入园?(2)2010年7月30日(截至18:00),后滩入口约有多少游客入园?(结果精到0.1万)(3)假设游客在园区内的餐饮消费为人均40元,请你设法估计:园区内一个月(以30天计)的餐饮营业额大约是多少?(4)从图中你还能获得哪些信息?3、请将下面表格中的身高数据按3cm分段,用频数直方图表示.下表是某校七(2)班的同学入学信息表:4、为促进学生健康成长,帮助家长解决按时接送学生困难的问题,认真落实全国教育大会精神,某校结合自身情况,在开展中学生课后服务工作方面做了全面规划,并且落到实处.在不加重学生课业负担的前提下,学校在托管时间内组织学生进行自主阅读、体育、艺术、及其他一些有益身心健康的活动,学生根据自己的喜好,自主选择.学校随机抽取了部分学生进行调查(抽取的学生都选择了一种自己喜爱的活动),下面是根据调查情况,得到的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求出本次调查中,随机抽取的学生人数;(2)补全条形统计图,并求出“其他”所对应的圆心角的度数;(3)若该校学生总人数为840人,估计选择阅读的学生有多少人?5、请你通过查阅资料的形式,回答下列问题:(1)地球上淡水资源占总水量的百分比是多少?我国淡水资源的总量约为多少立方米?人均为多少立方米?(2)从1949年中华人民共和国成立到现在,我国进行过几次国庆大阅兵?分别在哪些年份举行?其中60周年国庆大阅兵有多少个徒步方队、装备方队和空中梯队受阅?---------参考答案-----------一、单选题1、B【详解】要调查你校学生学业负担是否过重,A、查阅文献资料,这种方式太片面,不合理;B、对学生问卷调查,比较合理;C、上网查询,这种方式不具有代表性,不合理;D、对校领导问卷调查,这种方式太片面,不具代表性,不合理,故选B.【点睛】本题考查了调查特点,关键是在选取样本时,选取的样本要全面,具有代表性.2、C【详解】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.3、D【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调查,具有代表性和广泛性,合理,故选D.【点睛】本题考查了抽样调查,样本的确定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.4、B【分析】根据抽样调查和全面调查的特点与意义,分别进行分析即可得出答案:【详解】A.日光灯管厂要检测一批灯管的使用寿命,应采用抽样调查方式,故此选项错误;B.了解衢州市每天的流动人口数,采用抽查方式;故此选项正确;C.了解衢州市居民日平均用水量,应采用抽样调查方式;故此选项错误;D.旅客上飞机前的安检,应采用全面调查方式;故此选项错误.故选B.5、A【分析】通过条形统计图可以看出套餐一出现了50人,最多,即可得出答案.【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A.【点睛】本题主要考查了条形统计图,明白条形统计图能清楚地表示出每个项目的数据,从条形统计图中得到必要的信息是解决问题的关键.6、A【分析】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断B;根据2012~2019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据2012~2019年年末全国农村贫困发生率统计图,即可判断D.【详解】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D、根据2012~2019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A.【点睛】本题考查了条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.7、D【分析】先根据样本求出有记号的白天鹅所占的百分比,再用40除以这个百分比即可.【详解】根据题意得:5(只),40=32040答:青海湖自然保护区里有白天鹅320只;故选D.【点睛】本题考查了用样本估计总体,解题关键是熟记总体平均数约等于样本平均数.8、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.C、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,适合抽样调查.D、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适合全面调查.故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【分析】从条形统计图可看出 A 的具体人数,从扇形图找到所占的百分比,可求出总人数,然后结合 D所占的百分比求得 D小组的人数.【详解】总人数=510%=50(人),D 小组的人数=50×86.4360=12(人)),故选C.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,读懂统计图,从不同的统计图中找到必要的信息进行解题是关键.10、D【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图.【详解】欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.【点睛】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键.二、填空题1、体育运动 10 20%【分析】(1)从统计表中直接通过比较即可得到.(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.【详解】解:从统计表分析人数可得到结论.由表可得:(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=20%.故答案为:(1)体育运动;(2)10,20%【点睛】本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.2、500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.3、540【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:901800(130%15%100%)⨯---⨯360=⨯180030%540(人).答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.4、全面调查【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:因为要了解全班同学的视力情况范围较小、难度不大,所以应采取全面调查的方法比较合适.故答案为:全面调查.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.5、8【分析】根据第一、二、三、四组所对应的各个长方形高的比为2:3:4:1,可求出第四组所占整体的百分比,进而根据频数=频率×样本容量即可.【详解】解:80×12+3+4+1=8,故答案为:8.【点睛】本题考查频数分布直方图,根据各组所对应的各个长方形高的比,可求出第四组所占整体的百分比是解决问题的关键.三、解答题1、(1)条形统计图;见解析;(2)扇形统计图;见解析;(3)折线统计图或条形统计图,作一个即可,见解析.【分析】各统计图特点如下:条形统计图能清楚地表示出每个项目的具体数据;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比,由各小题的数据结合统计图的特点选择合适的统计图即可【详解】解:(1)选择条形统计图,如下图所示:(2)选择扇形统计图,如下图所示:(3)选择条形统计图或折线统计图,作一个即可,如下图所示:【点睛】本题主要考查统计图,属于基础题,能根据已知条件选择适当的统计图,并能正确地作出统计图是解题关键2、(1)27.1(万人);(2)约7.6万人;(3)2520万元;(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【分析】(1)将各入口入园人数相加即可.(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,即可列出关于x的等式,求出x 即可.(3)同(2)计算出7月30日(截至18:00)其它入口入园人数,即可计算出从7月30日(截至18:00)到7月31日(截至18:00)入园的人数,再结合题意即可估算出园区内一个月(以30天计)的餐饮营业额.(4)答案不唯一,写出符合题意的答案即可.【详解】+++=(万人)(1) 8. 3 6.7 6.8 5.327.1(2)设2010年7月30日(截至18:00),后滩入口有x万人入园,根据题意,得:(19.2%)8.3x+=.解得:7.6x≈.故2010年7月30日(截至18:00),后滩入口有7.6万人入园.(3)与(2)同理可求出7月30日(截至18:00),高科西路进入游客约为4.9万人,长清路进入游客约为6.2万人,上南路进入游客约为6.3万人.∴7月30日(截至18:00)进入的总人数为7.6+4.9+6.2+6.3=25万人.∴从7月30日(截至18:00)到7月31日(截至18:00)入园的人数为:27.1-25=2.1万人.∵游客在园区内的餐饮消费为人均40元,∴估计园区内一个月(以30天计)的餐饮营业额大约是:2.140302520⨯⨯=万元.(4)答案不唯一.例如,能得到长清路入园人数增加的百分比最大.【点睛】本题考查扇形统计图的相关知识,由样本估计总体.从扇形统计图中获取必要的信息是解答本题的关键.3、见解析【分析】根据所给信息表先填好身高的频数分布表,进而即可画出相应的频数分布直方图.【详解】解:由信息表可知:∴频数分布直方图如图所示:【点睛】本题考查了画频数分布表以及频数分布直方图的能力,利用信息表画出相应的身高统计表是解决本题的关键.4、(1)120人;(2)见解析,36°;(3)126人【分析】(1)从条形图选择体育的人数÷从扇形图中体育所占百分比计算即可;(2)从调查总人数减去阅读,体育和其它得出艺术人数,补画条形图,再求出其它12人除以120得出所占百分比,再乘以360°即可;(3)先计算样本中选择阅读所占样本的百分比,再用样本中所含百分比乘以总数估计总体中的含量即可.【详解】解:(1)本次调查中从条形图得出选择体育有54人,从扇形统计图中体育所占百分比为45%,本次调查人数为:5445%120÷=(人);(2)∵艺术:12018541236---=(人),∴补全的条形统计图如下图所示:“其他”所对应的圆心角度数为1236036 120⨯︒=︒;(3)样本中选择阅读的人数为18人,占样本的百分比为18100%=15% 120⨯,该校学生总人数为840人,估计选择阅读的学生有:84015%126⨯=(人),∴选择“阅读”的学生大约有126人.【点睛】本题考查从条形图和扇形统计图获取信息和处理信息能力,样本容量,补画条形图,扇形圆心角,用样本的百分比含量估计总体中的数量,掌握以上知识是解题关键.5、(1)地球上淡水资源占总水量的2.53%;我国淡水资源的总量约为28000亿3m;人均约为21003m;(2)共15次;1949年至1959年每年一次,以后1984年、1999年、2009年、2019年各一次;其中60年国庆大阅兵有14个徒步方队、30个装备方队和12个空中梯队受阅.【分析】通过查阅资料,然后规范的答出来即可.【详解】解:(1)地球上淡水资源占总水量的2.53%,我国淡水资源的总量约为28000亿3m,人均约为21003m;(2)共15次;1949年至1959年每年一次,以后1984年、1999年、2009年、2019年各一次;其中60年国庆大阅兵有14个徒步方队、30个装备方队和12个空中梯队受阅.【点睛】本题主要考查数据的收集与整理,属于基础题,查阅到准确的资料是解题关键.。
2012年部分地区中考数学图表信息试题(附答案)

2012年部分地区中考数学图表信息试题(附答案)22.(2012年广西玉林市,22,8分)某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2011年的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨?分析:(1)根据纯牛奶所占百分率和纯牛奶的产量,求出牛奶的总产量,用总产量减铁锌牛奶和纯牛奶的产量即为酸牛奶的产量;酸牛奶产量除以总产量乘以360°即为酸牛奶在图2所对应的圆心角的度数;(2)根据平均增长率公式直接解答即可.解:(1)牛奶总产量=120÷50%=240吨,酸牛奶产量=240-40-120=80吨,酸牛奶在图2所对应的圆心角度数为×360°=120°.(2)2012年酸牛奶的生产量为80×(1+20%)2=115.2吨.答:2012年酸牛奶的生产量是115.2万吨.点评:本题考查了条形统计图和扇形统计图,将二者结合起来是解题的关键.16.(2012湖北黄冈,16,3)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60 千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4 个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为( ,75);④快递车从乙地返回时的速度为90千米/时.以上4 个结论中正确的是____________(填序号)【解析】设快递车出发的速度为x千米/时,则由图像得3(x-60)=120,解得x=100,①正确;而甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时间:3+ = (h),而纵坐标是此时货车距乙地的距离120-×60=75(km),∴点B的坐标为( ,75),③正确;设快递车出发的速度为m千米/时,则(-)(m+60)=75,解得m=90,④正确.【答案】①③④【点评】根据图像信息解决行程问题,关键是要能读懂题意并能看懂图像所反映的时间、速度、行程三者之间的关系.难度较大.24.(2012黑龙江省绥化市,24,7分)学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:⑴ 此次抽样调查中,共调查了名学生;⑵将图①、图②补充完整;⑶ 求图②中C层次所在扇形的圆心角的度数;⑷ 根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).【解析】解:(1)此次抽样调查中,共调查了50÷25%=200(人);故答案为:200.(2)C层次的人数为:200-120-50=30(人);所占的百分比是:30 200 ×100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;(3)C层次所在扇形的圆心角的度数是:360×15%=54°;(4)根据题意得:(25%+60%)×1200=1020(人)答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等.专项九图表信息(43)14.(2012四川省资阳市,14,3分)某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、C三个级别,其中A级30棵, B级60棵, C级10棵,然后从A、B、C三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势 A级 B级 C级随机抽取棵数(棵)所抽取果树的平均产量(千克)【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:80×30+75×60+70×10=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小.20. (2012山东省聊城,20,8分)为进一步加强中学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县教育局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)求表中a、b的值,并补充完频数分布直方图;(2)若视力在4.9以上(含4.9)均为正常,估计该县5600名初中毕业生视力正常的有多少人?解析:(1)要求a的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出a.(2)找出4.9以上(含4.9)的频率和,进行估计总体.解:(1)由15÷0.05=300(人),所以a=300×0.25=75(人). .b=60÷300=0.20.(2)因为视力在4.9以上(含4.9)的频率为0.25+0.20=0.45.所以5600×0.45=2520(人)答:估计该县5600名初中毕业生视力正常的约有2520人.点评:灵活运用频率= ,会对该公式变形运用.用样本统计量估计总统指标是统计的重要思想.如本问题(2)问,用样本频率估计总体中视力正常情况.22. (2012江苏盐城,22,8分)第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。
图表信息问题(精练)-2019年中考数学高频考点突破全攻略(解析版)

一、选择题(10×3=30分)1.(2018•临安区)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.52.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.3.(2018贵阳)(3.00分)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A. B. C. D.4. (2018广西南宁)(3.00分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分 B.8分 C.9分D.10分【分析】根据平均分的定义即可判断;【解答】解:该球员平均每节得分==8,故选:B.5.(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】在直角坐标系中确定点的坐标,即要确定该点的横、纵坐标,或者求出该点到x轴,y轴的距离,再根据该点所在的象限,得到该点的坐标;根据图中所给的数据,可分别求出点P到x轴,y轴的距离,又点P在第一象限,即可得出。
中考数学第六章 实数知识点及练习题及答案

中考数学第六章 实数知识点及练习题及答案一、选择题1.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,把(3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把(0)a a a a a a ÷÷÷÷÷≠记作a ⓒ,读作“a 的圈c 次方”,关于除方,下列说法错误的是( ) A .任何非零数的圈2次方都等于1B .对于任何正整数a ,21()a a =④C .3=4④④D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数.2.16的算术平方根是( )A .2B .2±C .4D .4± 3.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( )A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<4.关于2的判断:①2是无理数;②2是实数;③2是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④ 5.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 6.下列各组数中,互为相反数的是( )A .2-与12-B .|2|-与2C .2(2)-与38-D .38-与38- 7.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13+B .23+C .231-D .231+8.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >09.设42a ,小整数部分为b ,则1a b-的值为( )A .2-B .2C .212+D .212- 10.若2a+b b-4+=0,则a +b 的值为( )A .﹣2B .﹣1C .0D .2二、填空题11.64的立方根是___________.12.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.写出一个大于3且小于4的无理数:___________.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 16.3是______的立方根;81的平方根是________32=__________.17.34330035.12=30.3512x =-,则x =_____________.18.下列说法: ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.20.2x -﹣x|=x+3,则x 的立方根为_____.三、解答题21.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=. ①根据题意,3⊕(7)-⊕113的值为__________;②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________. 22.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.23.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.24.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.25.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-=<<则45<<∴2240-=> ∴22>请根据上述方法解答以下问题:比较2-与3-的大小.26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据定义依次计算判定即可.【详解】解:A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、a ④=21111()a a a a a a a a a ÷÷÷=⨯⨯⨯=; 所以选项B 正确; C 、3④=3÷3÷3÷3=19,4④=4÷4÷4÷4=116,,则 3④≠4④; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选:C .【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时对新定义,其实就是多个数的除法运算,要注意运算顺序.2.C解析:C【分析】本题是求16的算术平方根,应看哪个正数的平方等于16,由此即可解决问题.∵(±4)2=16,∴16的算术平方根是4.故选:C .【点睛】此题主要考查了算术平方根的运算.一个数的算术平方根应该是非负数.3.C解析:C【分析】分别计算出1.5、1.6、1.7、1.8、1.9的平方,然后与3进行比较,即可得出a 的范围.【详解】解:∵222221.52.25,1.6 2.56,1.7 2.89,1.83.24,1.9 3.61=====又2.89<3<3.24∴1.7 1.8a <<故选:C.【点睛】此题主要考查了估算无理数的大小,利用平方法是解题关键. 4.D解析:D【分析】根据实数、无理数,算术平方根的意义和实数的大小比较方法逐一进行判断即可得到答案.【详解】是无理数,正确;是实数,正确;是2的算术平方根,正确;④12,正确.故选:D【点睛】本题考查了实数、无理数,算术平方根的意义和实数的大小比较方法等知识点,是常考题型.5.A解析:A【分析】直接利用负整数指数幂的性质结合x 的取值范围得出答案.【详解】∵-1<x <0,∴x -1<x <x 2,故选A.此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x的取值范围分析是解题的关键.6.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键. 7.D解析:D【分析】根据线段中点的性质,可得答案.【详解】∵,A,∴C,故选:D.【点睛】此题考查实数与数轴,利用线段中点的性质得出AC的长是解题关键.8.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.9.D解析:D【详解】解:∵1<2<4,∴1<2,∴﹣2<<﹣1,∴2<43,∴a=2,b=422=-2∴1222122a b -==-=-. 故选D .【点睛】本题考查估算无理数的大小.10.D解析:D【分析】根据绝对值与算术平方根的非负性,列出关于a 、b 的方程组,解之即可.【详解】b-4=0,∴2a+b =0,b ﹣4=0,∴a =﹣2,b =4,∴a+b =2,故选D .【点睛】本题考查了绝对值与算术平方根的非负性,正确列出方程是解题的关键.二、填空题11.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.12.-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f()=2,f()=3,f()=4,f()解析:-1【分析】根据新定义中的运算方法求解即可.【详解】∵f(1)=0,f(2)=1,f(3)=2,f(4)=3,…,∴f(2019)=2018.∵f(12)=2,f(13)=3,f(14)=4,f(15)=5,…,∴1()2019f2019,∴1(2019)()2019f f2018-2019=-1.故答案为:-1.【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.15.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c+d =0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.17.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x 的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.18.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.19.9【分析】根据一个正数的平方根有2个,且互为相反数求出a的值,即可确定出这个正【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 20.3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】解:∵有意义,∴x﹣2≥0,解得:x≥2,∴+x﹣2=x+3,则=5,故x ﹣2=25,解得解析:3【分析】直接利用二次根式有意义的条件得出x 的取值范围进而得出x 的值,求出答案.【详解】∴x ﹣2≥0,解得:x≥2,﹣2=x+3,5,故x ﹣2=25,解得:x =27,故x 的立方根为:3.故答案为:3.【点睛】此题主要考查了二次根式有意义的条件,正确掌握二次根式的性质是解题关键.三、解答题21.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->- ∴综上所述最大值为53,最小值为117-.【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.22.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.23.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫⎪⎝⎭是“共生有理数对”;理由见详解.(2)(−n,−m)是“共生有理数对”,理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是. 理由:− n −(−m )=−n +m ,−n ⋅(−m )+1=mn +1∵(m ,n )是“共生有理数对”∴m −n =mn +1∴−n +m =mn +1∴(−n ,−m )是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.24.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.25.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<,∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.26.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>=∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去 ②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。
中考数学冲刺:图表信息型问题--巩固练习(提高)-【含解析】

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考冲刺:图表信息型问题—巩固练习(提高)【巩固练习】一、选择题1.(兰州模拟)如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.(2016秋•太仓市校级期末)将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C 落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.(平谷区期末)如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. (2016春•黄岛区期末)如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN 分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?【答案与解析】一、选择题1.【答案】B;【解析】∵四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,∴阴影部分的面积等于一个小平行四边形的面积,∵小平行四边形与▱ABCD相似,∴=()2,整理得y=x2,又0<x≤8,只有B选项图象符合y与x之间的函数关系的大致图象.故选:B.2.【答案】C;【解析】当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选C.3.【答案】A;【解析】由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.二、填空题4.【答案】22.5;【解析】连结OA、OB,如图,∵点A、B的读数分别为65°,20°,∴∠AOB=65°﹣20°=45°,∴∠ACB=∠AOB=22.5°.5.【答案】102;【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第n层:(2n-1)×6,所以第8层中含有正三角形个数是102.6.【答案】14;【解析】由图2可以看出x=5时,点P到达C点,x=9时,点P到达D点,∴AC=5,CD=9﹣5=4,根据勾股定理,BC=3,∴矩形ABCD的周长=2(BC+CD)=2×(3+4)=14.三、解答题7.【答案与解析】解:(1)135,110.(2)y=135x ,y=110x.(3)设铺设木质地板的工钱为每平方米x元,购买木质地板每平方米的费用为y元,则铺设瓷砖的工钱为每平方米(x+5)元,购买瓷砖每平方米的费用为34y 元.根据题意,得30()4050325(5)27504x yx y+=⎧⎪⎨++=⎪⎩,解这个方程组,得15120xy=⎧⎨=⎩. 由此得x +5=20 ,34y=90.答:铺设木质地板和瓷砖每平方米的工钱分别为15元和20元;购买木质地板和瓷砖每平方米的费用分别为120元和90元.8.【答案与解析】解:(1)由图象可得,甲和乙出发的时间相差1小时,故答案为:1;(2)由图象可知乙先到达B城,故答案为:乙;(3)设MN对应的函数解析式为y=kx+b,,得,故MN对应的函数解析式为y=25x﹣25;设PQ对应的函数解析式为y=mx+n,,得,即PQ对应的函数解析式为y=10x+10,∴,得,,即乙出发小时追上甲,故答案为:;(4)甲开始以较快的速度骑自行车前进,2点后速度减慢,但仍保持这一速度于下午5时抵达B城;(5)由图可知,甲全程的平均速度是:=12.5千米/时,即甲骑自行车在全程的平均速度是12.5千米/时. 9.【答案与解析】 (1)603010204050yx(2)依据图象,设函数解析式为y=ax 2+bx+c ,将表中的前三组数值代入,得⎪⎩⎪⎨⎧=++=++=0.120400,3.010100,0c b a c b a c 解得⎪⎩⎪⎨⎧===0,01.0,002.0c b a ∴函数的解析式为y=0.002x 2+0.01x (0≤x ≤140) . 经检验,表中的其他各组值也符合此解析式.(3)当y=46.5时,即0.002x 2+0.01x=46.5,∴ x 2+5x -23250=0.解得 x 1=150,x 2=-155(舍去) .∴推测刹车时的速度为150km/h . ∵150>140,∴发生事故时,汽车超速行驶.10.【答案与解析】(1)设A 、B 两市的距离为x 千米,则三家运输公司包装与装卸及运输的费用分别为: 甲公司(6x +1500)元,乙公司(8x +1000)元,丙公司为(10x +700)元. 依据题意,得(8x +1000)+(10x +700)=2(6x +1500).解得x ≈217(米). (2)设选择三家运输公司所需的总费用分别为y 1,y 2,y 3. 由于三家运输公司包装与装卸及运输所需的时间分别为:甲公司460S ⎛⎫+⎪⎝⎭小时,乙公司250S ⎛⎫+ ⎪⎝⎭小时,丙公司3100S ⎛⎫+ ⎪⎝⎭小时, ∴161500430011270060S y S S ⎛⎫=+++⨯=+⎪⎝⎭, 281000230014160050S y S S ⎛⎫=+++⨯=+⎪⎝⎭,3107003300131600100S y S S ⎛⎫=+++⨯=+⎪⎝⎭. ∵S >0, ∴y 2>y 3恒成立,所以只要比较y 1与y 3的大小.∵y 1-y 3=-2S +1100,∴①当S <550千米时,y 1>y 3.又y 2>y 3,故此时选择丙公司较好; ②当S =550千米时,y 2>y 1= y 3,此时选择甲公司或丙公司; ③当S >550千米时,y 2>y 3>y 1,此时选择甲公司较好.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
中考数学专题复习图表信息问题【含解析】

图表信息问题【专题点拨】图表信息题关键是“识图”和“用图”,主要是通过图形及表格信息,考查学生收集信息和处理信息的能力.解题时,要充分审视图形、表格,全面掌握其提供的信息,理解其实质,把握其方法规律,从而解决问题。
【解题策略】抓住图形或表格中的关键数据,筛选出有价值的信息,利用数据反映出的信息、规律、性质等建立数学模型解决。
【典例解析】类型一:图像信息题例题1:.(2016广东省贺州市第10题)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A. B. C. D.【答案】B【解析】(1)、二次函数的图象;(2)、一次函数的图象;(3)、反比例函数的图象【解答】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.类型二:表格信息题例题2:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用,一次函数的应用【答案】(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品【解析】解:(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.∴当x=200时,y1max=1180-200a(3≤a≤5)乙产品:y2=-0.05x²+10x-40(0<x≤80)∴当0<x≤80时,y2随x的增大而增大.当x=80时,y2max=440(万元).∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;1180-200=440,解得a=3.7时,此时选择甲乙产品;1180-200<440,解得3.7<a≤5时,此时选择乙产品.∴当3≤a<3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7<a≤5时,上产乙产品的利润高.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:类型三:图文信息题例题3:(2016·湖北黄石·3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B. C. D.【解析】水深h越大,水的体积v就越大,故容器内水的体积y与容器内水深x间的函数是增函数,根据球的特征进行判断分析即可.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选(A)【点评】本题主要考查了函数图象的变化特征,解题的关键是利用数形结合的数学思想方法.解得此类试题时注意,如果把自变量与函数的每一对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形就是这个函数的图象.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.类型四:综合创新类信息题例题4:(2016·湖北随州·9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【解析】二次函数的应用;一元一次不等式的应用.(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【参考答案】变式训练1:(2016湖南张家界第8题)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C.D.【答案】C.【解析】考点:1一次函数图像;2二次函数图像.【解答】:选项A:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误;选项B:一次函数图像经过一、二、四象限,因此a<0,b>0,对于二次函数y=ax2﹣bx图像应该开口向下,对称轴在y轴左侧,不合题意,此选项错误;选项C:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx 图像应该开口向上,对称轴在y轴右侧,符合题意,此选项正确;选项D:一次函数图像经过一、二、三象限,因此a>0,b>0,对于二次函数y=ax2﹣bx图像应该开口向上,对称轴在y轴右侧,不合题意,此选项错误.故选C.变式训练2:(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【解析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.【点评】不同考查一次函数的应用、分式方程等知识,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验,学会构建一次函数,利用一次函数性质解决实际问题中的最值问题,属于中考常考题型.变式训练3:(2016·黑龙江龙东·3分)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为()A. B. C. D.【解析】动点问题的函数图象.根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,当0≤t≤时,s=×1×1+2×2﹣=﹣t2;当<t≤2时,s=×12=;当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,∴A符合要求,故选A.变式训练4:(2016·四川南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP ⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=,得到=,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.(2)解:①仍然成立,AP⊥BN和AM=AN.理由如图二中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC, ==,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP⊥BN,∵∠ABP=∠ABN,∠APB=∠BAN=90°,∴△BAP∽△BNA,∴=,∴=,∵AB=BC,∴AN=AM.②这样的点P不存在.理由:假设PC=,如图三中,以点C为圆心为半径画圆,以AB为直径画圆,CO==>1+,∴两个圆外离,∴∠APB<90°,这与AP⊥PB矛盾,∴假设不可能成立,∴满足PC=的点P不存在.【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.【能力检测】1.(2016广西南宁3分)下列各曲线中表示y是x的函数的是()A. B. C. D.【解析】函数的概念.根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.2.(2016·湖北荆门·3分)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.【解析】动点问题的函数图象.△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是A;故选:A.3.(2016·山东省德州市·4分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?【解析】一次函数的应用.(1)由表中数据得出xy=6000,即可得出结果;(2)由题意得出方程,解方程即可,注意检验.【解答】解:(1)由表中数据得:xy=6000,∴y=,∴y是x的反比例函数,故所求函数关系式为y=;(2)由题意得:(x﹣120)y=3000,把y=代入得:(x﹣120)•=3000,解得:x=240;经检验,x=240是原方程的根;答:若商场计划每天的销售利润为3000元,则其单价应定为240元.【点评】本题考查了反比例函数的应用、列分式方程解应用题;根据题意得出函数关系式和列出方程是解决问题的关键.4.(2016·浙江省绍兴市·10分)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【分析】二次函数的应用.(1)根据矩形和正方形的周长进行解答即可;(2)设AB为xcm,利用二次函数的最值解答即可.【解答】解:(1)由已知可得:AD=,则S=1×m2,(2)设AB=xm,则AD=3﹣m,∵,∴,设窗户面积为S,由已知得:,当x=m时,且x=m在的范围内,,∴与课本中的例题比较,现在窗户透光面积的最大值变大.5.(2016·重庆市B卷·12分)如图1,二次函数y=x2﹣2x+1的图象与一次函数y=kx+b (k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且S△AMO:S四边形AONB=1:48.(1)求直线AB和直线BC的解析式;(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;(3)如图2,直线AB上有一点K(3,4),将二次函数y=x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K′是直角三角形时,求t的值.【解析】二次函数综合题.(1)根据S△AMO:S四边形AONB=1:48,求出三角形相似的相似比为1:7,从而求出BN,继而求出点B的坐标,用待定系数法求出直线解析式.(2)先判断出PE×PF最大时,PE×PD也最大,再求出PE×PF最大时G(5,),再简单的计算即可;(3)由平移的特点及坐标系中,两点间的距离公式得A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,最后分三种情况计算即可.【解答】解:(1)∵点C是二次函数y=x2﹣2x+1图象的顶点,∴C(2,﹣1),∵PE⊥x轴,BN⊥x轴,∴△MAO∽△MBN,∵S△AMO:S四边形AONB=1:48,∴S△AMO:S△BMN=1:49,∴OA:BN=1:7,∵OA=1∴BN=7,把y=7代入二次函数解析式y=x2﹣2x+1中,可得7=x2﹣2x+1,∴x1=﹣2(舍),x2=6∴B(6,7),∵A的坐标为(0,1),∴直线AB解析式为y=x+1,∵C(2,﹣1),B(6,7),∴直线BC解析式为y=2x﹣5.(2)如图1,设点P(x0,x0+1),∴D(,x0+1),∴PE=x0+1,PD=3﹣x0,∵△PDF∽△BGN,∴PF:PD的值固定,∴PE×PF最大时,PE×P D也最大,PE×PD=(x0+1)(3﹣x0)=﹣x02+x0+3,∴当x0=时,PE×PD最大,即:PE×PF最大.此时G(5,)∵△MNB是等腰直角三角形,过B作x轴的平行线,∴BH=B1H,GH+BH的最小值转化为求GH+HB1的最小值,∴当GH和HB1在一条直线上时,GH+HB1的值最小,此时H(5,6),最小值为7﹣=(3)令直线BC与x轴交于点I,∴I(,0)∴IN=,IN:BN=1:2,∴沿直线BC平移时,横坐标平移m时,纵坐标则平移2m,平移后A′(m,1+2m),C′(2+m,﹣1+2m),∴A′C′2=8,A′K2=5m2﹣18m+18,C′K2=5m2﹣22m+26,当∠A′KC′=90°时,A′K2+KC′2=A′C′2,解得m=,此时t=m=2±;当∠KC′A′=90°时,KC′2+A′C′2=A′K2,解得m=4,此时t=m=4;当∠KA′C′=90°时,A′C′2+A′K2=KC′2,解得m=0,此时t=0.【点评】此题是二次函数综合题,主要考查了相似三角形的性质,待定系数法求函数解析式,两点间的结论公式,解本题的关键是相似三角形的性质的运用.21。
中考数学专题:例练-第6课时图表信息题

新世纪教育网精选资料版权全部@新世纪教育网8 课时分类议论题在数学中,我们经常需要依据研究对象性质的差别,分各样不一样状况予以观察.这类分类思虑的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是依据数学对象的同样点和差别点,将数学对象划分为不一样种类的思想方法,掌握分类的方法,领悟其本质,对于加深基础知识的理解、提升剖析问题、解决问题的能力是十分重要的.分类的原则:( 1)分类中的每一部分是互相独立的;( 2)一次分类按一个标准;( 3)分类议论应逐级进行.种类之一直线型中的分类议论直线型中的分类议论问题主假如对线段、三角形等问题的议论,特别是等腰三角形问题和三角形高的问题尤其重要 .1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A. 50° B. 80° C. 65°或 50°D. 50°或 80°2.( ?乌鲁木齐 ) 某等腰三角形的两条边长分别为3cm 和 6cm,则它的周长为()A. 9cm B. 12cm C. 15cm D. 12cm或 15cm3.(·江西省)如图,把矩形纸片ABCD沿 EF 折叠,使点 B 落在边 AD上的点 B′处,点 A 落在点 A′处,(1) 求证: B′ E=BF;(2) 设 AE=a, AB=b, BF=c, 试猜想a、 b、 c 之间有何等量关系,并赐予证明.种类之二圆中的分类议论圆既是轴对称图形,又是中心对称图形,在解决圆的相关问题时,特别是无图的状况下,有时会以偏盖全、造成漏解,其主要原由是对问题思虑不周、思想定势、忽略了分类议论等.4. (?湖北罗田)在Rt △ ABC中,∠ C= 900,AC= 3,BC= 4. 若以 C 点为圆心,r为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是_____.5(. 上海市)在△ ABC中,AB=AC=5,cos B 3且经过点 B、C,.假如圆 O的半径为10,那么线段 AO的长等于5.6. (?威海市)如图,点A, B 在直线 MN上, AB= 11 厘米,⊙ A,⊙B的半径均为 1厘米.⊙A 以每秒 2 厘米的速度自左向右运动,与此同时,⊙B的半径也不停增大,其半径 r (厘米)与时间 t (秒)之间的关系式为r = 1+t (t ≥ 0).(1)试写出点 A, B 之间的距离 d(厘米)与时间 t (秒)之间的函数表达式;(2)问点 A 出发后多少秒两圆相切?种类之三方程、函数中的分类议论方程、函数的分类议论主假如经过变量之间的关系成立函数关系式,而后依据本质状况进行分类议论或在有本质意义的状况下的议论,在议论问题的时候要注意特别点的状况.7. (·上海市)已知 AB=2,AD=4,∠ DAB=90°, AD∥ BC(如图). E 是射线 BC上的动点(点 E 与点 B 不重合), M是线段 DE的中点.(1)设 BE=x,△ ABM的面积为 y,求 y 对于 x 的函数分析式,并写出函数的定义域;(2)假如以线段 AB为直径的圆与以线段 DE为直径的圆外切,求线段 BE的长;(3)联络 BD,交线段 AM于点 N,假如以 A、N、 D 为极点的三角形与△ BME相像,求线段 BE的长.8.(·福州市 ) 如图,以矩形OABC的极点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,成立平面直角坐标系.已知 OA=3, OC=2,点 E是 AB的中点,在 OA上取一点 D,将△ BDA沿 BD翻折,使点 A 落在 BC边上的点 F 处.(1)直接写出点E、F的坐标;(2)设极点为F的抛物线交y轴正半轴于点P,且以点...线的分析式;(3)在x轴、y轴上能否分别存在点M、N,使得四边形假如不存在,请说明原由.E、 F、P 为极点的三角形是等腰三角形,求该抛物MNFE的周长最小?假如存在,求出周长的最小值;第 8 课时分类议论题答案1. 【分析】因为已知角未指明是顶角仍是底角,因此要分类议论:(1)当 50°角是顶角时,则(180°-50°)÷ 2=65°,因此另两角是 65°、 65°;( 2)当 50°角是底角时,则 180°- 50°× 2=80°,因此顶角为80°。
中考专题特训浙教版初中数学七年级下册第六章数据与统计图表专题攻克试题(含详细解析)

初中数学七年级下册第六章数据与统计图表专题攻克(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条2、在全班45人中进行了你最喜爱的电视节目的调查活动,喜爱的电视剧有人数为18人,喜爱动画片有人数为15人,喜爱体育节目有人数为10人,则下列说法正确的是()A.喜爱的电视剧的人数的频率是1818+15+10B.喜爱的电视剧的人数的频率是18 45C.喜爱的动画片的人数的频率是18 18+10D.喜爱的体育节目的人数的频率是1815 14545 --3、下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查4、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2605、为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.966、下列调查中,适宜采用全面调查方式的是()A.了解一批圆珠笔的使用寿命B.了解全国九年级学生身高的现状C.考查人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件7、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A.1100B.1000C.900D.1108、要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台《开学第--课》的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程9、下列采用的调查方式中,不合适的是()A.了解澧水河的水质,采用抽样调查.B.了解一批灯泡的使用寿命,采用全面调查.C.了解张家界市中学生睡眠时间,采用抽样调查.D.了解某班同学的数学成绩,采用全面调查.10、下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查二、填空题(5小题,每小题4分,共计20分)1、折线图描述了某地某日的气温变化情况,估计这天11时的气温为________℃.2、对一批产品进行抽样调查统计部分结果如下:根据以上数据,随机抽取一个产品合格的概率大约是______(保留两位小数)3、为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.4、如果想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的统计图是___统计图.(填“条形”、“扇形”或“折线”)5、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.三、解答题(5小题,每小题10分,共计50分)1、在题1的问题中,(1)甲按照自己的构想实施了调查,结果如下:你能用恰当的统计图表示上述信息吗?从统计图表中你还能获得什么?(2)丁同学也按自己的构想实施了调查,结果单位:min)如下20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 90 50 90 70 4050 80 45 120 90 30 35 70 40 75 90 50 100 75 40 90 100 75 80 5050 25 90 45 70 40 70 85 80 75 80 25 85 90 75 75 90 90 90 2060 90 100 50 110 150 90 50 90 80 90 10 90 80 55 90 40 55 100 30请你选择恰当的统计图表示丁同学的调查结果.2、2020年冬季达州市持续出现雾霾天气.某记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m=,n=,扇形统计图中E组所占的百分比为%;(2)若该市人口约有200万人,请你估计其中持D组“观点”的市民人数.(3)治污减霾,你有什么建议?3、佳佳调查了初一600名学生选择课外兴趣班的情况,根据调查结果绘制了统计图的一部分如下:(1)补全条形统计图;(2)求扇形统计图中表示“书法”的扇形圆心角的度数;(3)估计在3000名学生中选择音乐兴趣班的学生人数.4、某部门统计了某地1000名18周岁以上的成年男子的身高,得到如下数据:根据上述数据,绘制频数直方图.5、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图.(1)本次调查的学生总人数为______;(2)求a、b的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“56t≤<”所对应的扇形圆心角的度数.---------参考答案-----------一、单选题1、A【分析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【详解】设湖中有x条鱼,则:15:200=100:x解得:x=40003≈1333(条).故选A.【点睛】本题考查了通过样本去估计总体,只需将样本“成比例地放大”为总体即可.2、B【详解】试题分析:频率应为频数除以总数,所以喜欢看电视剧、动画片和体育节目的频率分别是1845、1545、1045,故选B.3、D【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.4、A【详解】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.5、C【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24%6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.6、D【详解】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.7、A【分析】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可.【详解】解:“良”和“优”的人数所占的百分比:852518728525++++×100%=55%,∴在2000人中成绩为“良”和“优”的总人数估计为2000×55%=1100(人),故选:A.【点睛】本题考查了用样本估计总体,求出“良”和“优”的人数所占的百分比是解题关键.8、C【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、B【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、D【详解】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.二、填空题【分析】读懂统计图回答问题,从图上可看出11时的气温估计是28.5℃左右.【详解】解:根据图示可知:11时的气温估计是28.5℃左右.故答案是:28.5.【点睛】本题考查了折线统计图的知识,解答本题的关键是同学们能看懂折线统计图.2、0.94【分析】根据表中给出的合格率数据即可得出该产品的合格率.【详解】解:根据给出的数据可得,该产品的合格率大约是0.94,3、500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位.4、折线【分析】根据条形统计图,折线统计图和扇形统计图的特点进行判断即可.【详解】解:想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的的统计图的折线统计图,故答案为:折线.【点睛】本题主要考查了条形统计图,折线统计图和扇形统计图的特点,解题的关键在于能够熟练掌握:扇形统计图表示的是部分在总体中所占的百分比,但一般不能够从图中得到具体的数据;折线统计图表示的事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.5、46.8°【分析】利用占总体的百分比是13%,则这部分的圆心角是360度的13%,即可求出结果.【详解】解:该部分所对扇形圆心角为:36013%46.8︒⨯=︒.故答案为:46.8︒.【点睛】本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.三、解答题1、(1)可以使用条形统计图表示调查对象中男女生的人数关系,可以用扇形统计图表示不同时间的人数所占的百分比情况,获得的信息答案不唯一,例如,大多数的男生活动时间为1~1.5h,大多数女生的活动时间为0.5~1h等;(2)选择条形统计图,见解析.【分析】(1)根据统计表中的数字特征,可以选用条形统计图.(2)将数字统计,归纳,用条形统计图表示各个时间段的人数.【详解】(1)可以使用条形统计图表示调查对象中男女生的人数关系,可以用扇形统计图表示不同时间的人数所占的百分比情况(可以男生情况画一图,女生情况画一图,也可以总情况画一图),获得的信息答案不唯一,例如,大多数的男生活动时间为1~1.5h,大多数女生的活动时间为0.5~1h等.(2)可以用条形统计图,见下图.根据数据得到以下统计表:【点睛】本题考查了根据数据特征选用恰当的统计图,做题的关键是掌握统计图的特征.2、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可.【详解】解:(1)本次调查的总人数为80÷20%=400(人),则B组人数m=400×10%=40(人),C组人数n=400﹣(80+40+120+60)=100(人),∴扇形统计图中E组所占的百分比为(60÷400)×100%=15%;(2)200×120400=60(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”.倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放.【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键.3、(1)见解析;(2)72゜;(3)750人【分析】(1)根据参与调查的总人数及条形统计图中的数据信息,可求得选择美术的人数,从而可补全条形统计图;(2)求得选择书法在参与调查的总人数中所占的百分比,它与360度的积即是所求扇形圆心角的度数;(3)求出选择音乐兴趣班的百分比,即可估计出3000名学生中选择音乐兴趣班的学生人数.【详解】(1)由条形统计图知,选择除美术兴趣班外的学生共有:150+180+120+30=480(人),则选择美术兴趣班的学生有:600-480=120(人),所以可以补充完整条形统计图,补全的条形统计图如下:(2)选择书法兴趣班的学生人数占所参与调查的学生人数的百分比为:120100%20% 600⨯=,则表示“书法”的扇形圆心角的度数为20%×360゜=72゜(3)选择音乐兴趣班的学生人数占所参与调查的学生人数的百分比为:150100%25%600⨯=,则估计在3000名学生中选择音乐兴趣班的学生人数大约有;25%×3000=750(人)【点睛】本题是条形统计图与扇形统计图的综合,考查了求扇形统计图中圆心角的度数,画条形统计图,用样本的百分数估计总体的百分数,关键是读懂统计图中包含的信息,能正确运用这些信息解决问题.4、见解析【分析】根据题中数据绘制对应的统计图即可.【详解】解:如图所示,即为所求;【点睛】本题主要考查了绘制频数分布直方图,解题的关键在于能够熟练掌握绘制频数分布直方图的方法.5、(1)40 (2)a=6,b=10%,频数分布直方图见解析(3)72°【分析】(1)根据体育锻炼时间“3≤t<4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5≤t<6”占学生总人数的百分比20%,即可得答案.【详解】解:(1)∵体育锻炼时间“3≤t<4”频数10,百分比是25%,∴学生总人数为10÷25%=40;(2)∵学生总人数为40,∴a=40-4-10-8-12=6,b=41%=%=10% 4010;∴频数分布直方图为下图:(3)体育锻炼时间“5≤t<6” 占学生总人数的百分比为20%,∴对应的扇形圆心角的度数=20%360=72⨯︒︒.【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角.。
人教版九年级数学上二次函数第6课时教案教学设计教学案课时作业试卷同步练习含答案解析

O xy1- 1 y x O 1=x 1-二次函数y =ax 2+bx +c 的图象和性质(第6课)【目标导航】1.会利用三种形式求抛物线的解析式.2.会利用二次函数的图象和性质解决有关问题.【课堂操练】例1 抛物线21y x m x m ()=-+-+与y 轴交于点(0,3).(1)求出m 的值并画出此抛物线; (2)求它与x 轴交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴的上方;(4)x 取什么值时,y 的值随x 的增大而减小?答案:(1) m =3 画图略; (2)与x 轴的交点坐标为(-1 , 0 )和(3 , 0 ) ,顶点坐标为(1 , 4 ) . (3) -1<<x <3 (4) x >1例2二次函数y =ax 2+bx +c 的图象如图所示,确定下列各代数式的正负. (1)abc ;(2)2a b +;(3)2a b -;(4)a b c ++;(5)a b c -+.答案:(1) > 0 ; (2) > 0 ; (3) > 0 ; (4 ) < 0 ; (5) > 0 ;练一练:1.已知二次函数2y ax bx c =++(0a ≠)的部分图象如图所示,它的顶点的横坐标为1-,由 图象可知关于x 的方程20ax bx c ++=的两根为11x =,2x = .答案:-32、(四川重庆)已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0 答案:D3.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:①0>abc ;②c a b +<;③024>++c b a ;④b c 32<;⑤)(b am m b a +>+,(m ≠1的实数).其中正确的结论有__________.(填序号)答案:③④⑤4、(江苏宿迁)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根答案:D5、 (山东济宁)已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所x …… 0 1 2 3 4 …… y……4114……点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2y 的大小关系正确的是( )A .12y y >B . 12y y <C . 12y y ≥D . 12y y ≤ 答案:B6.在Rt ABC ∆中, 90=∠C ,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知10=c , Rt ABC ∆的面积为24,求抛物线abx x b a y ++-=2)(的顶点坐标.答案:由题意得 222101242a b ab ⎧+=⎪⎨=⎪⎩ 可以求得 1448a b ab +=⎧⎨=⎩∴ 所求的抛物线为x x y 48142+-=,顶点坐标为(712, 7288)7. (湖南怀化)已知:关于x 的方程012)31(2=-+--a x a ax(1) 当a 取何值时,二次函数12)31(2-+--=a x a ax y 的对称轴是x=-2; (2) 求证:a 取任何实数时,方程012)31(2=-+--a x a ax 总有实数根. 【答案】(1)解:∵二次函数12)31(2-+--=a x a ax y 的对称轴是x=-2∴22)31(-=---aa 解得a =-1经检验a =-1是原分式方程的解.所以a =-1时,二次函数12)31(2-+--=a x a ax y 的对称轴是x =-2; (2)1)当a =0时,原方程变为-x -1=0,方程的解为x = -1;2)当a ≠0时,原方程为一元二次方程,012)31(2=-+--a x a ax , 当时,042≥-ac b 方程总有实数根, ∴()[]0)12(4a 312≥----a a整理得,0122=+-a a0)1(2≥-a∵a ≠0时 0)1(2≥-a 总成立所以a 取任何实数时,方程012)31(2=-+--a x a ax 总有实数根.例3已知x 1,x 2 是关于x 的方程22x x m p p m ()()()()--=--的两个实数根.(1)求x 1,x 2 的值;(2)若x 1,x 2 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.答案:( 1 ) x 1=p , x 2 = m – p +2 .( 2 ) 当p = 22+m 时, 此直角三角形的面积最大,最大值为8)2(2+m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6课时图表信息题
图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:
1、细读图表:(1)注重整体阅读。
先对材料或图表资料等有一个整体的了解,把握大体方向。
要通过整体阅读,搜索有效信息;(2)重视数据变化。
数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节。
图表中一些细节不能忽视,他往往起提示作用。
如图表下的“注”“数字单位”等。
2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢。
题目要求包往往括字数句数限制、比较对象、变化情况等。
3、准确表达解答图表题需要用简明的语言进行概括。
解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论。
在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制。
类型之一图形信息题
找规律是解决数学问题的一种重要手段,找规律既需要敏锐的观察力,又需要一定的逻辑推理能力。
在解决图形问题的时候应从图形的个数、形状以及图
形的简单性质入手。
1.(沈阳市)观察下列图形的构成规律,根据此规律,
第8个图形中有个圆.
2.(聊城市)如下左图是某广场用地板铺设的部分图案,中央是一块正六边形的地
板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三
角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数
是()
A.54个B.90个C.102个D.114个
3.(·桂林市)如上右图,矩形A
1B1C1D1的面积为4,顺次连结各边中点得
到四边形A2B2C2D2,再顺次连结四边形A2B2C2D2四边中点得到四边形A3B3C3D3,依
此类推,求四边形A n B n C n D n,的面积是。
内部,画1条射线,可得3个锐角;
4(·襄樊市)如图,在锐角AOB
9
4x
y
O
P
D
C
B
A
画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.
类型之二 图象信息题
此类题目以图象的形式出现,有时用函数图象的形式出现,有时以统计图的形式出现,需要要把所给的图象信息进行分类、提取加工,再合成.
5.(•莆田市)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是 ( )
A .轮船的速度为20千米/小时 C .轮船比快艇先出发2小时
B .快艇的速度为40千米/小时 D .快艇不能赶上轮船
6.(•滨州市)如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( )
A.10
B.16
C.18
D.20
7.(·龙岩市)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.
依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是 ;
(3)若购买乒乓球门票的总款数占全部门票总款数的8
1
,试求每张乒乓球门票的价格。
类型之三 从表格、数字中寻求规律
能从表格、数字中发现两个量之间存在规律,归纳出相应的关系式.在探索规律的时候,如对于数字问题,可以把等式横向、纵向进行比较,找到其中的数字与其式子的序号之间的关系,然后找到其中的变化规律.
8.(·内江市) 根据图中数字的规律,在最后一个图形中填空.
9.(·恩施自治州)将杨辉三角中的每一个数都换成分数 ,得到一个
如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数12
1
.那么(9,2)表示的分数是 .
10.(·茂名)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
参考答案
1.【解析】观察图形,第1个图形中“○”的个数为2=1+1;第2个图形中“○”的个数为5=4+1=122
+;
第3个图形中“○”的个数为10=9+1=132
+;第4个图形中“○”的个数为17=16+1=142
+;…第n 个图
形中“○”的个数为12
+n .
【答案】65.
2.【解析】阅读题意可得规律:第1层:1×6;第2层:3×6;第3层:5×6;第4层:7×6……第8层:15×6=90;还可推广:第n 层:(2n-1)×6,所以第8层中含有正三角形个数是102.
【答案】B
【解析】由中点四边形性质得:四边形A 2B 2C 2D 2,的面积是矩形A 1B 1C 1D 1的一半,四边形A 3B 3C 3D 3的面积是四边形A 2B 2C 2D 2的面积的一半,依此类推,得到四边形A n B n C n D n 的面积是
1
4
2n -。
【答案】
142
n - 4.【解析】按如图这样画n 条射线得到的锐角个数为(1)(2)2
n n ++ 【答案】66
5.【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.
【答案】D
6.【解析】由图可知点P 运动路程在4和9之间时三角形ABP 面积不变,说明这时点P 在CD 边上,因此可知CD=5,BC=4,三角形ABC 面积为10
【答案】A
7.【解析】此题为统计与概率知识的综合题,由条形统计图可以判断出三种比赛项目的具体人数,就可以解决第一、二两问.第三问乒乓球门票的价格需要根据统计表中所示的各门票的价格与购买乒乓球门票的总款数占全部门票总款数的
8
1
,构造方程从而求出乒乓球门票的价格. 【答案】(12分)(1)30,20 (3)解法一:依题意,有x x 205080030100020+⨯+⨯= 1
8
.
解得x =500 .
经检验,x =500是原方程的解.
答:每张乒乓球门票的价格为500元.
解法二:依题意,有x 2050800301000+⨯+⨯= x 208⨯. 解得x =500 .
答:每张乒乓球门票的价格为500元.
8.【解析】寻求图形与图形之间数字蕴含的规律是解题的关键所在.图形的第一行的数是连续正奇数;第二行左边的数是连续正偶数;把每个图形第一行的数乘以第二行左边的数,再加上第一行的数,便得到第二行右边的数.
【答案】
9.【解析】观察分数的排列发现其分布有轴对称性,且(n ,1)表示
1n ,(n ,2)表示1(1)
n n - 【答案】
72
1
10.【解析】从表格中的数据我们可以看出当x 增加10时,对应y 的值减小100,所以y 与x 之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y 与x 之间是一次函数的关系,然后设出一次函数关系式,求出其关系式.
【答案】(1)画图如图;
由图可猜想y 与x 是一次函数关系, 设这个一次函数为y = k
x +b (k≠0)
∵这个一次函数的图象经过(30,500)、(40,400)这两点, ∴5003040040k b k b =+⎧⎨
=+⎩ 解得10
800
k b =-⎧⎨=⎩
∴函数关系式是:y =-10x +800
(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得 W=(x -20)(-10x +800)=-10x 2
+1000x -16000
=-10(x-50)2+9000
∴当x=50时,W有最大值9000.
所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数 W=-10(x-50)2+9000,
当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.。