齿轮箱的故障诊断

合集下载

轴承和齿轮箱的故障诊断

轴承和齿轮箱的故障诊断

轴承和齿轮箱的故障诊断摘要:本文针对轴承和齿轮箱的故障诊断展开分析,思考了轴承和齿轮箱的故障诊断的方法和基本的措施,希望可以为今后的轴承和齿轮箱的故障诊断工作带来参考。

关键词:轴承;齿轮箱;故障;诊断前言在轴承和齿轮箱的故障诊断的过程中,应该清楚诊断的方法和原理,明确轴承和齿轮箱的故障诊断的具体的技术,才能够提高轴承和齿轮箱的故障诊断的效果。

1、齿轮箱故障诊断特点与诊断方法1.1常见的齿轮箱故障形式通常齿轮箱运行过程中,由于齿轮箱本身制造装配误差以及操作维护不善或者不合适的环境下使用等,均会使其极易产生各种形势的故障。

故障类型也会随着齿轮材料、热处理工艺程度、运转状态等因素的不同而产生不同的变化。

常见的齿轮箱故障形式有:齿面磨损、粘着撕伤、齿面疲劳剥落、轮齿龟裂和断齿、齿面点蚀、齿面胶合与擦伤以及齿面接触式疲劳、弯曲疲劳等故障。

1.2齿轮箱的振动特征在齿轮箱高速运转状态下,伴随着内部构件故障的发生与发展,必定会产生异常的振动,振动信号可以很快的反映出齿轮箱的运行状态,判别出各构件是否出现异常。

大量实验证明,对齿轮箱故障检测进行振动分析是最有效的方法。

由于齿轮箱的零部件在工作过程中所受得激励源不同会使其产生出多种复杂的振动类型,而且其中齿轮在啮合过程中产生的齿形和周期误差、偏心以及质量不平衡等故障,同时还会是齿轮箱工作过程中发生齿面磨损、疲劳断齿等故障[2],严重影响到机械设备的运行,进而影响的经济效益,甚至出现伤亡事故。

由于故障对振动信号的影响是多方面的,因此如果仅仅依靠对齿轮箱振动信号出现啮合频率和倍频成分的差异来识别齿轮箱各部件的故障是远远不够的,其中包括幅值调制、频率调制等频率成分进行诊断。

1.3故障诊断过程对小波的内在需求小波分析应用于机械故障诊断,快速准确的识别故障,是小波分析要完成在齿轮箱的故障诊断过程对小波的内在需求中的主要任务。

通过实验研究说明,机械故障诊断和信号特征提取的所采用的方式是对特征信号进行高效的时域-频域分析,该分析方法是故障诊断的必要要求。

行星齿轮箱故障诊断方法

行星齿轮箱故障诊断方法

行星齿轮箱故障诊断方法1. 引言1.1 引言行星齿轮箱是一种常见的传动装置,在各种机械设备和车辆中被广泛应用。

它能够有效地将动力传递给机械系统,从而实现各种动力传动和转速调节的功能。

由于长时间的使用和磨损,行星齿轮箱可能会出现故障,导致设备性能下降甚至完全失效。

及时准确地诊断行星齿轮箱的故障非常重要。

本文将介绍行星齿轮箱的故障现象、可能的原因、诊断方法、常见解决方案和预防措施,帮助读者更好地了解行星齿轮箱故障的发生和处理方法。

通过掌握这些知识,读者可以及时发现和解决行星齿轮箱的故障,延长设备的使用寿命,提高设备的可靠性和安全性。

在本文的指导下,读者可以更加有效地管理和维护行星齿轮箱,确保设备的正常运行和高效工作。

愿本文能够为读者提供有价值的信息和帮助,使他们能够更好地了解和处理行星齿轮箱故障问题。

2. 正文2.1 故障现象故障现象是指在行星齿轮箱工作过程中可能出现的各种问题和异常情况。

通过观察和记录这些故障现象,可以帮助工程师们更快速、准确地诊断问题,并采取相应的处理措施。

常见的行星齿轮箱故障现象包括:轴承异响、运转噪音过大、温升异常、油品泄漏、齿轮磨损严重、工作效率下降等。

轴承异响可能是轴承损坏或润滑不良导致的;运转噪音过大可能是齿轮配合间隙过大或叶轮受损;温升异常可能是润滑油渗漏或油温过高所致;油品泄漏可能是密封件老化或松动;齿轮磨损严重可能是使用寿命到期或润滑不当引起的;工作效率下降可能是因为零部件磨损过大或系统故障。

通过仔细观察和分析这些故障现象,可以有针对性地进行故障诊断和解决方案的制定。

定期检查和维护行星齿轮箱,及时处理故障现象,可以提高设备的可靠性和工作效率,延长设备的使用寿命。

2.2 故障可能原因行星齿轮箱故障可能原因很多,主要包括以下几个方面:1. 润滑不足:行星齿轮箱在工作过程中需要足够的润滑油来减少摩擦和磨损,如果润滑油不足或质量不合格,就会导致齿轮箱零件间的摩擦增大,从而引起故障。

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断1. 引言1.1 背景介绍齿轮箱是风力发电机组中的重要组成部分,承担着转动力传递和速度变换的功能。

由于长期运行和恶劣环境条件的影响,齿轮箱容易出现各种故障,影响发电机组的正常运行和发电效率。

及时准确地诊断齿轮箱故障尤为重要。

随着风力发电技术的飞速发展,齿轮箱故障诊断技术也在不断创新和完善。

通过对齿轮箱故障进行精确诊断,可以有效提高风力发电机组的运行可靠性和安全性,降低运维成本,延长设备寿命,最大限度地实现风能资源的利用。

本文旨在对风力发电机组齿轮箱故障诊断方法进行概述,探讨常见的齿轮箱故障特征,介绍故障诊断技术和原理,分析振动信号分析方法和温度监测技术的应用,并总结齿轮箱故障诊断的重要性和未来发展趋势。

希望通过本文的研究,为风力发电行业的技术进步和发展贡献一份力量。

1.2 研究目的研究目的:本文旨在探讨风力发电机组齿轮箱故障诊断的方法与技术,提供有效的故障诊断方案,为风力发电行业提供更加可靠、高效的运维保障。

通过对常见齿轮箱故障特征、故障诊断技术及原理、振动信号分析方法、温度监测技术等方面进行综合分析与研究,旨在提高齿轮箱故障的预警能力,减少故障带来的损失和影响,保障风力发电机组的安全稳定运行。

本研究还将探讨齿轮箱故障诊断的重要性,展望未来发展趋势,为该领域的深入研究和技术创新提供参考和借鉴。

通过本文的研究成果,期望能够为风力发电行业提供更加科学、可靠的齿轮箱故障诊断解决方案,推动行业的持续发展与进步。

1.3 研究意义风力发电机组在风能资源利用中起到至关重要的作用。

齿轮箱作为风力发电机组的核心部件之一,其故障诊断对于发电机组的正常运行至关重要。

研究齿轮箱故障诊断技术可以帮助提前发现和解决齿轮箱的故障问题,保障风力发电机组的运行稳定性和有效性。

齿轮箱故障诊断的研究意义主要体现在以下几个方面:在风力发电行业中,齿轮箱故障是一种常见的故障类型,及时准确地诊断齿轮箱故障可以有效降低故障率,延长齿轮箱的使用寿命,减少维修成本,提高发电效率;齿轮箱故障一旦发生,可能会导致整个风力发电机组的停机维修,给发电厂和电网带来损失,影响电力供应的稳定性,因此研究齿轮箱故障诊断技术对于保障电力供应的可靠性具有重要意义;齿轮箱故障诊断技术的研究也可以促进风力发电行业技术的进步和发展,推动我国清洁能源产业的发展。

船用齿轮箱状态监测与故障诊断系统探讨

船用齿轮箱状态监测与故障诊断系统探讨

61 /[1]刘双成.断系统[J ].军民两用技术与产品,2018(20):83-83.若超出极限值,则系统报警。

例如,振动指标超出设定值,则报警灯亮,提示异常。

振动信号的调整指标可能伴随故障发展而存在一定上升,但是仍需考虑机器工作极限对振动的限制。

无量纲指标并不会因为工作条件变化而变化,当故障持续发生一断时间,无量纲参数也会出现一定程度下降。

故需利用好各种参数,以峭度及均方幅值检测。

4.2信号频域(1)功率谱。

通过LabVIEW技术,可以对信号频域中功率谱函数节点PS/PSD.vi分析,通过对该函数节点深入分析,进一步实现对时域信号功率谱的分析。

但是需注意,在具体分析前,应设置好函数节点的各项参数,设置好函数节点加窗,以此采集振动时域信号,且避免功率谱变换时发生谱能量丢失等问题,保证信号可以平稳的过度,也确保谱分析值的准确性。

(2)倒频谱分析。

倒频谱指对功率谱对数值实施傅立叶逆变换,对相关的视域信号自功率谱详细分析,最终以单边功率谱(返回)For循环中得其对数,之后进行一维实数傅立叶逆变换,最终得到倒频谱。

对于船用齿轮箱故障的诊断,以倒频谱分析,无需考虑测点不同导致传感器传递函数差异导致造成干扰。

通过倒频谱分析,也可区别由于调制而导致的功率谱周期分量,诊断具体调制源。

(3)Hilbert包络谱分析。

包络谱分析通过Hilbert函数节点、交流及直流分量,以此估计函数节点及傅里叶变换函数节点算数运算。

通过此分析方式,可得到幅值、相位及频率变换。

5.效果分析船用齿轮箱连接船只柴油机及螺旋桨,其性能决定船只运行稳定性。

船用齿轮箱运行以传递扭矩,起到减速控制作用。

下文以相应故障模拟实验台分析文章研究系统是否可靠。

为分析齿轮箱故障监测及诊断系统是否有效,设置相关实验平台,实验平台可为监测及诊断系统提供诊断平台,平台以可调节带轮方向确定故障模拟形式,齿轮箱及转圆盘传动系统。

项目主要分析齿轮断裂、齿轮裂纹、齿轮磨损等。

齿轮箱中齿轮故障的振动分析与诊断

齿轮箱中齿轮故障的振动分析与诊断

齿轮箱中齿轮故障的振动分析与诊断摘要:齿轮箱常见的失效类型为齿轮箱,所以定期监控其工作状况,以减少故障率,提供预测型的检修计划。

应用结果显示,该技术能够对变速箱进行有效的判断,并能正确地判断出变速箱的故障部位和严重性,从而为船员制定相应的检修计划,降低无用维护费用,防止机械和机械的非计划停运。

关键词:风力发电机组;齿轮箱;故障诊断引言:在回转机构中,最常见的是齿轮,它的工作状态对整个机器的工作情况有很大的影响。

齿面磨损、表面接触疲劳、齿面塑性、齿面弯曲和齿面折断等是常见的失效类型。

一、齿轮箱故障诊断的意义在风力发电机组中,齿轮箱作为重要传动设备,为风能转化为电能提供源源不断的动力,发挥着十分重要的功能。

风力发电机组中的齿轮箱,不仅体积、质量较大,而且结构十分复杂,这也导致在发电机组运转过程中,齿轮箱容易发生各种故障,进而使发电机组的运行受到较大影响,甚至蒙受重大损失。

近年来,陆续爆发出多起因为齿轮箱故障而导致风力发电机组停运的实践,不仅让发电机组受到极大影响,而且带来重大经济损失。

所以说,对风力发电机组齿轮箱实施有效的故障诊断措施,从而尽发现问题,解决问题,保证其稳定性,不仅具有极大的经济意义,而且有很强的社会意义[1]。

传统的齿轮箱故障诊断主要是通过人工方式实现的,通过人工巡检加定期维护的方式,排除齿轮箱故障。

然而,这种模式,一方面带有很强的滞后性,通常都是齿轮箱发生故障以后,并且对发电机组造成影响之后,才能够去被动的应对,依然无法完全避免损失;另一方面,齿轮箱结构复杂,人工方式诊断故障,不仅准确率不高,而且耗费大量的时间和人力。

因此,通过对齿轮箱实施在线监控,并通过监控数据对齿轮箱实施故障诊断,一旦发现异常立刻予以维护、维修,只有这样,才能够真正有效的预防齿轮箱故障,将隐患消除,从而最大程度降低对风力发电机组的影响。

二、齿轮箱故障诊断机理实现齿轮箱的故障诊断,首先必须了解齿轮箱的故障机理,以此为基础选择合适的诊断技术,才能有有效保障故障诊断的及时性与准确性。

齿轮箱故障分析与诊断策略

齿轮箱故障分析与诊断策略

齿轮箱故障分析与诊断策略摘要:齿轮箱是许多机械的变速传动部件。

在聚丙烯装置最大的挤压造粒机组中,也是由它来提供扭矩和改变速度的。

,它的运行是否正常对整个机组的工作有较大影响。

然而设计不当、维护和操作不善都会引起齿轮箱出现一些故障。

这对其进一步的开发和使用带来明显的负面效应。

本文首先阐述齿轮箱的用途,接着对其故障表现和诊断对策分别进行系统描述。

关键词:齿轮箱故障用途诊断策略齿轮箱是一种工业用的组件,它能经由传动齿轮系完成功率的传递任务,同时,齿轮箱作为一种传送齿轮的机械配件,在化工方面的用途也很广。

本文由齿轮箱的应用,对齿轮箱的常见故障表现和诊断措施展开详尽的论述。

一、齿轮箱的用途齿轮箱的主要用途如下:首先,它可以通过齿轮组来改变传递的速度,在工业上常常把它叫做“变速齿轮箱”。

其次,齿轮箱能变换转动力矩,也就是说,在功率一样的前提下,转速越大的齿轮,齿轮轴所受到的力矩反而越小,反过来则越大;再次,齿轮箱用于动力的分配,在工业上,工作人员可用一台发动机,经由齿轮箱的主轴牵动若干个从轴,进而只要一台发动机就会牵引好几个负载;第四,齿轮箱有离合功能,刹车离合器就是利用的齿轮箱离合功能,人们能自由地将两个相互啮合的齿轮分隔开来,进而把负载和发动机分裂开;第五,变换传动方向,不妨采用两个扇形形态的齿轮把其中的力以垂直的方向有序地传导至另一侧的转动轴。

二、齿轮箱的典型失效故障的表现经由对齿轮箱实际应用的分析,不难测定其故障。

整个齿轮箱系统包含了轴承、齿轮、传动轴和箱体结构等部件,作为一类常用的机械动力系统,它在持续运动地同时,非常容易出现机械配件的故障,特别是轴承、齿轮和传动轴这三个零件,其他发生故障的几率明显比它们低。

齿轮执行任务时,因种种复杂的因素影响而缺乏工作的能力,功能参数的数值超越了允许的最大临界数值,这发生了典型的齿轮箱故障。

其表现形式也五花八门,通观全局,其主要分为两大类:第一是齿轮在日积月累的转动中逐渐产生的,因齿轮箱的外表面在承担相对大负载的过程中,互相啮合的齿轮的间隙中又会出现相对滚动力与滑动力,滑动时候的摩擦力与极点两端的方向刚好相反,久而久之,长期的机械运行会使齿轮胶合、出现裂隙、加大磨损的程度,齿轮断裂也就成为必然了。

齿轮箱的维护与故障分析

齿轮箱的维护与故障分析

齿轮箱维护和故障分析概述风力发电机组由叶片、增速齿轮箱、风叶控制系统、刹车系统、发电机、塔架等组成。

其中增速齿轮箱作为其传动系统起到动力传输的作用,使叶片的转速通过增速齿轮箱增速,使其转速达到发电机的额定转速,以供发电机能正常发电。

高可靠性和良好的可维修性的增速齿轮箱是风力发电机组的关键技术保障。

所以,对海阳、莱州、开发区风场齿轮箱故障现象统计如下表:液压系统和齿轮的损坏三大方面。

齿轮和轴承在转动过程中它们实际都是非直接接触,这中间是靠润滑油建成油膜,使其形成非接触式的滚动和滑动,这时油起到了润滑的作用。

虽然它们是非接触的滚动和滑动,但由于加工精度等原因是其转动都有相对的滚动摩擦和滑动摩擦,这都会产生一定的热量。

如果这些热量在它们转动的过程中没有消除,势必会越集越多,最后导致高温烧毁齿轮和轴承。

因此齿轮和轴承在转动过程中必须用润滑油来进行冷却。

所以润滑油一方面起润滑作用,另一方面起冷却作用。

对于风电齿轮箱,对于所有的齿轮和轴承我们都要采用强制润滑。

因为强制润滑可以进行监控,而飞溅润滑是监控不了的。

从安全性考虑采用强制润滑。

一、风电齿轮的损坏类型及其判断下表为齿轮轮齿的主要故障形式及其原因根据裂纹扩展的情况和断齿原因断齿包括过载折断(包括冲击折断)疲劳折断以及随机断裂等断齿常由细微裂纹逐步扩展而成。

疲劳折断发生从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断其根本原因是轮齿在过高的交变应力重复作用,在疲劳折断处,是贝状纹扩展的出发点并向外辐射产生的原因有很多。

主要是材料选用不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应力集中等等因此在设计时需要考虑传动的动载荷谱,优选齿轮参数,正确选用材料和齿轮精度,充分保证加工精度消除应力集中集中因素等等。

过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有轴承损坏突然冲击超载轴弯曲或较、大硬物挤入啮合区等断齿断口有两种形式一种呈放射状花样的。

风力发电机组齿轮箱磨损分析与故障诊断

风力发电机组齿轮箱磨损分析与故障诊断

风力发电机组齿轮箱磨损分析与故障诊断随着环保意识的日益增强,风力发电作为一种可再生能源,受到越来越多人的关注。

而作为风力发电机组中最核心的组件之一,齿轮箱在运行中承担着转换风能为电能的重要作用。

然而,齿轮箱在长时间高速运转下,往往会产生磨损或故障,导致设备停机维修,严重影响发电效率和运行成本。

因此,风力发电机组齿轮箱的磨损分析与故障诊断显得尤为重要。

一、风力发电机组齿轮箱的工作原理风力发电机组齿轮箱是将风轮旋转的动能转换为发电机的电能的核心装置,其工作原理主要是通过齿轮传动的方式,将风轮转速转化为适合发电机转动的速度。

齿轮箱由多组不同直径和模数的齿轮组成,其中的一组齿轮负责将垂直旋转的风轮转向为水平旋转,并将风轮总转速提高到适合发电机转动的速度。

二、风力发电机组齿轮箱的磨损类型随着风力发电机组设备在实际运行中的不断使用,摩擦和磨擦的作用下,齿轮箱内的齿轮、轴承等部件会出现一定的磨损,具体而言主要有以下几种类型。

1. 齿面磨损:由于高速运转下,齿轮在互相啮合的过程中产生的摩撞和磨擦等现象,使得铸铁材料逐渐失去表面层,从而产生齿面磨损现象,进而影响齿轮通过啮合传递动力的能力。

2. 轴承损伤:轴承在高速运转中,由于部件之间的摩擦作用和不可避免的疲劳损伤,轴承表面产生了许多细小的条状或磨损颗粒,进而加速轴承损伤。

3. 齿轮剥落:由于应力过大或者材料疲劳程度增加,会导致齿轮表面发生剥落现象,严重时会形成齿轮脱落,导致齿轮箱无法正常运转。

4. 沉积物沉淀:风力发电机组在运行中由于环境等原因,很容易在输油管路、油箱内部等处积聚沉积物或污染物,从而形成沉积物沉淀,堵塞油道或导致机件故障。

三、风力发电机组齿轮箱的故障诊断方法及时准确地发现和分析齿轮箱的故障或磨损,对于设备的正常运转和降低维修成本至关重要。

故障诊断方法有很多种,下面重点介绍两种常用的方法。

1. 声振分析法:通过齿轮箱内部机构产生的声振信号,分析齿轮与轴承的运动情况,提取有利于故障诊断的特征参数,进行故障鉴定和故障分析,达到快速准确诊断齿轮箱故障的目的。

机械毕业设计450齿轮箱故障诊断实验研究毕业设计

机械毕业设计450齿轮箱故障诊断实验研究毕业设计
d)常规诊断和特殊诊断
常规诊断就是指齿轮箱在正常服役条件下进行的诊断,我们所说的诊断一般都属于这一类型。
Key word: GearboxFaultdetectionThe mechanismof vibrationExperiment
第一章
1.1
1.1.1齿轮故障诊断技术概述
1.1.1.1齿轮故障诊断技术的相关概念
故障是指系统实际输出与所期望的输出不相容或是系统的观测值与根据系统的行为描述模型所得的预测值存在矛盾,从而使得系统整体或局部偏离正常功能或功能失效[1]。
故障诊断的根本任务就是在不拆卸设备的情况下,能根据已知的观测(即征兆),找出诊断对象中可能存在的故障或导致这些故障的各种原因,并能预测未来的发展趋势同时提出各种维修的决策和建议[2]。设备诊断的基本过程如图1.1[2]
2
由于现代齿轮箱制造及运行状态差别很大,且其工作环境又各不相同,因此故障诊断技术的分类方法自然不同,但归纳起来,按诊断目的和被诊断参数两种方式进行分类.
摘要
齿轮箱是机械设备中广泛使用的重要部件,它的损伤和失效常常导致传动系统或整机的故障,从而导致重大安全事故。因此,作为动力传递核心的齿轮箱装置的故障诊断受到了越来越多的重视。而研究表明,齿轮箱故障的60%是由齿轮本体失效造成的,基于此,本文对齿轮故障的类型和形成原因,齿轮箱的振动机理、振动模型、齿轮箱故障信号所表现出的振动特征进行了研究,还对齿轮箱的故障诊断方法进行了归纳总结,并将所研究的诊断方法应用于齿轮箱故障诊断试验验证。通过对正常齿轮、断齿齿轮时域波形、频谱特征研究证明了不管齿轮是否有故障存在,其频谱中都会有啮合频率存在。同时通过对断齿故障齿轮的滤波、解调和功率谱分析验证了断齿齿轮的频谱特征为啮合频率及其谐频周围形成以轴的旋转频率为调制频率的边频带。

齿轮故障检测总结

齿轮故障检测总结

齿轮故障检测总结引言齿轮是机械传动系统中常见且重要的元件之一。

在工业生产中,齿轮故障可能会导致机械传动系统的失效,从而影响设备的正常运行。

因此,对齿轮故障进行有效的检测和诊断,对于预防故障和提高设备的可靠性非常重要。

本文将对常见的齿轮故障检测方法进行总结,包括振动分析、声学分析、热红外检测以及油液分析等。

这些方法可以帮助工程师及时发现齿轮故障,并采取相应的措施修复或更换齿轮,以确保机械传动系统的可靠性和安全性。

1. 振动分析振动分析是一种常见且有效的齿轮故障检测方法。

通过监测齿轮系统的振动信号,可以识别出齿轮的故障类型,如齿面磨损、齿面疲劳断裂等。

振动分析通常包括以下步骤:1.采集振动信号:使用振动传感器采集齿轮系统的振动信号。

通常,可以选择在齿轮箱的外部或内部安装振动传感器,以获取不同位置的振动信号。

2.信号预处理:对采集到的振动信号进行预处理,包括去噪处理、滤波处理等。

这些预处理操作可以提高信号的质量和准确性。

3.特征提取:从预处理后的振动信号中提取特征,如频域特征、时域特征等。

这些特征可以用于描述齿轮故障的振动特性。

4.故障诊断:根据提取到的特征,利用故障诊断算法对齿轮的故障类型进行识别和判断。

常见的故障诊断算法包括支持向量机(SVM)、人工神经网络(ANN)等。

振动分析方法具有非破坏性、实时性和高灵敏度等优点,可以对齿轮的早期故障进行有效检测,帮助预防严重事故的发生。

2. 声学分析声学分析是一种基于声波信号的齿轮故障检测方法。

通过监测齿轮系统产生的声音信号,可以判断齿轮的状态和故障情况。

常见的声学分析方法包括以下步骤:1.采集声音信号:使用麦克风或声音传感器采集齿轮系统产生的声音信号。

与振动分析类似,声音传感器可以安装在齿轮箱的内部或外部,以获取不同位置的声音信号。

2.信号预处理:对采集到的声音信号进行预处理,包括去噪处理、滤波处理等。

这些预处理操作可以提高信号的质量和准确性。

3.频谱分析:将预处理后的声音信号进行频谱分析,可以得到声音信号的频谱特征。

《齿轮箱非平稳多分量信号的故障诊断方法研究》

《齿轮箱非平稳多分量信号的故障诊断方法研究》

《齿轮箱非平稳多分量信号的故障诊断方法研究》篇一一、引言随着工业机械和车辆系统中的高效率和可靠性要求日益提高,齿轮箱作为其核心部件之一,其运行状态监测与故障诊断显得尤为重要。

传统的故障诊断方法在面对齿轮箱非平稳多分量信号时,往往面临信号复杂度高、信息提取困难等问题。

因此,研究并开发有效的故障诊断方法,对于保障齿轮箱的安全稳定运行具有重要价值。

本文将就齿轮箱非平稳多分量信号的故障诊断方法展开深入研究,并提出一种新型的故障诊断策略。

二、齿轮箱非平稳多分量信号的特点齿轮箱在运行过程中产生的信号往往是非平稳多分量的,这些信号的特点主要表现为以下几个方面:1. 信号的动态变化性:由于齿轮箱的工作环境复杂多变,其产生的信号具有明显的动态变化特性。

2. 多分量特性:信号中包含多个频率分量,这些分量的幅值和频率随时间发生变化。

3. 非平稳性:信号的统计特性随时间发生变化,难以用固定的数学模型进行描述。

三、传统故障诊断方法的局限性传统的故障诊断方法主要依赖于信号的统计特性和时频分析。

然而,在面对齿轮箱非平稳多分量信号时,传统方法往往存在以下局限性:1. 信号模型化困难:非平稳信号的统计特性随时间变化,难以用固定的数学模型进行描述。

2. 信息提取不全面:时频分析可能无法完全捕捉到所有分量的变化信息。

3. 误报率高:在复杂的信号环境中,易产生误判和误报。

四、新型故障诊断方法的研究针对上述问题,本文提出了一种基于自适应滤波和深度学习的故障诊断方法。

该方法主要包括以下几个步骤:1. 信号预处理:采用自适应滤波技术对原始信号进行去噪处理,以提高信噪比。

2. 特征提取:利用深度学习技术对预处理后的信号进行特征提取,捕捉到信号中的多分量特性和非平稳特性。

3. 故障分类与诊断:将提取的特征输入到分类器中进行训练和测试,实现对齿轮箱故障的诊断与分类。

五、实验验证与分析为了验证本文提出的故障诊断方法的有效性,我们进行了以下实验:1. 数据采集:在多种工况下对齿轮箱进行数据采集,包括正常工作状态和各种故障状态下的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械设备智能故障诊断的知识获取技术报告 ————齿轮箱的故障诊断
郝亚强 6100800544
齿轮箱的故障诊断
齿轮箱是用来改变转速和传递动力的常用机械设备,由 于齿轮箱本身工作环境恶劣,故容易受到损害和出现故障 ;而其中的零部件如齿轮、轴、轴承等加工工艺复杂,装 配精度要求高,又常常在高速度、重载荷下连续工作,故 障率较高,是诱发机器故障的重要原因。因此对齿轮箱进 行诊断是自故障诊断技术问世以来一直受到人们普遍重视 的课题之一。 齿轮箱状态监测与故障诊断技术是一门多学科综合技术 ,涉及动态信息处理、计算机、人工智能等众多领域的知 识。国内外对齿轮箱状态监测与故障诊断技术取得了一定 的成效,并不断将新理论应用于齿轮箱故障诊断之中,本 报告将就齿轮箱故障诊断技术的现阶段的研究方法及应用 进行讨论。最后介绍几个简单的实际用例。
图1 齿根部的应力集中
齿轮的主要故障
二:齿面磨损或划痕
1)粘着磨损 在低速、重载、高温、齿面粗糙度差、供油不足或油粘度 太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有 利于防止粘着磨损的发生。 2)磨粒磨损与划痕 含有杂质颗粒以及在开式齿轮传动中的外来砂粒或 在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。 3)腐蚀磨损 由于润滑油中的一些化学物质如酸、碱或水等污染物与齿 面发生化学反应造成金属的腐蚀而导致齿面损伤。 4)烧伤 烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生 的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几 微米厚表面层重新淬火,出现白层。损伤的表面容易产生疲劳裂纹。
5)齿面胶合 大功率软齿面或高速重载的齿轮传动,当润滑条件不良时 易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿 面上而在此齿面上留下坑穴,在后续的啮合传动中,这部分胶合上的 多余材料很容易造成其他齿面的擦伤沟痕,形成恶性循环。
齿轮的主要故障
三:齿面疲劳(点蚀、剥落)
所谓齿面疲劳主要包括齿面点蚀与剥落。造成点蚀的原因,主要是 由于工作表面的交变应力引起的微观疲劳裂纹,润滑油进入裂纹后, 由于啮合过程可能先封闭入口然后挤压,微观疲劳裂纹内的润滑油在 高压下使裂纹扩展,结果小块金属从齿面上脱落,留下一个小坑,形 成点蚀。如果表面的疲劳裂纹扩展得较深、较远或一系列小坑由于坑 则称 为剥落。剥落与严重点蚀只有程度上的区别而无本质上的不同。 实验表明,在闭式齿轮传动中, 点蚀是最普遍的破坏形式。在开式齿 轮传动中,由于润滑不够充分以及进 入污物的可能性增多,磨粒磨损总是 先于点蚀破坏。
时域分析(最简单且最直接的方法)
振动时域波形是一条时间历程的波动曲线。根据测量所用 传感器类型的不同,曲线的幅值可代表位移、速度或加速 度。 示性指标(特征量) 1)振动幅值,包括峰值、有效值和平均值等,其中峰值 又分为零峰值和峰—峰值; 2)振动周期与频率,不同的故障源通常会产生不同频率 的机械振动; 3)相位;主要用于比较不同振动运动之间的关系,或确 定一个部件相对于另一个部件的振动状况。
振动信号分析处理技术
振动诊断的实质是对采集的动态信号在三维图上的时域、 幅域和频域进行分析和随机数据处理,从而找出故障的原 因和部位。
振动信号分析处理技术
早期分析方法:傅立叶变换
缺点:计算量大,频率成分的分辨率不高、谱图有畸变、随机起伏明显 不光滑,不适于短数据
现在常用的分析方法:频谱分析、时域分析、频域分析、 小波分析等
频谱分析
频谱分析是对动态信号在频率域内进行分析;分析的结果 是以频率为坐标的各种物理量的谱线和曲线,可得到各种 幅值以频率为变量的频谱函数。
可达到目的: 1) 求得动态信号中的各个频率分布范围; 2) 求出动态信号各个频率成分的幅值分布和能量分布,从 而得到主要幅度和能量分布的频率值,为结构分析和设计 提供依据; 3)通过对测试波形的分析,求得频率成分和它们的幅值, 来校正测试波形; 4)由频谱分析所提供的频率值、幅值、相位角和各种谱密 度,为研究动力过程的传递和衰减机理,求得被测结构的 传递函数、振型和结构动力反应的各种模态参数,为解决 消振、幅振等问题提供条件。
机理研究
故障机理研究是为了将故障隐患消除在设计阶段,一般 从机械动力学出发,研究故障的原因和效应.齿轮箱故障的 原因主要有制造误差、装配不良、润滑不良、超载、操作失 误等方面.在齿轮箱的部件失效中齿轮、轴承所占的比重约 为60%和19%,所以齿轮箱振动的故障诊断主要是齿轮和轴 承的故障诊断.齿轮运行的主要故障有:齿轮磨损、齿面胶合 和擦伤、齿面接触疲劳和断齿等. 在齿轮箱典型故障机理研究和特征提取方面,主要是基 于振动机理.一般来说,随着振动能量的不同,齿轮箱振动 信号中将产生齿轮啮合频率调制、齿轮固有频率调制、箱体 固有频率调制、滚动轴承外环固有频率调制4种不同的调制 现象.不管齿轮正常与否,齿轮啮合时其啮合频率总会出现. 但其它频率,只在齿轮、轴承或轴出现故障时才出现.另外 ,一旦有故障,在这4种频率附近都将产生轴的旋转频率及 其谐波的调制.
齿轮的主要故障
一:齿的断裂
齿轮副在啮合传递运动时,主动轮的作用 力和从动轮的反作用力都通过接触点分别作用 在对方轮齿上,最危险的情况是接触点某一瞬 间位于轮齿的齿顶部,此时轮齿如同一个悬臂 梁,受载后齿根处产生的弯曲应力为最大,若 因突然过载或冲击过载,很容易在齿根处产生 过负荷断裂。即使不存在冲击过载的受力工况 ,当轮齿重复受载后,由于应力集中现象,也 易产生疲劳裂纹,并逐步扩展,致使轮齿在齿 根处产生疲劳断裂。轮齿的断裂是齿轮的最严 重的故障,常因此造成设备停机。
图2 齿面点蚀
齿轮的主要故障
四.齿面塑性变形 软齿面齿轮传递载荷过大(或在大冲击载荷下)时, 易产生齿面塑性变形。在齿面间过大的摩擦力作用下,齿 面接触应力会超过材料的抗剪屈服极限,齿面材料进入塑 性状态,造成齿面金属的塑性流动,使主动轮节圆附近齿 面形成凹沟,从动轮节圆附近齿面形成凸棱,从而破坏了 正确的齿形。有时可在某些类型的齿轮的从动齿面上出现 “飞边”,严重时挤出的金属充满顶隙,引起剧烈振动, 甚至发生断裂。
相关文档
最新文档