(完整版)一次函数练习题及答案(较难实用)
第五章 一次函数单元测试卷(标准难度)(含答案)
浙教版初中数学八年级上册第五章《一次函数》单元测试卷考试范围:第五章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A. 1个B. 2个C. 3个D. 4个2.根据如图所示的计算程序计算y的对应值,若输入变量x的值为12,则输出的结果为( )A. 12B. −12C. −32D. 543.在矩形ABCD中,动点P从A出发,沿A→D→C运动,速度为1m/s,同时动点Q从点A出发,以相同的速度沿路线A→B→C运动,设点P的运动时间为t(s),△CPQ的面积为S(m2),S与t的函数关系的图象如图所示,则△CPQ面积的最大值是( )A. 3B. 6C. 9D. 184.学枝组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A. B.C. D.5.小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是( )A. B.C. D.6.下列函数中,一次函数是( )+2 B. y=−2xA. y=1xC. y=x2+2D. y=mx+n(m,n是常数)7.函数①y=πx,②y=−2x+1,③y=1,④y=x2−1中,是一次函数的有( )xA. 4个B. 3个C. 2个D. 1个8.下列函数:(1)y=πx2(2)y=2x−1(3)y=1(4)y=2−3x(5)y=x2−1中,x是一次函数的有( )A. 4个B. 3个C. 2个D. 1个9.一次函数y=2(x+1)−1不经过第象限.( )A. 一B. 二C. 三D. 四10.如图,已知直线l1:y=−2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(−2,0),则k的取值范围是( )A. −2<k<2B. −2<k<0C. 0<k<4D. 0<k<2x+4与x轴、y轴分别交于A、B两点,C、D分别为线段AB、OB的11.如图,直线y=23中点,P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )A. (−52,0) B. (−3,0) C. (−32,0) D. (−6,0)12.甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离y(米)与乙出发的时间x(秒)之间的函数关系如图所示,则下列结论中正确的个数是( )①乙的速度为5米/秒;②离开起点后,甲、乙两人第一次相遇时,距离起点60米;③甲、乙两人之间的距离为40米时,甲出发的时间为55秒和90秒;④乙到达终点时,甲距离终点还有80米.A. 4个B. 3个C. 2个D. 1个第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一根长为20cm的蜡烛,每分钟燃烧2cm,蜡烛剩余长度y(厘米)与燃烧时间t(分)之间的关系式为______(不必写出自变量的取值范围).14.某公司生产一种产品,前期投资成本为100万元,在此基础上,每生产一吨又要投入5万元成本,那么生产的总成本y万元与产量x吨之间的数量关系是______.15.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程1x−1+1m=1的解为.16.如图,直线y=kx+b与y=mx+n分别交x轴于点A(−0.5,0),B(2,0),则不等式(kx+b)(mx+n)>0的解集为______.三、解答题(本大题共9小题,共72分。
(完整版)一次函数经典题型+习题(精华,含答案)
一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m ,n )在第二象限,则点(|m|,-n)在第____象限;2、 若点P(2a —1,2—3b )是第二象限的点,则a ,b 的范围为______________________;3、 已知A (4,b ),B (a ,—2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A ,B 关于y 轴对称,则a=_______,b=__________;若若A,B 关于原点对称,则a=_______,b=_________;4、 若点M (1—x ,1—y )在第二象限,那么点N (1—x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,—2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C(0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q (—2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,—4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A(0,2)、B(—3,—2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________。
一次函数精选20题(附答案)
分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?26.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)小24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)22.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)图1325、(2011•黑河)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
一次函数练习题(附答案)
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1.函数y=中,自变量某的取值范围是()某1A.某≥0B.某1C.某0且某≠1D.某≥0且某≠12.已知正比例函数y=-2某,当某=-1时,函数y的值是()A.2B.-2C.-0.5D.0.53.一次函数y=-2某-3的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间某(分钟)之间的函数关系,则以下判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。
5.已知一次函数y=(m+2)某+(1-m),若y随某的增大而减小,且此函数图像与y轴的交点在某轴上方,则m的取值范围是()A.m-2B.m1C.-2D.-2m16.(2007福建福州)已知一次函数y(a1)某b的图象如图所示,那么a的取值范围是()A.a1B.a1C.a0D.a07.(2007上海市)如果一次函数yk某b的图象经过第一象限,且与y轴负半轴相交,那么()A.k0,b0B.k0,b0C.k0,b0D.k0,b08.(2007陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某2C.y某2B.y某2D.y某2)9.(2007浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
(完整版)初中数学一次函数练习题及答案
一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。
一次函数的定义专项练习30题(有答案)
一次函数的定义专项练习30题1.下列五个式子,①,②,③y=﹣x+1,④,⑤y=2x2+1,其中表示y是x的一次函数的有()A.5个B.4个C.3个D.2个2.下列函数中,y是x的一次函数的是()A.y=﹣3x2﹣1 B.y=x﹣1+2 C. y=2(x﹣1)2D.3.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x4.下列函数:①y=﹣x+2;②y=﹣x2+2;③y=﹣3x;④;⑤,其中不是一次函数的有()A.1个B.2个C.3个D.4个5.下列函数(1)y=2x﹣1;(2)y=πx;(3)y=;(4)y=;(5)y=x2﹣1中,是一次函数的有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.一次函数是正比例函数B.正比例函数是一次函数C.正比例函数不是一次函数D.一次函数不可能是正比例函数7.已知函数y=3x+1,当自变量增加3时,相应的函数值增加()A.10 B.9C.3D.88.对于函数y=2x﹣1,当自变量增加m时,相应的函数值增加()A.2m B.2m﹣1 C.m D.2m+1az9.若+5是一次函数,则a=()A.±3 B.3C.﹣3 D.10.若函数y=(m﹣1)x|m|+2是一次函数,则m的值为()A.m=±1 B.m=﹣1 C.m=1 D.m≠﹣111.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=012.下列说法正确的是()A.y=kx+b(k、b为任意常数)一定是一次函数B.(常数k≠0)不是正比例函数C.正比例函数一定是一次函数D.一次函数一定是正比例函数13.已知y+2与x成正比例,则y是x的()A.一次函数B.正比例函数C.反比例函数D.无法判断14.设圆的面积为S,半径为R,那么下列说法确的是()A.S是R的一次函数B.S是R的正比例函数C.S是R2的正比例函数D.以上说法都不正确15.已知函数y=(k+2)x+k2﹣4,当k_________时,它是一次函数.16.如果函数y=(a﹣2)x+3是一次函数,那么a_________.17.当m=_________时,函数y=(m+5)x2m﹣1+7x﹣3(x≠0)是一个一次函数.18.已知一次函数y=(k﹣1)x|k|+3,则k=_________.19.已知:y=(m﹣1)x|m|+4,当m=_________时,图象是一条直线.20.把2x﹣y=3写成y是x的函数的形式为_________.21.在函数y=﹣2x﹣5中,k=_________,b=_________.22.一次函数y=﹣2x﹣1,当x=﹣5时,y=_________,当y=﹣7时,x=_________.23.一次函数y=kx+b中,k、b都是_________,且k_________,自变量x的取值范围是_________;当k_________,b_________时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有_________,属正比例函数的有_________(只填序号)25.若y=mx|m|+2是一次函数的解析式且y随x的增大而减小,则m的值等于_________.26.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.27.已知函数y=(m﹣10)x+1﹣2m.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.28.已知函数y=(m+1)x+(m2﹣1)当m取什么值时,y是x的一次函数当m取什么值是,y是x的正比例函数.29.x为何值时,函数的值分别满足下列条件:(1)y=3;(2)y>2.30.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么的函数关系式为_________,它是_________函数.一次函数定义30题参考答案:1.①是反比例函数,故本选项错误;②符合一次函数的定义;故本选项正确;③y=﹣x+1符合一次函数的定义;故本选项正确;④=x ﹣,符合一次函数的定义;故本选项正确;⑤y=2x2+1,是二次函数;故本选项错误;综上所述,表示y是x的一次函数的有3个;故选C2.A、自变量次数不为1,故不是一次函数;B、自变量次数不为1,故不是一次函数;C、自变量次数不为1,故不是一次函数;D、是一次函数.故选D.3.A、设路程是s,则根据题意知,y=,是反比例函数关系.故本选项错误;B、根据题意,知10=2(x+y),即y=﹣x+5,符合一次函数的定义.故本选项正确;C、根据题意,知y=πx2,这是二次函数,故本选项错误;D、根据题意,知x2+y2=25,这是双曲线方程,故本选项错误.故选B.4.①y=﹣x+2是一次函数;②y=﹣x2+2是二次函数;③y=﹣3x是一次函数;④y=﹣x是一次函数;⑤y=﹣是反比例函数;所以,不是一次函数的有②⑤共2个.故选B5.(1)y=2x﹣1是一次函数;(2)y=πx是一次函数;(3)y=,自变量次数不为1,故不是一次函数;(4)y==,自变量次数不为1,故不是一次函数;(5)y=x2﹣1自变量次数不为1,故不是一次函数;综上所述,一次函数有2个.故选C.6.A、一次函数不一定是正比例函数,故本选项错误;B、正比例函数一定是一次函数,故本选项正确;C、正比例函数一定是一次函数,故本选项错误;D、一次函数可能是正比例函数,故本选项错误.故选B.7.因为y=3x+1,所以当自变量增加3时,y1=3(x+3)+1=3x+1+9,相应的函数值增加9.故选B.8.当自变量增加m时,y=2(x+m)﹣1,即y=2x+2m ﹣1,故函数值相应增加2m.故选A.9.根据一次函数的定义可知:a2﹣8=1,a+3≠0,解得:a=3.故选B.10.根据题意得:,解得:m=﹣1.故选B.11.∵函数y=(m﹣2)x n﹣1+n是一次函数,∴,解得,.故选C.12.A、y=kx+b(k、b为任意常数),当k=0时,不是一次函数,故本选项错误;B 、(常数k≠0)是正比例函数,故本选项错误;C、正比例函数一定是一次函数,故本选项正确;D、一次函数不一定是正比例函数,故本选项错误.故选C.13.y+2与x成正比例,则y+2=kx,即y=kx﹣2,符合一次函数y=kx+b的定义条件:k、b为常数,k≠0,自变量次数为1,则y是x的一次函数.故选A.14.由题意得,S=πR2,所以S是R2的正比例函数.故选C.15.根据一次函数定义得,k+2≠0,解得k≠﹣2.故答案为:≠﹣2.16.∵y=(a﹣2)x+3是一次函数,∴a﹣2≠0,∴a≠2.故答案为:a≠﹣2.17. ①,解得:m=1根据题意得:2m﹣1=1,解得:m=1,此时函数化简为y=13x﹣3.②2m﹣1=0,解得:m=,此时函数化简为y=7x﹣2.5;③m+5=0,解得:m=﹣5,此时函数化简为y=7x﹣3.故答案为:1或﹣5或18.根据题意得k﹣1≠0,|k|=1则k≠1,k=±1,即k=﹣1.19.∵y=(m﹣1)x|m|+4的图象是一条直线,∴①当该图象是一次函数图象时,|m|=1,且m﹣1≠0,解得m=﹣1.②当该直线是平行于x轴的直线时,m﹣1=0,即m=1;综上所述,当m=±1时,y=(m﹣1)x|m|+4的图象是一条直线.故答案是:±120.2x﹣y=3写成y是x的函数的形式为y=2x﹣3.故答案为:y=2x﹣3.21.根据一次函数的定义,在函数y=﹣2x﹣5中,k=﹣2,b=﹣5.22.把x、y的值分别代入一次函数y=﹣2x﹣1,当x=﹣5时,y=﹣2×(﹣5)﹣1=9;当y=﹣7时,﹣7=﹣2x﹣1,解得x=3.故填9、3.23.一次函数y=kx+b中,k、b都是常数,且k≠0,自变量x的取值范围是任意实数;当k≠0,b =0时它是正比例函数.24.函数:①y=﹣2x+3;②x+y=1;③xy=1;④y=;⑤y=+1;⑥y=0.5x中,属于一次函数的有①②⑥,属正比例函数的有⑥(只填序号)25.∵y=mx|m|+2是一次函数,∴|m|=1,∴m=±1,∵y随x的增大而减小,∴m=﹣1.故答案为:﹣126.∵m﹣3≠0且|m|﹣2=1,∴m=﹣3,∴函数解析式为:y=﹣6x+327.(1)根据一次函数的定义可得:m﹣10≠0,∴m≠10,这个函数是一次函数;(2)根据正比例函数的定义,可得:m﹣10≠0且1﹣2m=0,∴m=时,这个函数是正比例函数.28.由函数是一次函数可得,m+1≠0,解得m≠﹣1,所以,m≠﹣1时,y是x的一次函数;函数为正比例函数时,m+1≠0且m2﹣1=0,解得m=1,所以,当m=1时,y是x的正比例函数.29.(1)当y=3时,可得:1.5x+6=3,解得x=﹣2;(2)当y>2时,1.5x+6>2,解得30.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,则汽车离开A站的距离s=40t,它是正比例函数;故两空应分别填s=40t,正比例;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,则汽车离开A站的距离s=40t+4,它是一次函数;故两空应分别填s=40t+4,一次.。
初中数学一次函数的图像专项练习30题(有答案)ok
一次函数的图像专项练习30题(有答案)1.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置正确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y 1,其中正确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,如果k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x﹣把平面直角坐标系分成四个部分,则点(,)在()A . 第一部分B . 第二部分C . 第三部分D . 第四部分7.已知正比例函数y=﹣kx 和一次函数y=kx ﹣2(x 为自变量),它们在同一坐标系内的图象大致是( ) A . B . C . D .8.函数y=2x+3的图象是( ) A .过点(0,3),(0,﹣)的直线 B .过点(1,5),(0,﹣)的直线C .过点(﹣1,﹣1),(﹣,0)的直线D . 过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x ﹣1表示的是同一个一次函数的图象是( ) A . B . C . D .10.函数kx ﹣y=2中,y 随x 的增大而减小,则它的图象是下图中的( ) A .B .C .D .11.已知直线y 1=k 1x+b 1,y 2=k 2x+b 2,满足b 1<b 2,且k 1k 2<0,两直线的图象是( ) A .B .C .D .A.B.C.D.13.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若该水库的蓄水量V(万米3)与降雨的时间t(天)的关系如图所示,则下列说法正确的是()A.降雨后,蓄水量每天减少5万米3B.降雨后,蓄水量每天增加5万米3C.降雨开始时,蓄水量为20万米3D.降雨第6天,蓄水量增加40万米314.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()A.B.C.D.15.已知正比例函数y=kx的图象经过第一、三象限,则y=kx﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,根据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,正确的判断是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则根据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并根据图象回答下列问题.(1)当﹣2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,利用图象回答下列问题:(1)求自变量的取值范围.(2)在(1)在条件下,y是否有最小值?如果有就求出最小值;如果没有,请说明理由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;(3)根据图象,试说明当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并根据图象回答下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________;(3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是多少?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)如果y的取值范围﹣4≤y≤2,求x的取值范围.29.已知一次函数的图象经过点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)根据图象回答问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,C选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,无选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③正确.故选C3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经过第二、三、四象限.故选C4.根据图象知:A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经过第一、二、四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情况:(1)当k>0时,正比例函数y=﹣kx的图象过原点、第一、三象限,一次函数y=kx﹣2的图象经过第一、三、四象限,选项A符合;(2)当k<0时,正比例函数y=﹣kx的图象过原点、第二、四象限,一次函数y=kx﹣2的图象经过第二、三、四象限,无选项符合.故选A.8.A、把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B、由A知函数图象不过点(0,﹣),故错误;C、把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D、分别令x=0,y=0,此函数成立,故正确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点确定一条直线,连接这两点就可得到y=﹣x﹣1的图象.故选D10.整理为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B、C都是错误的.12.①当ab>0,正比例函数y=abx过第一、三象限;a与b同号,同正时y=ax+b过第一、二、三象限,故D错误;同负时过第二、三、四象限,故B错误;②当ab<0时,正比例函数y=abx过第二、四象限;a与b异号,a>0,b<0时y=ax+b过第一、三、四象限,故C错误;a<0,b>0时过第一、二、四象限.故选A13.A、根据图象知,水库的蓄水量因该随着降雨的时间的增加而增多;故本选项错误;B、本图象的直线,所以每天的降雨量是相等的,所以,蓄水库每天的增加的水的量是(40﹣10)÷6=5;故本选项正确;C、根据图示知,降雨开始时,蓄水量为10万米3,故本选项错误;D、根据图示知,降雨第6天,蓄水量增加了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.根据题意列出关系式为:y=40﹣5t,考虑实际情况:拖拉机开始工作时,油箱中有油4升,即开始时,函数图象与y轴交于点(0,40),如果每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经过第一、三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经过一、三、四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.根据题意,要求y<0时,x的范围,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.根据题意,观察图象,可得直线l过点(2,0),且y随x的增大而增大,分析可得,当x>2时,有y>0 19.根据图示及数据可知:①一次函数y1=kx+b的图象经过第二、四象限,则k<0正确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④20.根据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.根据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;24.(1)由图象可看出当y=2.5时,x=5,因此x的取值范围应该是0<x≤5(y轴上的点是空心圆,因此x≠0);(2)由图象可看出,当x=5时,函数的值最小,是y=2.525.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2)、(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)观察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0);(0,2)②<1。
一次函数基础训练题(后附答案)
一次函数基础训练题(后附答案)1、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有_______ 正比例函数有______,2.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。
请你举出一个满足上述条件的函数(用关系式表示)3、函数 432+=x y 的图像与x 轴交点坐标为________,与y 轴的交点坐标为____________。
4.函数y=2x-1与x 轴交点坐标为_______ ,与y 轴交点坐标为____,与两坐标轴围成的三角形面积是______.5、(1)对于函数y =5x+6,y 的值随x 值的减小而___。
(2)对于函数 x y 3221-=, y 的值随x 值的____而增大。
6.若直线y=kx+b 和直线y=-x 平行,与y 轴交点的纵坐标为-2,则直线的解析式为_______. 7,如果一次函数y=kx-3k+6的图象经过原点,那么k 的值为________。
8.已知y-1与x 成正比例,且x=-2时,y=4,那么y 与x 之间的函数关系式为_________________。
9.直线y =kx+b 过点(1,3)和点(-1,1),则b k =__________。
10.若函数y =kx+b 的图像经过点(-3,-2)和(1,6)求k 、b 及函数关系式。
11、已知一次函数 y=(6+3m )x+n-4,求:(1)m 为何值时,y 随x 的增大而减小? (2)n 为何值时,函数图象与y 轴交点在x 轴的下方? (3)m, n 分别为何值时,函数图象经过 (0,0).12、在直角坐标系中,一次函数y =kx +b 的图像经过三点A (2,0)、B (0,2)、C (m ,3),求这个函数的关系式,并求m 的值。
13、已知一次函数的图像经过点A (2,-1)和点B ,其中点B 是另一条直线321+-=x y 与y 轴的交点,求这个一次函数的表达式。
一次函数练习题(带答案)
1. 若一次函数y=kx+b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________.
2. 若正比例函数y=kx 的图象经过点(1,2),则此函数的解析式为_____________.
3、一次函数的图象与y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为6,求这个一次函数的解析式.
4.已知一次函数图象经过(-4,15),(6, -5)的两点,求其解析式。
5.已知点A (1,-1),B (3, 4)在x 轴上找一点P ,PA+PB 最短,求P 点的坐标。
6.直线1-=ax y
向上平移3个单位时过点(-1,-1),求该函数解析式。
7.已知直线62+-=x y 上点A 的横坐标为2,直线b kx y +=经过点A 且与x 轴交于点B (0,2
1),求k 、b 的值。
8. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于P(3,-6)。
求k 1 , k 2的值;(2)如果一次函数92-=x k y 与x 轴交于点A ,求点A 的坐标。
(1)y 与x 成正比例函数,当 时,y=5.求这个正比例函数的解析式.
(2)已知一次函数的图象经过A (-1,2)和B (3,-5)两点,求此一次函数的解析式.
9. 拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q (升)与工作时间t (时)之间的函数关系式,指出自变量x 的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t 小时耗油5t 升,以20升减去5t 升就是余下的油量.
10. 已知一次函数的图象经过点P (-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.。
一次函数练习题(附答案)
一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。
(word完整版)一次函数习题集锦(含答案),推荐文档
2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
一次函数综合题(难度较大)带答案
一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。
(完整word版)一次函数练习题及答案(较难 实用)
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大值为多少?A B C O x y xyA B O6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
八年级数学一次函数32道典型题(含答案和解析)
八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。
一次函数综合练习题(难度较大)带答案
一次函数练习一.解答题(共16小题)1.如图,在平面直角坐标系中,A(2,0),B(0,6).(1)如图1,过A,B两点作直线AB,求直线AB的解析式;(2)如图2,点C在x轴负半轴上,C(﹣6,0),点P为直线BC上一点,若S△ABC=2S△ABP,求满足条件的点P的坐标;(3)在(2)的条件下,点E在直线BC上,点F在y轴上,当△AEF为一个等腰直角三角形时,请你直接写出E点坐标.2.如图,在平面直角坐标系中,直线l:y=x+b(b<0)与x轴交于点C.点D为直线l上第一象限内一点,过D 作DE⊥y轴于点E,CA⊥DE于点A.点B在线段DA上,DB=AC.连接CB,P为线段CB上一动点,过点P 作PR⊥x轴,分别交x轴、CD、DE于点R、Q、S.(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,的值是否变化?若不变,求出该值;若变化,请说明理由.3.已知:如图,一次函数y=x﹣3的图象分别与x轴、y轴相交于点A、B,且与经过x轴负半轴上的点C的一次函数y=kx+b的图象相交于点D,直线CD与y轴相交于点E,E与B关于x轴对称,OA=3OC.(1)直线CD的函数表达式为;点D的坐标;(直接写出结果)(2)点P为线段DE上的一个动点,连接BP.①若直线BP将△ACD的面积分为7:9两部分,试求点P的坐标;②点P是否存在某个位置,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上?若存在,求点P的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系中,直线分别与x轴,y轴交于A,B两点,把线段AB绕点B顺时针旋转90°后得到线段BC,连结AC,OC.(1)当时,求点C的坐标;(2)当m值发生变化时,△BOC的面积是否保持不变?若不变,计算其大小;若变化,请说明理由;(3)当S△AOB=2S△BOC时,在x轴上找一点P,使得△P AB是等腰三角形,求满足条件的所有P点的坐标.5.如图,在平面直角坐标系xOy中,A(0,3)、B(﹣4,0),连接AB,点C为线段AB上的一个动点(点C不与A、B重合),过点C作CP⊥x轴,垂足为P,将线段AP绕点A逆时针旋转至AQ,且∠P AQ=∠BAO.连接OQ,设点C的横坐标为m.(1)求经过点A、B的直线的函数表达式;(2)当m为何值时,△ACP≌△AOQ;(3)点C在运动的过程中,①在y轴上是否存在一点D,使得∠ADQ的大小始终不发生变化?若存在,请求出点D的坐标;若不存在,请说明理由;②连接OQ,请直接写出OQ长度的取值范围.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴交于点C,与直线AB交于点D.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=1,连接HM、NC,求HM+MN+NC的最小值;(3)将△OAB绕平面内某点E旋转90°,旋转后的三角形记为△O′A′B′,若点O′落在直线AB上,点A′落在直线CD上,请直接写出满足条件的点O′的坐标以及对应的点E的坐标.7.已知直线l:y=3x+3与x轴交于点A,点B在直线l上,且位于y轴右侧某个位置.(1)求点A坐标;(2)过点B作直线BC⊥AB,交x轴于点C,当△ABC的面积为60时,求点B坐标;(3)在(2)问条件下,D,E分别为射线AO与AB上两动点,连接DE,DB,是否存在当△ADE为直角三角形同时△DEB为等腰三角形的情况,若存在,求出点E坐标;若不存在,说明理由.8.【阅读理解】定义:在同一平面内,有不在同一条直线上的三点M,N,P,连接PM,PN,设∠MPN=α,=k,则我们把(a,k)称为点M到N关于点P的“度比坐标”,把(α,)称为点N到M关于点P的“度比坐标”.【迁移运用】如图,直线l1:y=x+5分别与x轴,y轴相交于A,B两点,过点C(0,10)的直线l2与l1在第一象限内相交于点D.根据定义,我们知道点A到C关于点O的“度比坐标”为(90°,).(1)请分别直接写出A,B两点的坐标及点B到A关于点O的“度比坐标”;(2)若点A到C关于点D的“度比坐标”与点C到B关于点D的“度比坐标”相同.(ⅰ)求直线l2的函数表达式;(ⅱ)点E,F分别是直线l1,l2上的动点,连接OE,OF,若点E到F关于点O的“度比坐标”为(90°,),求此时点E的坐标.9.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、p满足+(p ﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ 是以BC为底边的等腰直角三角形,直角顶点为Q.若存在,请求出点Q坐标;若不存在,请说明理由.10.在平面直角坐标系xOy中,对于M,N两点,若在y轴上存在点T,使得∠MTN=90°,且MT=NT,则称M,N两点互相等垂,其中一个点叫做另一个点的等垂点.已知A点的坐标是(2,0).(1)如图①,在点B(2,﹣2),C(0,1),D(﹣2,0)中,点A的等垂点是(选填“B”,“C”或“D”)(2)如图②,若一次函数y=2x﹣1的图象上存在点A的等垂点A',求A'点的坐标;(3)若一次函数y=kx+b(k≠0)的图象上存在无数个点A的等垂点,试写出该一次函数的所有表达式:.11.如图1,在平面直角坐标系xOy中,直线l:y=x+4交x轴于点C,交y轴于点D,AB∥CD,A(2,3),点P 是直线l上一动点,连接AP,BP.(1)求直线AB的表达式;(2)求AP+CP的最小值;(3)如图2,将三角形ABP沿BP翻折得到△A′BP,当点A′落在坐标轴上时,请直接写出直线BP的表达式.12.如图,在平面直角坐标系xOy中,直线y=x+2+交x轴于点A,过该直线上一点B作BC⊥y轴于点C,且OC=2.(1)求点B的坐标及线段AB的长;(2)取OC的中点D,作直线BD交x轴于点E,连接AD.(ⅰ)求证:AD是∠BAE的平分线;(ⅱ)若点M,N分别是线段AO,AD上的动点,连接MN,ON,试问MN+ON是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.13.如图1,直线y=x+6与x轴交于点A,直线y=﹣x+m(m>0)与x轴、y轴分别交于B、C两点,并与直线y =x+6相交于点D,若AB=5.(1)求直线BC的解析式;(2)求出四边形AOCD的面积;(3)如图2,若P为直线AD上一动点,当△PBD的面积是四边形AOCD的面积的一半时,求点P的坐标.14.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),点P是直线AB 上方第一象限内的动点.(1)求直线AB的表达式和点A的坐标;(2)点P是直线x=2上一动点,当△ABP的面积与△ABO的面积相等时,求点P的坐标;(3)当△ABP为等腰直角三角形时,请直接写出点P的坐标.15.如图1,在平面直角坐标系中,直线y=x﹣12分别交x轴、y轴于A、B两点,过点A作x轴的垂线交直线y=x 于点C,D点是线段AB上一点,连接OD,以OD为直角边作等腰直角三角形ODE,使∠ODE=90°,且E点在线段AC上,过D点作x轴的平行线交y轴于G,设D点的纵坐标为m.(1)点C的坐标为;(2)用含m的代数式表示E点的坐标,并求出m的取值范围;(3)如图2,连接BE交DG于点F,若EF=DF﹣2m,求m的值.16.如图,在平面直角坐标系中,点A坐标为(6,0),在B在y轴的正半轴上,且S△AOB=24.(1)求点B坐标;(2)若点P从B出发沿y轴负半轴运动,速度每秒2个单位,运动时间t秒,△AOP的面积为S,求S与t的关系式,并直接写出t的取值范围;(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段AB的垂直平分线上是否存在点Q,使得△AOQ的面积与△BPQ的面积相等?若存在,求出Q点坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共16小题)1.【分析】(1)利用待定系数法解决问题即可;(2)分两种情形,利用中点坐标公式求解即可;(3)分四种情形,分别画出图形,利用全等三角形的性质求解即可.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(2,0),B(0,6)代入y=kx+b,得到,解得,∴直线AB的解析式为y=﹣3x+6.(2)如图2中,当点P在线段BC上时,∵S△ABC=2S△ABP,∴CP=PB,∵C(﹣6,0),B(0,6),∴P(﹣3,3),当点P′在CB的延长线上时,BP′=PB,此时P′(3,9),综上所述,满足条件的点P的坐标为(﹣3,3)或(3,9);(3)如图3﹣1中,当AE=AF,∠EAF=90°时,过点E作EH⊥AC于点H.∵∠AHE=∠AOF=∠EAF=90°,∴∠EAH+∠F AO=90°,∠F AO+∠AFO=90°,∴∠EAH=∠AFO,∵AE=AF,∴△AHE≌△FOA(AAS),∴EH=OA=2,∵直线BC的解析式为y=x+6,当y=2时,x=﹣4,∴E(﹣4,2);如图3﹣2中,当EF=EA,∠AEF=90°,过点E作ED⊥OB于点D,EH⊥OC于点H.同法可证,△EDF≌△EHA(AAS),∵ED=EH,∵E(﹣3,3);如图3﹣3中,当AE=AF,∠EAF=90°时,同法可证,△AHE≌△FOA(AAS),∴EH=OA=2,∴E(﹣8,﹣2);如图3﹣4中,当FE=F A,∠EF A=90°时,同法可证,△EHF≌△FOA,∴FH=OA=2,EH=OF,设E(m,m+6),∴OH=m+6=﹣m﹣2,∴m=﹣4,∴E(﹣4,2),综上所述,满足条件的点E的坐标为(﹣3,3)或(﹣4,2)或(﹣8,﹣2).2.【分析】(1)①求出,B,C两点坐标,利用待定系数法解决问题即可;②设P(m ,m ﹣),则R(m,0),Q(m ,m﹣1),S(m,3),根据QS=QR,构建方程求出m即可解决问题;(2)结论:=.如图,过点D作DT⊥x轴于点T.设D(m ,m+b),用m,b表示出直线BC的解析式y =x +b,设P(t ,t +b),则R(t,0),Q(t ,t+b),用t,b表示出PQ,CR的长,可得结论.【解答】解:(1)①∵点D(12,3)在直线y =x+b 上,∴3=×12+b,∴b=﹣1,∴直线l的解析式为y =x﹣1,∴C(3,0),∵DE⊥y轴,∴OE=3,∵CA⊥OC,∴AC=OE=3,∴DB=AC=3,∴B(9,3),设直线BC的解析式为y=kx+b ,则有,解得,,∴直线BC的解析式为y =x ﹣;②设P(m ,m ﹣),则R(m,0),Q(m ,m﹣1),S(m,3),∵QS=QR,∴3﹣(m﹣1)=m﹣1,∴m =,∴P (,);(2)结论:=.理由:如图,过点D作DT⊥x轴于点T.设D(m ,m+b),∵C(﹣3b,0),∴OC=3b,OT=m,DT =m+b,∴CT=OT﹣OC=m+3b,∴AC=DT=BD =m+b,∴B (m﹣b ,m+b),∴直线BC的解析式为y =x +b,设P(t ,t +b),则R(t,0),Q(t ,t+b),∴PQ =t +b ﹣(t+b )=t +b,CR=t﹣(﹣3b)=t+3b,∴==.3.【分析】(1)先求出点A和点B的坐标,根据题意,得出点C和点E的坐标,用待定系数法可求出直线CD的解析式,联立直线CD和直线AB的解析式可求出点D的坐标;(2)①过点D向x轴作DF⊥x轴于点F,先求出△ACD的面积,直线BP将△ACD的面积分为7:9两部分,需要分两种情况:当点P在线段CD上时,则有S△BDP =S△ACD,表达△BDP的面积,建立方程求解即可;当点P在线段CE上时,设直线BP与x 轴交于点Q,则S△ABQ =S△ACD,表达△ABQ的面积,建立方程求解即可;②将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上时,需要分三种情况:当点D 落在x轴负半轴上;当点D落在y轴上;当点D落在x轴正半轴上,画出图形,求解即可.【解答】解:(1)∵一次函数y =x﹣3的图象分别与x轴、y轴相交于点A、B,∴A(4,0),B(0,﹣3),∴OA=4,∵E与B关于x轴对称,OA=3OC.∴E(0,3),OC =,∴C (﹣,0).把点C和点E的坐标代入一次函数y=kx+b,∴,解得,∴直线CD的解析式为:y =x+3;令x+3=x﹣3,解得x=﹣4,∴y =×(﹣4)﹣3=﹣6,∴点D的坐标为(﹣4,﹣6).故答案为:y =x+3;(﹣4,﹣6);(2)①如图1,过点D作DF⊥x轴于点F,连接BC,∴DF=6,∵OA=4,OC =,∴AC =,∴S△ACD =•AC•DF =××6=16.∵A(4,0),B(0,﹣3),D(﹣4,﹣6),∴点B是线段AD的中点,∴S△DBC=S△ACB.当点P在线段CD上时,则有S△BDP =S△ACD,∵S△BDP =(x P﹣x D)•BE,∴(x P+4)•6=×16,解得x P =﹣,∴P (﹣,﹣).当点P在线段CE上时,设直线BP与x轴交于点Q,如图2,此时有S△ABQ =S△ACD,∵S△ABQ =•AQ•BO,∴AQ•3=7,解得AQ =,∴OQ =﹣3=,∴Q (﹣,0).∴直线BQ的解析式为:y =﹣x﹣3,令x+3=﹣x﹣3,解得x =﹣,∴P (﹣,1).综上所述,若直线BP将△ACD的面积分为7:9两部分,点P 的坐标为(﹣,﹣);(﹣,1).②存在,理由如下:将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上时,需要分三种情况:当点D落在x轴负半轴上D1处,如图3,由折叠可知,∠DBP=∠D1BP,BD=BD1,由题意可知,OB=3,OA=4,则AB=5,∴BD=AB=5,∴BD1=5,∴OD1=4,∴△ABO≌△D1BO(SSS),∴∠OAB=∠OD1B,∵∠DBD1=∠OAB+∠OD1B,∴∠OD1B=∠D1BP,∴BP∥x轴,∴点P的纵坐标为﹣3,∴P (﹣,﹣3).当点D落在y轴上D2处,如图4,过点P作PG⊥AD 于点G,作PH⊥y轴于点H,过点D作DM⊥y轴于点M,由折叠可知,BP平分∠DBD2,∴PG=PH,∵S△BDP=S△BEP+S△BDE,∴•BE•DM =•BD•PG +•BE•PH ,即×6×4=×5•PG +×6•PH,解得PG=PH =;∴P (﹣,﹣).当点D落在x轴正半轴上D3处,如图5,此时点A 和点D3重合,不符合题意,舍去.综上所述,存在点P,将△BPD沿着直线BP翻折,使得点D恰好落在直线AB上方的坐标轴上,此时点P的坐标为:(﹣,﹣3)或(﹣,﹣).4.【分析】(1)证明△AOB≌△BDC,求得CD和BD 的长,从而得出点C坐标;(2)由(1)得,CD=OB=4,可求得三角形BCO 的面积不变;(3)由条件求得OA,AB的长,△P AB是等腰三角形,分为三种情形:P A=PB,P A=AB,PB=AB,当P A=PB时,设点P坐标,根据P A2=PB2列出方程求得,当P A=AB时,可根据长度直接求得,当PB=AB时,根据等腰三角形“三线合一”求得结果.【解答】解:(1)如图1,当m =时,y =﹣,当x=0时,y=4,∴OB=4,当y =时,﹣,∴x=5,∴OA=5,作CD⊥OB于D,∴∠BDC=∠AOB=90°,∴∠ABO+∠OAB=90°,∵∠ABC=90°,∴∠ABO+∠CBD=90°,∴∠OAB=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴CD=OB=4,BD=OA=5,∴OD=BD﹣OB=5﹣4=1,∴C(﹣4,﹣1);(2)△BOC的面积不变,理由如下:由(1)知:CD=4,OB=4,∴=8;(3)∵S△BOC=8,∴S△AOB=2S△BOC=16,∴,∴OB=8,∵∠AOB=90°,∴AB ===4,当P A=AB=4时,OP=P A﹣OA=4﹣8或OP=P A+OA=4+8,∴P(8﹣4,0)或(4+8),如图2,当PB=AB时,∵OB⊥AP,∴OP=OA=8,∴点P(﹣8,0);如图3,当P A=PB时,(8﹣OP)2=OP2+42,∴OP=3,∴P(3,0),综上所述:点P(8﹣4,0)或(4+8)或(﹣8,0)或(3,0).5.【分析】(1)设AB的函数表达式是:y=kx+b,将点A、B两点坐标代入,进而求得结果;(2)可得AC=OA=3时,△ACP≌AOQ,表示出点C的坐标,根据AC=3列出方程求得结果;(3)①当AD=AB时,△BAP≌△DAQ,此时AD=AB=5,求得D(﹣2,0),从而∠ADQ=∠ABC,故∠ADQ不变;②因为点Q在①中的直线上运动,故当OQ⊥DV时,值最小,当点P运动到点O时,OQ最大=AC,进而求得AC,从而确定结果.【解答】解:(1)设直线AB的表达式是:y=kx+b,∴,∴,∴y =;(2)∵∠BAO=∠P AQ,∴∠BAO﹣∠P AO=∠P AQ﹣∠P AO,即:∠BAP=∠QAO,∵AP=AQ,∴当AC=AO=3时,△ACP≌△AOQ(SAS),∵C(m ,),∴m2+()2=32,∴m =﹣;(3)①如图,存在点D(﹣2,0)使∠ADQ=∠ABC,理由如下:∵D(﹣2,0),A(0,3),∴AD=5,∵∠AOB=90°,OA=3,OB=4,∴AB=5,∴AD=AB,由(2)得:∠BAP=∠DAQ,AP=AQ,∴△BAP≌△DAQ(SAS),∴∠ADQ=∠ABC,∴∠ADQ不变;②如图2,由①知:点Q在直线DV上运动,作OE⊥DV于E,AF⊥DV于F,当Q点运动到E点时,OQ最小,当运动到F点,OQ最大,可得AF=OA=OC=3,而C (﹣,),∴OF=OC ==,可得OE =,∴.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG=1,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'A'∥y轴,OA=O'A'=1,可求O'的坐标,再由△OEO'是等腰直角三角形,再求E点的坐标即可.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=2或t =﹣,∵H是直线AB上位于第一象限内的一点,∴t=2,∴H(2,9),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG=1,∴G(3,1),H'(﹣2,9),连接H'G交y轴于点M,∵MN=1,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+1;(3)将△OAB逆时针旋转90°时,如图2,∵点O′落在直线AB上,点A′落在直线CD上,设A'(m,3m+3),∵OA⊥y轴,∴O'A'⊥x轴,则O'(m ,﹣m+1),∵OA=O'A'=1,∴﹣m+1﹣3m﹣3=1,∴m =﹣,∴O'(﹣,),∵OE=O'E,OE⊥O'E,∴△OEO'是等腰直角三角形,∵O'O =,∴OE =,过点E作GH⊥x轴,交B'O'于G,交x轴于H,∵∠HOE+∠HEO=90°,∠HEO+∠GEO'=90°,∴∠EOH=∠GEO',∵EO=EO',∴△HEO≌△GO'E(AAS)∴HO=GE,GO'=EH,设E(x,y),∴﹣x+y =,∵y =+x,∴=,∴x =﹣(舍)或x =﹣,∴E (﹣,);将△OAB顺时针旋转90°时,如图3,∵点O′落在直线AB上,点A′落在直线CD上,设A'(m,3m+3),∵OA⊥y轴,∴O'A'⊥x轴,则O'(m ,﹣m+1),∵OA=O'A'=1,∴3m+3﹣(﹣m+1)=1,∴m =﹣,∴O'(﹣,),∵OE=O'E,OE⊥O'E,∴△OEO'是等腰直角三角形,∵O'O =,∴OE =,过点E作PQ⊥x轴,交B'O'于P,交x轴于Q,∵∠QOE+∠QEO=90°,∠QEO+∠O'EP=90°,∴∠QOE=∠PEO',∵EO=EO',∴△QEO≌△PO'E(AAS),∴QO=PE,PO'=EQ,设E(x,y),∴x+y =,∵y =﹣x,∴=,∴x =或x =(舍),∴E (,);综上所述:O'(﹣,),E (﹣,)或O'(﹣,),E (,).7.【分析】(1)在y=3x+3中,令y=0得x=﹣1,即得A(﹣1,0);(2)过B作BF⊥x轴于F,设B(m,3m+3),由△ABF∽△BCF,即得=,CF =,即有AC=AF+CF =,根据△ABC的面积为60,得××|3m+3|=60,即可解得m=1或m=﹣3(因B在y轴右侧,舍去),故B(1,6);(3)当∠AED=90°,BE=DE时,设E(n,3n+3),由E在射线AB上知n≥﹣1,由A(﹣1,0),B(1,6),得AB=2,BC=6,而△AED∽△ABC,得=,且DE=BE,即有=,解得E (﹣,),当∠ADE=90°,BE=BD时,设E(t,3t+3),由BE=BD,可得BE=AB=2,根据AD2+DE2=AE2,即可解E(3,12).【解答】解:(1)在y=3x+3中,令y=0得x=﹣1,∴A(﹣1,0);(2)过B作BF⊥x轴于F,如图:设B(m,3m+3),∵∠ABF=90°﹣∠CBF=∠FCB,∠ABC=∠AFB =90°,∴△ABF∽△BCF,∴=,即=,∴CF =,∴AC=AF+CF=|m +1|+=,∵△ABC的面积为60,∴××|3m+3|=60,∴×10(m+1)2×3=60,解得m=1或m=﹣3(因B在y轴右侧,舍去),∴B(1,6);CF ==18,OC=19,∴C(19,0),B(1,6);(3)存在当△ADE为直角三角形同时△DEB为等腰三角形,当∠AED=90°,BE=DE时,如图:由(2)知C(19,0),设E(n,3n+3),由E在射线AB上知n≥﹣1,∵A(﹣1,0),B(1,6),∴AB=2,BC=6,∵∠AED=∠ABC=90°,∠EAD=∠BAC,∴△AED∽△ABC,∴=,而DE=BE,∴=,即=,解得n=﹣2(舍去)或n =﹣,∴E (﹣,),当∠ADE=90°,BE=BD时,如图:设E(t,3t+3),∴AD=t+1,DE=3t+3,∵BE=BD,∴∠BED=∠BDE,∴∠BAD=90°﹣∠BED=90°﹣∠BDE=∠BDA,∴AB=BD,∴BE=AB=2,∴AE=4,∵AD2+DE2=AE2,∴(t+1)2+(3t+3)2=(4)2,解得t=﹣5(舍去)或t=3,∴E(3,12),综上所述,点E 坐标为(﹣,)或(3,12).8.【分析】(1)在y=x+5中,令x=0时,y=5,令y =0时,x=﹣5,即得A(﹣5,0),B(0,5),故,而∠BOA=90°,即得点B到A关于点O的“度比坐标”为(90°,1);(2)(i)过D作DH⊥x轴于H,连接AC,根据点A 到C关于点D的“度比坐标”与点C到B关于点D 的“度比坐标”相同,可得,∠ADC=∠CDB,即知△ADC∽△CDB,从而AD =CD,CD =BD,可得AD=5BD,即=5,即得AH=5OH,OA=4OH,故D (,),设直线l2的函数表达式为y=mx+n,用待定系数法可得直线l2的函数表达式为y=﹣3x+10;(ⅱ)过E作EK⊥x轴于K,过F作FT⊥x轴于T,由点E到F关于点O的“度比坐标”为(90°,),得∠AOF=90°,=,根据△EKO∽△OTF,得===,设E(t,t+5),可得F (,﹣),把F (,﹣)代入y=﹣3x+10,即可解得t =﹣,E (﹣,).【解答】解:(1)在y=x+5中,令x=0时,y=5,令y=0时,x=﹣5,∴A(﹣5,0),B(0,5),∴OA=5,OB=5,∴,∵∠BOA=90°,∴点B到A关于点O的“度比坐标”为(90°,1);(2)(i)过D作DH⊥x轴于H,连接AC,如图:∵C(0,10),A(﹣5,0),B(0,5),∴BC=5,AC ==5,∵点A到C关于点D的“度比坐标”与点C到B关于点D的“度比坐标”相同,∴,∠ADC=∠CDB,∴△ADC∽△CDB,∴====,∴AD =CD,CD =BD,∴AD=5BD ,即=5,∵DH⊥x轴于H,∴OB∥DH,∴==5,∴AH=5OH,∴OA=4OH,∴OH =,在y=x+5中,令x =得y =,∴D (,),设直线l2的函数表达式为y=mx+n,将C(0,10),D (,)代入得:,解得,∴直线l2的函数表达式为y=﹣3x+10;(ⅱ)过E作EK⊥x轴于K,过F作FT⊥x轴于T,如图:∵点E到F关于点O的“度比坐标”为(90°,),∴∠AOF=90°,=,∴∠EOK=90°﹣∠FOT=∠OFT,又∠EKO=∠OTF=90°,∴△EKO∽△OTF,∴===,设E(t,t+5),则OK=﹣t,EK=t+5,∴==,∴OT =,FT =﹣,∴F (,﹣),把F (,﹣)代入y=﹣3x+10得:﹣3×+10=﹣,解得t =﹣,∴E (﹣,).9.【分析】(1)由+(p﹣1)2=0,得a=﹣3,p =1,即得P(1,0),A(0,﹣3),设直线AP的解析式为y=kx+b,用待定系数法可得直线AP的解析式为y=3x﹣3;(2)过M作MD∥AP交x轴于D,连接AD,由MD ∥AP,△MAP面积等于6,可得DP•|y A|=6,即DP ×3=6,即知D(﹣3,0),用待定系数法可得直线DM为y=3x+9,令x=﹣2即得M(﹣2,3);(3)设B(t,3t﹣3),①当Q在x轴负半轴时,过B 作BE⊥x轴于E,可证△BEQ≌△QNC(AAS),即得QN=BE=3﹣3t,QE=CN=4,故OQ=QE﹣OE=ON+QN,即4﹣t=2+3﹣3t,可得Q (﹣,0),②当Q在y轴正半轴时,过C作CF⊥y轴于F,过B 作BG⊥y轴于G,证明△CQF≌△QBG(AAS),可得CF=QG=2,QF=BG=t,故OQ=OG﹣QG=OF ﹣QF,即3t﹣3﹣2=4﹣t,可得Q(0,);③Q在y轴正半轴,过C作CF⊥y轴于F,过B作BT⊥y轴于T,证明△CFQ≌△QTB(AAS),得QF=BT=t,QT=CF=2,故OQ=OT+QT=OF+QF,即3t﹣3+2=4+t,即得Q(0,).【解答】解:(1)∵+(p﹣1)2=0,∴a+3=0,p﹣1=0,∴a=﹣3,p=1,∴P(1,0),A(0,﹣3),设直线AP的解析式为y=kx+b,∴,解得,∴直线AP的解析式为y=3x﹣3;(2)过M作MD∥AP交x轴于D,连接AD,如图:∵MD∥AP,△MAP面积等于6,∴△DAP面积等于6,∴DP•|y A|=6,即DP×3=6,∴DP=4,∴D(﹣3,0),设直线DM为y=3x+c,则0=3×(﹣3)+c,∴c=9,∴直线DM为y=3x+9,令x=﹣2得y=3,∴M(﹣2,3);(3)存在,设B(t,3t﹣3),①当Q在x轴负半轴时,过B作BE⊥x轴于E,如图:∴OE=t,BE=3﹣3t,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BQC=90°,∴∠BQE=90°﹣∠NQC=∠QCN,又∠BEQ=∠QNC,∴△BEQ≌△QNC(AAS),∴QN=BE=3﹣3t,QE=CN=4,∴OQ=QE﹣OE=ON+QN,即4﹣t=2+3﹣3t,∴t =,∴OQ =,∴Q (﹣,0),②当Q在y轴正半轴时,过C作CF⊥y轴于F,过B 作BG⊥y轴于G,如图:∴BG=t,OG=3t﹣3,∵△BCQ是以BC为底边的等腰直角三角形,∴BQ=CQ,∠BCQ=90°,∴∠CQF=90°﹣∠BQG=∠GBQ,又∠CFQ=∠BGQ=90°,∴△CQF≌△QBG(AAS),∴CF=QG=2,QF=BG=t,∴OQ=OG﹣QG=OF﹣QF,即3t﹣3﹣2=4﹣t,∴t =,∴OQ=4﹣t =,∴Q(0,);③Q在y轴正半轴,过C作CF⊥y轴于F,过B作BT⊥y轴于T,如图:∴BT=t,OT=3t﹣3,同②可证△CFQ≌△QTB(AAS),∴QF=BT=t,QT=CF=2,∴OQ=OT+QT=OF+QF,即3t﹣3+2=4+t,∴t =,∴OQ=4+t =,∴Q(0,);综上所述,Q的坐标为(﹣,0)或(0,)或(0,).10.【分析】(1)取点T(0,2),连接DT,AT,可得△ADT是等腰直角三角形,即知点A的等垂点是点D;(2)①当A'在x轴上方时,过A'作A'F⊥y轴于F,证明△A'FE≌△EOA(AAS),得EF=AO=2,A'F=OE,设OE=A'F=m,则OF=OE+EF=m+2,则A'(m,m+2),将A'(m,m+2)代入y=2x﹣1可得A'(3,5);②当A'在x轴上方时,过A'作A'H⊥y轴于H,同理可得A'(﹣,﹣);(3)设直线y=x+2上任意一点A'(t,t+2),连接AA',作AA'的垂直平分线交y轴于R,交AA'于P,过P作PM⊥x轴于M,PN⊥y轴于N,可得RA=RA',P A=P A',P (,),从而可得△PRN≌△P AM (ASA),PR=P A=P A',即知∠ARA'=90°,故A'是A的等垂点,即直线y=x+2上任意一点都是A的等垂点,一次函数y=x+2的图象上存在无数个点A的等垂点,同理可证一次函数y=﹣x﹣2的图象上存在无数个点A的等垂点.【解答】解:(1)取点T(0,2),连接DT,AT,如图:∵D(﹣2,0),A(2,0),T(0,2),∴OT=OD=OA=2,∴△ADT是等腰直角三角形,∴在点B(2,﹣2),C(0,1),D(﹣2,0)中,点A的等垂点是点D,故答案为:D;(2)①当A'在x轴上方时,过A'作A'F⊥y轴于F,如图:∵A'是A的等垂点,∴∠A'EA=90°,A'E=AE,∴∠A'EF=90°﹣∠AEO=∠EAO,∵∠A'FE=∠EOA=90°,∴△A'FE≌△EOA(AAS),∴EF=AO=2,A'F=OE,设OE=A'F=m,则OF=OE+EF=m+2,∴A'(m,m+2),将A'(m,m+2)代入y=2x﹣1得:m+2=2m﹣1,解得m=3,∴A'(3,5);②当A'在x轴下方时,过A'作A'H⊥y轴于H,如图:同①可证明△AOG≌GHA'(AAS),∴A'H=OG,GH=OA=2,设A'H=OG=n,则OH=GH﹣OG=2﹣n,∴A'(﹣n,n﹣2),将A'(﹣n,n﹣2)代入y=2x﹣1得:n﹣2=﹣2n﹣1,解得n =,∴A'(﹣,﹣);综上所述,A'点的坐标为(3,5)或(﹣,﹣);(3)若一次函数y=kx+b(k≠0)的图象上存在无数个点A的等垂点,该一次函数的所有表达式为y=x+2或y=﹣x﹣2,理由如下:当一次函数为y=x+2时,设直线y=x+2上任意一点A'(t,t+2),连接AA',作AA'的垂直平分线交y轴于R,交AA'于P,过P作PM⊥x轴于M,PN⊥y轴于N,如图:∵PR是线段AA'的垂直平分线,∴RA=RA',P A=P A',∴∠RP A=∠RP A'=90°,∵A(2,0),A'(t,t+2),∴P (,),∵PM⊥x轴于M,PN⊥y轴于N,∴PM=PN=||,而∠RPN=90°﹣∠NP A=∠APM,∠PNR=∠PMA =90°,∴△PRN≌△P AM(ASA),∴PR=P A,∴PR=P A=P A',∴△PRA与△PRA'都是等腰直角三角形,∴∠ARP=∠A'RP=45°,∴∠ARA'=90°,根据等垂点定义,A'是A的等垂点,即直线y=x+2上任意一点都是A的等垂点,∴一次函数y=x+2的图象上存在无数个点A的等垂点,同理可证一次函数y=﹣x﹣2的图象上存在无数个点A的等垂点,故答案为:y=x+2或y=﹣x﹣2.11.【分析】(1)由题意设AB的关系式是:y=x+b,然后把点A的坐标代入求得b,进而求得AB的关系式(2)作CE∥y轴,作PE⊥CE于E,先求得∠OCP =∠ODC=45°,于是可得PE =CP,进而只需求AP+PE,从而当A、P、E共线时,AP+PE最小,此时作AF⊥CE,最小值就是AF的长;(3)当点A′在y轴上时,根据A′B=AB=3,进而求得A′(0,),设P(x,x+4),根据A′P2=AP2,列出关于x的方程,求得点P的坐标,进而求得BP的关系式,当A′在x轴上时,同样方法求得BP的关系式.【解答】解:(1)∵AB∥CD,∴可设AB的表达式是:y=x+b,∴2+b=3,∴b=1,∴y=x+1;(2)如图1,作CE∥y轴,作PE⊥CE于E,∴∠OCE=90°,由y=x+4得:C(﹣4,0),D(0,4),∴OC=OD,∵∠COD=90°,∴∠OCP=∠ODC=45°,∴∠PCE=90°﹣∠OCP=45°,∴PE=CP•sin∠PCE =CP,∴AP +CP=AP+PE,∴当A、P、E共线时,AP+PE最小,此时作AF⊥CE,即E和F重合,P在P′时,∵C(﹣4,0),A(2,3),∴AF=2﹣(﹣4)=6,∴AP +CP的最小值是6;(3)如图2,∵AB的关系式是:y=x+1,∴B(﹣1,0),∴OB=1,当点A′在y轴上时,∵A′B=AB ==3,∴A′O ===,∴A′(0,),设P(x,x+4),由A′P2=AP2得,x2+(x+4﹣)2=(x﹣2)2+(x+4﹣3)2,∴x =,∴P (,),设BP的关系式是:y=kx+b,∴,∴,∴y =x,如图3,当A′在x轴上时,∵A′B=AB=3,OB=1,∴A′(﹣3﹣1,0),由(x +3)2+(x+4)2=(x﹣2)2+(x+4﹣3)2,∴x =,∴P (,),设BP的关系式是y=mx+n,∴,∴,∴y =﹣()x ﹣(),如图4,当点A′再次落在y轴上时,连接A′B,由上知:A′(0,﹣),此时BP的关系式:y =,如图5,当A′再次落在x轴上时,此时BP的关系式是:y =()x+(﹣1),综上所述:BP的关系式是:y =x或y=﹣()x﹣()或y =或y =()x+(﹣1),12.【分析】(1)由OC=2,得y B=2,在y=x +2+中,令y=2得B (﹣2,2),由y=x +2+得A(﹣2﹣,0),即可得AB=4;(2)(ⅰ)由D是OC中点,得D(0,),设直线BD为y=kx +,用待定系数法得直线BD为y=(﹣1﹣)x +,即得E(2﹣,0),从而可得AB=AE,根据CD=OD,∠BDC=∠EDO,∠BCD =∠EOD=90°,可证△BCD≌△EOD(ASA),有BD=ED,故AD是∠BAE的平分线;(ⅱ)作O关于AD的对称点H,连接DH,由AD 是∠BAE的平分线,知H在线段AB上,当MN+ON 最小时,即是MN+HN最小,此时H、N、M共线,且HM⊥OA,HM的长即是MN+ON的最小值,由AH =OA=2+,根据直线y=x +2+与x轴夹角为45°,得△AHM是等腰直角三角形,故HM ==+1,即得MN+ON 的最小值是+1.【解答】解:(1)∵OC=2,∴y B=2,在y=x +2+中,令y=2得x =﹣2,∴B (﹣2,2),在y=x +2+中,令y=0得x=﹣2﹣,∴A(﹣2﹣,0),∴AB ==4,∴点B的坐标为(﹣2,2),线段AB的长为4;(2)(ⅰ)∵D是OC中点,∴D(0,),CD=OD,设直线BD为y=kx +,把B (﹣2,2)代入得:2=(﹣2)k +,解得k=﹣1﹣,∴直线BD为y=(﹣1﹣)x +,在y=(﹣1﹣)x +中,令y=0得x=2﹣,∴E(2﹣,0),∴AE=2﹣﹣(﹣2﹣)=4,由(1)知AB=4,∴AB=AE,即△ABE是等腰三角形,∵CD=OD,∠BDC=∠EDO,∠BCD=∠EOD=90°,∴△BCD≌△EOD(ASA),∴BD=ED,∴AD是∠BAE的平分线;(ⅱ)MN+ON存在最小值,作O关于AD的对称点H,连接DH,如图:由(ⅰ)知AD是∠BAE的平分线,∴H在线段AB上,∵N在AD上,∴ON=HN,∴MN+ON=MN+HN,当MN+ON最小时,MN+HN最小,此时H、N、M共线,且HM⊥OA,HM的长即是MN+ON的最小值,由对称性可得AH=OA=2+,∵直线y=x +2+与x轴夹角为45°,即∠HAM=45°,∴△AHM是等腰直角三角形,∴HM ===+1,∴MN+ON 的最小值是+1.13.【分析】(1)由y =x+6求出A(﹣4,0),根据AB =5得B(1,0),把B(1,0)代入y=﹣x+m即可解得直线BC的解析式为y=﹣x+1;(2)由y=﹣x+1得C(0,1),解得D(﹣2,3),可得S△ABD =AB•|y D|=,S△BOC =OB •OC =,故四边形AOCD的面积为7;(3)分两种情况:P在BD上方时,过P作PM∥BD 交x轴于M,连接DM,可得S△MBD =S四边形AOCD =7,即BM×3=,可得M (,0),直线PM为:y=﹣x +,解即得P (﹣,),当P在BD下方时,过P'作P'M'∥BD交x轴于M',同理可得P'(﹣,).【解答】解:(1)在y =x+6中,令y=0得x=﹣4,∴A(﹣4,0),∵AB=5,∴B(1,0),把B(1,0)代入y=﹣x+m得:0=﹣1+m,解得m=1,∴直线BC的解析式为y=﹣x+1;(2)在y=﹣x+1中,令x=0得y=1,∴C(0,1),解得,∴D(﹣2,3),∴S△ABD =AB•|y D|=×5×3=,S△BOC =OB•OC =×1×1=,∴S四边形AOCD=S△ABD﹣S△BOC=7,即四边形AOCD的面积为7;(3)P在BD上方时,过P作PM∥BD交x轴于M,连接DM,如图:∵PM∥BD,∴S△PBD=S△MBD,∵△PBD的面积是四边形AOCD的面积的一半,∴S△MBD =S四边形AOCD =7,∴BM•|y D|=,即BM×3=,∴BM =,∴OM=OB+BM =,∴M (,0),设直线PM为:y=﹣x+b,将M (,0)代入得:0=﹣+b,∴b =,∴直线PM为:y=﹣x +,解得,∴P (﹣,),当P在BD下方时,过P'作P'M'∥BD交x轴于M',如图:∵P'M'∥BD,∴S△P'BD=S△M'BD,∵△P'BD的面积是四边形AOCD的面积的一半,∴S△M'BD =S四边形AOCD =7,∴BM'•|y D|=,即BM'×3=,∴BM'=,∴OM'=BM'﹣OB =,∴M'(﹣,0),设直线P'M'为:y=﹣x+b',将M (﹣,0)代入得:0=+b',∴b'=﹣,∴直线PM为:y=﹣x ﹣,解得,∴P'(﹣,),综上所述,P的坐标为(﹣,)或(﹣,).14.【分析】(1)把B的坐标代入直线AB的解析式,即可求得k的值,然后在解析式中,令x=0,求得y的值,即可求得A的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△P AD的面积,二者的和即可表示S△P AB,在根据△ABP的面积与△ABO的面积相等列方程即可得答案;(3)分三种情况:当P为直角顶点时,过P作PN ⊥y轴于N,过B作BM⊥PN于M,由△APN≌△PBM (AAS),可得AN+1=PN①,PN+AN=3②,即得P (2,2);当A为直角顶点时,过P作PK⊥y轴于K,由△APK≌△BAO,可得P(1,4),当B为直角顶点时,过P作PR⊥x轴于R,同理可得P(4,3).【解答】解:(1)∵直线AB:y=kx+1(k≠0)交y 轴于点A,交x轴于点B(3,0),∴0=3k+1,∴k =﹣,∴直线AB的解析式是y =﹣x+1.当x=0时,y=1,∴点A(0,1);(2)如图1,过点A作AM⊥PD,垂足为M,则有AM=2,设P(2,n),∵x=2时,y =﹣x+1=,∴D(2,),∵P在点D的上方,∴PD=n ﹣,∴S△APD =AM•PD =×2×(n ﹣)=n ﹣,由点B(3,0),可知点B到直线x=2的距离为1,即△BDP的边PD上的高长为1,∴S△BPD =×1×(n ﹣)=(n ﹣),∴S△P AB=S△APD+S△BPD =n ﹣;∵△ABP的面积与△ABO的面积相等,∴n ﹣=×1×3,解得n =,∴P(2,);(3)当P为直角顶点时,过P作PN⊥y轴于N,过B作BM⊥PN于M,如图2:∵△ABP为等腰直角三角形,∴AP=BP,∠NP A=90°﹣∠BPM=∠PBM,∵∠ANP=∠BMP=90°,∴△APN≌△PBM(AAS),∴BM=PN,PM=AN,∵∠NOB=∠ONM=∠OBM=90°,∴四边形OBMN是矩形,∴MN=OB=3,BM=ON=AN+1=PN①,∴PN+PM=PN+AN=3②,由①②解得PN=2,AN=1,∴ON=OA=AN=2,∴P(2,2);当A为直角顶点时,过P作PK⊥y轴于K,如图3:∵△ABP为等腰直角三角形,∴AP=AB,∠KAP=90°﹣∠OAB=∠ABO,而∠PKA=∠AOB=90°,∴△APK≌△BAO(AAS),∴AK=OB=3,PK=OA=1,∴OK=OA+AK=4,∴P(1,4),当B为直角顶点时,过P作PR⊥x轴于R,如图4:同理可证△AOB≌△BRP(AAS),∴BR=OA=1,PR=OB=3,∴P(4,3),综上所述,P坐标为:(2,2)或(1,4)或(4,3).15.【分析】(1)求出点A坐标可得结论.(2)如图1中,延长CA交GD的延长线于H.证明△DGO≌△EHD(AAS),推出DG=EH,OG=DH,由题意D(12+m,m),推出OG=AH=﹣m,DG=EH=12+m,推出AE=12+m﹣(﹣m)=12+2m,可得E(12,12+2m).(3)求出直线BE的解析式,再求出点F的坐标,求出DF,EF,构建方程,可得结论.【解答】解:(1)∵直线y=x﹣12分别交x轴、y轴于A、B两点,∴A(12,0),B(0,﹣12),∵AC⊥x轴,∴C(12,9).故答案为:(12,9).(2)如图1中,延长CA交GD的延长线于H.∵∠DGO=∠DHE=∠ODE=90°,∴∠ODG+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ODG=∠DEH,∵OD=DE,∴△DGO≌△EHD(AAS),∴DG=EH,OG=DH,由题意D(12+m,m),∴OG=AH=﹣m,DG=EH=12+m,∴AE=12+m﹣(﹣m)=12+2m,∴E(12,12+2m),∵E点在线段AC上,∴0≤12+2m≤9,∴﹣6≤m ≤﹣.(3)如图2中,∵B(0,﹣12),E(12,2m+12),∴直线BE的解析式为y=(2+m)x﹣12,∴F(6,m),∵D(12+m,m),∴DF=6+m,EF =,∵EF=DF﹣2m,∴=6+m﹣2m,解得m=﹣4.16.【分析】(1)根据三角形的面积公式求出OB的长即可;(2)分0≤t<4和t≥4两种情况,根据三角形面积公式计算即可;(3)根据题意和三角形的面积公式求出OP、BP的长,根据相似三角形的性质求出点E的坐标,根据中点的性质确定点F的坐标,运用待定系数法求出直线ef的解析式,根据等底的两个三角形面积相等,它们的高也相等分x=y和x=﹣y两种情况计算即可.【解答】解:(1)∵点A坐标为(6,0),∴OA=6,∴S△AOB =×OA×OB=24,则OB=8,∴点B坐标为(0,8);(2)当0≤t<4时,S =×(8﹣2t)×6=24﹣6t,当t≥4时,S =×(2t﹣8)×6=6t﹣24;(3)∵S△AOP+S△ABP=S△AOB,∴点P在线段OB上,∵S△AOP:S△ABP=1:3,∴OP:BP=1:3,又∵OB=8,∴OP=2,BP=6,线段AB的垂直平分线上交OB于E,交AB于F,∵OB=8,OA=6,∴AB ==10,则点F的坐标为(3,4),∵EF⊥AB,∠AOB=90°,∴△BEF∽△BAO,∴=,即=,解得,BE =,则OE=8﹣=,∴点E的坐标为(0,),设直线EF的解析式为y=kx+b,则,解得,k =,b =,∴直线EF的解析式为y =x +,∵△AOQ的面积与△BPQ的面积相等,又OA=BP,∴x=y,或x=﹣y,当x=y时,x =x +,解得,x=7,则Q点坐标为(7,7);当x=﹣y时,﹣x =x +,解得,x=﹣1,则Q点坐标为(﹣1,1),∴Q点坐标为(7,7)或(﹣1,1).。
一次函数精选20题(附问题详解)
分邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?26.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)小24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x应在什么范围?(直接写出答案)25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:(1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?(3)求直线AD 的解析式.23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)22.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)图1325、(2011•黑河)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
一次函数练习题(含答案)
2 设直线 CD 的解析式为 y=k1x+b1,由 C(2,15)、D(3,30), 代入得:y=15x-15,(2≤x≤3).
当 x=2.5 时,y=22.5(千米) 答:出发两个半小时,小明离家 22.5 千米. 3 设过 E、F 两点的直线解析式为 y=k2x+b2, 由 E(4,30),F(6,0),代入得 y=-15x+90,(4≤x≤6) 过 A、B 两点的直线解析式为 y=k3x,
(A)-4<a<0
(B)0<a<2
(C)-4<a<2 且 a≠0 (D)-4<a<2 14.在直角坐标系中,已知 A(1,1),在 x 轴上确定点 P,使△AOP 为等腰三角形,则
符合条件的点 P 共有( )
(A)1 个 (B)2 个 (C)3 个 (D)4 个 15.在直角坐标系中,横坐标都是整数的点称为整点,设 k 为整数.当直线 y=x-3 与 y=kx+k 的交点为整点时,k 的值可以取( )
象限.
8.若一次函数 y=kx+b,当-3≤x≤1 时,对应的 y 值为 1≤y≤9, 则一次函数的解析式
为
.
三、解答题 1.已知一次函数 y=ax+b 的图象经过点 A(2,0)与 B(0,4).(1)求一次函数的解
析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数 y 的值在-
7.B 提示:∵y=kx+2 经过(1,1),∴1=k+2,∴y=-x+2,
∵k=-1<0,∴y 随 x 的增大而减小,故 B 正确.
∵y=-x+2 不是正比例函数,∴其图像不经过原点,故 C 错误.
(完整版)一次函数练习题及答案
八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二一次函数与几何题(附答案)1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m的值是多少?2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。
3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。
4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。
5、在平面直角坐标系中,已知A(1,4)、B(3,1),P是坐标轴上一点,(1)当P的坐标为多少时,AP+BP取最小值,最小值为多少? 当P的坐标为多少时,AP-BP取最大值,最大值为多少?6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。
7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。
8、已经正比例函数Y=k1x的图像与一次函数y=k2x-9的图像相交于点P(3,-6)求k1,k2的值如果一次函数y=k2x-9的图象与x轴交于点A 求点A坐标9、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0),(1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积;(2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。
10、在平面直角坐标系中,一次函数y=Kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式11、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式12、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6.求:(1)△COP 的面积(2)求点A 的坐标及m 的值;(3)若S BOP =S DOP ,求直线BD 的解析式13、一次函数y=-33x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC(1)求△ABC 的面积和点C 的坐标;(2)如果在第二象限内有一点P (a ,21),试用含a 的代数式表示四边形ABPO 的面积。
(3)在x 轴上是否存在点M ,使△MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由。
14、已知正比例函数y=k 1x 和一次函数y=k 2x+b 的图像如图,它们的交点A (-3,4),且OB=53OA 。
(1)求正比例函数和一次函数的解析式;(2)求△AOB 的面积和周长;(3)在平面直角坐标系中是否存在点P ,使P 、O 、A 、B 成为直角梯形的四个顶点?若存在,请直接写出P 点的坐标;若不存在,请说明理由。
15、如图,已知一次函数y=x+2的图像与x 轴交于点A ,与y 轴交于点C ,(1)求∠CAO 的度数;(2)若将直线y=x+2沿x 轴向左平移两个单位,试求出平移后的直线的解析式;(3)若正比例函数y=kx (k ≠0)的图像与y=x+2得图像交于点B ,且∠ABO=30°,求:AB 的长及点B 的坐标 。
16、一次函数y=33x+2的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内做等边△ABC(1)求C 点的坐标;(2)在第二象限内有一点M (m ,1),使S △ABM =S △ABC ,求M 点的坐标;(3)点C (23,0)在直线AB 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求P 点的坐标;若不存在,说明理由。
17、已知正比例函数y=k1x 和一次函数y=k2x+b 的图像相交于点A(8,6),一次函数与x 轴相交于B ,且OB=0.6OA ,求这两个函数的解析式18、已知一次函数y=x+2的图像经过点A(2,m )。
与x 轴交于点c ,求角AOC.19、已知函数y=kx+b 的图像经过点A (4,3)且与一次函数y=x+1的图像平行,点B (2,m)在一次函数y=kx+b 的图像上(1)求此一次函数的表达式和m 的值?(2)若在x 轴上有一动点P (x,0),到定点A (4,3)、B (2,m)的距离分别为PA 和PB ,当点P 的横坐标为多少时,PA+PB 的值最小?答案3、点到线的最短距离是点向该线做垂线因为直线与x夹角45度所以ABO为等腰直角三角形 AB=BO=2分之根号2倍的AO AO=1 BO=2分之根号2在B分别向xy做垂线垂线与轴交点就是B的坐标由于做完还是等腰直角三角形所以议案用上面的共识可知B点坐标是(0.5,-0.5)7、一次函数的解析式为y=8x+4或y=(25/2)x-5.设一次函数为y=kx+b,则它与两坐标轴的交点是(-b/k,0)(0,b),所以有20=2x+b,|-b/k×b|×1/2=1,解之得k1=8,b1=4;k 2=25/2,b2=-5.所以,一次函数的解析式为y=8x+4或y=(25/2)x-58、因为正比例函数和一次函数都经过(3,-6)所以这点在两函数图像上所以,当x=3 y=-6 分别代入得k1= -2 k2=1若一次函数图像与x轴交于点A 说明A的纵坐标为0把y=0代入到y=x-9中得 x=9所以A(9,0)例4、A的横坐标=-1/2,纵坐标=00=-k/2+b,k=2bC点横坐标=4,纵坐标y=4k+b=9bB点横坐标=0,纵坐标y=bSobcd=(\9b\+\b\)*4/2=1010\b\=5\b\=1/2b=1/2,k=2b=1 y=x+1/2b=-1/2,k=-1 y=-x-1/2\b\表示b的绝对值11、?解:设这个一次函数解析式为y=kx+b∵y=kx+b经过点B(-3,4),与y轴交与点A,且OA=OB∴{-3k+b=4{3k+b=0∴{k=-2/3{b=2∴这个函数解析式为y=-2/3x+2?解2根据勾股定理求出OA=OB=5,所以,分为两种情况:当A(0,5)时,将B(-3,4)代入y=kx+b中,y=x/3+5,当A(0,-5),将B(-3,4)代入y=kx+b中y=3x+5,12、做辅助线PF,垂直y轴于点F。
做辅助线PE垂直x轴于点E。
(1)求S三角形COP解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2(2)求点A的坐标及P的值解:可证明三角形CFP全等于三角形COA,于是有PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.p = FC + OC = 1 + 2 = 3.所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.(3)若S三角形BOP=S三角形DOP,求直线BD的解析式解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)因此可以得到直线BD的解析式为:y = (-3/2)x + 617、正比例函数y=k1x和一次函数y=k2x+b的图像相交于点A(8,6),所以有 8K1=6.......(1)8K2+b=6 ....... (2) 又OA=10 所以OB=6 即B点坐标(6,0) 所以6K2+b=0 ....... (3) 解(1)(2)(3)得K1=3/4 K2=3 b=-18OA=√(8^2+6^2)=10,OB=6,B(6,0),k1=6/8=0.75正比例函数y=0.75x,一次函数y=3x-1818、一次函数y=x+2的图像经过点a(2,m),有m=2+2=4,与x轴交于点c,当y=0时,x=-2.三角形aoc的面积是:1/2*|oc|m|=1/2*|-2|*|4|=4平方单位.19、解:两直线平行,斜率相等故k=1,即直线方程为y=x+b经过点(4,3)代入有:b=-1故一次函数的表达式为:y=x-1经过点(2,m)代入有:m=12)A(4,3),B(2,1)要使得PA+PB最小,则P,A,B在一直线上AB的直线方程为:(y-1)/(3-1)=(x-2)/(4-2)过点(x,0)代入有:(0-1)/2=(x-2)/2x=1即当点P的横坐标为1时,PA+PB的值最小.。