普通车床的数控改造方法及设计中英文翻译、外文翻译、外文文献翻译

合集下载

有关普通铣床数控改造英文文献

有关普通铣床数控改造英文文献

有关普通铣床数控改造英文文献1. IntroductionCNC (Computer Numerical Control) systems are widely used in modern machining industries. They offer high accuracy, repeatability, and productivity. However, many companiesstill use conventional milling machines due to the high cost of CNC machines. Fortunately, conventional machines can be upgraded to CNC machines through retrofits. Retrofitting a milling machine to CNC provides the best of both worlds: affordability and accuracy. This paper provides an overview of the retrofit process for conventional milling machines. 2. Retrofitting ProcessThe retrofitting process involves several steps:2.1 AssessmentThe first step is to assess the milling machine to be retrofitted. It is important to determine if its mechanical components are still viable for retrofitting. The machine's age, condition, and brand are factors that can affect the retrofit's success. It is also important to consider the machine's specifications such as the spindle speed, table size, and travel.2.2 PlanningOnce the assessment is complete, a plan for retrofitting the milling machine can be developed. The plan should include a sketch or CAD drawing of the new CNC machine, a list of components needed, and a timetable for the retrofit.2.3 Component SelectionThe selection of components is critical in retrofitting a milling machine to a CNC machine. The selection should be based on the machine's specifications, the type of machining required, and the budget.2.4 InstallationAfter selecting the components, the installation process can begin. This involves removing the machine's mechanical components and replacing them with the new CNC components. The CNC control system is also installed and configured during this stage.2.5 TestingTesting is the final step in the retrofitting process. It involves testing the CNC milling machine's accuracy, repeatability, and productivity. Any issues that arise during testing must be addressed before the machine can be put into production.3. Advantages of CNC RetrofittingThere are several advantages of retrofitting a milling machine to a CNC machine:3.1 Cost SavingsRetrofitting a milling machine to a CNC machine is more cost-effective than purchasing a new CNC machine. The cost savings can be significant, especially for small to medium-sized enterprises.3.2 Increased AccuracyCNC milling machines offer higher accuracy and precision than conventional milling machines. Retrofitted CNC machines can achieve the same level of accuracy as new CNC machines. 3.3 Improved ProductivityCNC machines are faster and more productive than conventional machines. They can execute multiple operations simultaneously, reducing cycle times and increasing production rates.3.4 FlexibilityCNC machines are highly flexible and can be programmed to perform a wide range of machining operations. Retrofitted CNC machines can perform the same operations as new CNC machines.4. ConclusionCNC retrofitting provides a cost-effective way to upgrade a conventional milling machine to a CNC machine. The retrofitting process involves assessing the machine's viability, planning, component selection, installation, and testing. Retrofitting offers several advantages, including cost savings, increased accuracy, improved productivity, and flexibility. Companies can take advantage of these benefits by retrofitting their milling machines to CNC machines.。

c6150普通车床数控化改造毕业设计外文翻译(中文)

c6150普通车床数控化改造毕业设计外文翻译(中文)

采用模糊推理的数控机床的进给率控制摘要:在这篇文章中,基于带回转装置的数控机床的3D设计和加工系统,被首先介绍以有效的产生有吸引力的油漆滚筒。

一个后处理器被提出以把被称为刀位数据(CL)的基本工具路径改为NC数据,映射y方向的拾取饲料的旋转单元的旋转角度。

有后处理器的三维加工系统,让我们很容易地把平面模型表面的浮雕设计抄写到一个圆柱模型表面。

后处理器有另一个作用即:根据每一个设计的曲率调整进给速率以防止加工表面破损。

后置处理器在检查边缘的浮雕设计的同时,运用模糊推理方法生成合适的进给速率代码。

实验结果表明,具有有吸引力的浮雕设计的木漆辊可以被成功加工,而不会产生不良的边缘破损。

接下来,被提出的模糊进给速率发生器进一步被应用到模具抛光机器人,使抛光时间比之没有发生器时减少约30%。

关键词:进给率控制模糊推理带旋转机构的数控机床CAD/CAM 模具抛光机器人1、引言在国内制造业,采用简单模式的油漆滚筒,通常被用于把一个设计抄到刚刚粉刷过的墙上。

室内规划者和装饰要使用更具吸引力的涂料辊,但是图案的类型仅限于一些常见的。

为了有效提供以用户为导向的辊设计,对于限量生产的各种油漆滚筒应有一个新的3D设计加工系统。

到现在为止,虽然已经在各种制造业中开发了先进的三维加工系统,但有浮雕设计的辊在现阶段似乎并没有被成功的制造。

随着数控机床的进给速度的优化,用后处理的方法来为已经被提出的高速轮廓加工,把G1数控编码转换成非均匀的B样条(NURBS)NC路径。

一种被用于端铣自适应力量控制的模糊策略被提出,自适应最大限度地提高到工具主体允许的切削力的进给速率。

然而,为了实现木质漆辊或机器人金属模具抛光,为了加工小尖边缘和曲面和一个稳定的控制抛光力。

应发展一种精巧和熟练进给率的控制。

在这篇文章中,基于带回转装置的数控机床的3D设计和加工系统,被首先介绍以有效的产生有吸引力的油漆滚筒。

在使用一般的涂料辊有很少或没有吸引力的设计,和他们的设计也仅限于平面或几个简单的模式。

〔大学论文〕CA6140普通车床的数控技术改造〔含word文档〕

〔大学论文〕CA6140普通车床的数控技术改造〔含word文档〕
1.4 机床数控化改造的必要性
1.4.1 微观看改造的必要性 从微观上看,数控机床比传统机床有以下突出的优越性 ,而且这些优越
性均来自数控系统所包含的计算机的威力。 1 、可以加工出传统机床加工不出来的曲线、曲面等复杂的零件。
由 于 计 算 机 有 高 超 的 运 算 能 力 ,可 以 瞬 时 准 确 地 计 算 出 每 个 坐 标 轴 瞬 时 应该运动的运动量,因此可以复合成复杂的曲线或曲面。 2 、可以实现加工的自动化,而且是柔性自动化,从而效率可比传统机床提 高 3~7 倍。由于计算机有记忆和存储能力,可以将输入的程序记住和存储 下 来 ,然 后 按 程 序 规 定 的 顺 序 自 动 去 执 行 ,从 而 实 现 自 动 化 。数 控 机 床 只 要 更 换 一 个 程 序 ,就 可 实 现 另 一 工 件 加 工 的 自 动 化 ,从 而 使 单 件 和 小 批 生 产 得 以自动化,故被称为实现了"柔性自动化"。 3、 加工零件的精度高,尺寸分散度小,使装配容易,不再需要"修配"。 4 、可实现多工序的集中,减少零件 在机床间的频繁搬运。
山东理工大学
第一章 概论
1.1 数控系统发展简史
1946 年诞生了世界上第一台电子计算机,这表明人类创造了可增强和 部 分 代 替 脑 力 劳 动 的 工 具 。它 与 人 类 在 农 业 、工 业 社 会 中 创 造 的 那 些 只 是 增 强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。 6 年后,即在 1952 年,计算机技术应用到了机床上,在美国诞生了第一台 数 控 机 床 。从 此 ,传 统 机 床 产 生 了 质 的 变 化 。近 半 个 世 纪 以 来 ,数 控 系 统 经 历了两个阶段和六代的发展。

数控机床刀具设计论文中英文资料外文翻译文献综述

数控机床刀具设计论文中英文资料外文翻译文献综述

数控机床刀具设计中英文资料英语原文:Design Of Tool Machine PropResearch significanceThe original knife machine control procedures are designed individually, not used tool management system, features a single comparison, the knife only has to find the tool knife, knife positioning the shortest path, axis tool change, but does not support large-scale tool.Automatic knife in the knife election, in the computer memory knife-election on the basis of using the Siemens 840 D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use the knife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of the knife, PLC controlled modular design method, which future production of similar machines will be very beneficial, it is easy to use its other machine. Automatic tool change systems will be faster growth, reduced tool change time, increase the positioning accuracy tool is an important means to help NC technology development.Tool and inventory components of modern production is an important link in the management, especially for large workshop D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use the knife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of the knife, PLC controlled modular design method, which future production of similar machines will be very beneficial, it is easy to use its oth management. The traditional way of account management, and low efficiency, high error rate, and not sharing information and data, tools and the use of state can not track the life cycle, are unable to meet the current information management needs. With actual production, we have to establish a workshop tool for the three-dimensional tool storage system to meet the knife workshop with auxiliary storage and management needs.The system uses optimization technology, a large number of computer storage inventory information, timely, accurate, and comprehensive tool to reflect the inventory situation. The entire system uses a graphical interface, man-machine dialogue tips from the Chinese menu, select various functions can be realized and the importation of all kinds of information. Management system using online help function. Through the workshop management, network management and sharing of information. Have automated inventory management, warehousing management tool, a tool for the management and statistical functions.1.System components and control structureThe entire system, including the structure and electrical machinery control systems.1.1.1Mechanical structure and working principleTool from the stent, drive, drive system, Turret, shielding, control system, and electrical components. Support from the column, beam, the upper and lower guide Central track, and track support component.1) Drive for the system chosen VVVF method. Cone used brake motors, with VVVF by Cycloid reducer through sprocket drive.2) Drag a variable frequency drive system and control technology. VVVF adopted, will speed drive shaft in the normal range adjustment to control the speed rotary turret to 5 ~ 30mm in, the drive shaft into two, two under through sprocket, the two profiled rollers Chain driven rotating shelves. Expansion chain adopted by the thread tight regulation swelling, swelling the regular way. - Conditi D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use the knife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of the knife, PLC controlled modular design method, which future production of similar machines will be very beneficial, it is easy to use its at six other Des V oeux a knife, can be categorized with some of knife auxiliary equipment, such as bits, such as turning tools.1.1.2.Electrical Control SystemThis tool storage systems is the main electrical control their shelves for operational control and position control. Operational control equipment, including operation of the start of braking control. Position Control is the main location and address of the shelves for testing.1) Electric Transmission horizontal rotary tool storage systems are the mechanical movements are repeated short-term work system. And the run-time system needs some speed, speed transmission needs, the system will use VVVF method can be used simple structure, reliable operation of the motor and frequency inverter.2) Control of the system is divided into two kinds of manual control and automatic control, manual control as a general reserve and debugging methods of work; ways to the system control computer (IPC) and the control unit (inverter contactor , etc.) consisting of a control system.3) location and positioning accuracy of the system automatically identify the site and location using a detection device tion, timely, accurate, and comprehensive tool to reflect the inventory situation. The entire system uses a graphical interface, man-machine dialogue tips from the Chinese menu, select various functions can be realized and the importation of all kinds of information. Management system using online help function. Through the workshop management, network management and sharing of information. Have automated inventory management, warehousing management tool, a tool for the management and statistical fu as proximity switches, relays through the plate-point isolation and the number plate recorded close to the switching signal acquisition and operation of Hutchison with a Optimal Path addressable identify the current location and shelves of the purpose of the shelf location. In order to enable a more accurate positioning system, adopted two photoelectric switches, to detect the two shelves of the two films.1.2.The functions of the knifeknife The is the role of reserves a certain number of tools, machine tool spindle in hand to achieve the fungibility a disc sc knife in the library with discoid knife, cutting tool along See how vertical arrangement (including radial and axial from knife from knife), along See how radial array into acute or arranged in the form of the knife. Simple, compact, more applications, but are ring-cutter, low utilization of space. Figure 2.7 a) to c). D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use the knife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of the knife, PLC controlled modular design method, which future production of similar machines will be very beneficial, it is easy to use its. If the knife cutter knife is the type of library, the chain knives, and other means, in the form of the knifeand capacity according to the Machine Tool to determine the scope of the process.s, but are ring-cutter, low utilization of space. Figure 2.7 a) to c). D features, and the election procedures knife more concise, and com mon typesThe knife is a tool storage devices, the common knife mainly in the following forms:(1) the turret knifeIncluding the first level turret vertical turret and the first two, see Figure 2.6 a) and b):(2) the disc cutterDisc knife in the library with discoid knife, cutting tool along See how vertical arrangement (includingradial and axial from knife from knife), along See how radial array into acute or arranged in the form of theknife. Simple, compact, more applications, but are ring-cutter, low utilization of space. Figure 2.7 a) to c).D features, and the election procedures knife more concise, and complete the space Daotao View. ATC use theknife rapid completion of STEP-7 programming, and have been tested in practice. In the positioning of theknife, PLC controlled modular design method, which future production of similar machines will be verybeneficial, it is easy to use its. If the knife storage capacity must be increased to increase the diameter of theknife, then the moment of inertia also increased correspondingly, the election campaign long knife. Toolnumber not more than 32 general. Cutter was multi-loop order of the space utilization knife, but inevitablygiven the knife from complex institutions, applicable to the restricted space Machine Tool storage capacity andmore occasions. Two-disc structure is two smaller capacity knife on both sides of the sub-spindle place, morecompact layout, the number ofapply to small and medium-sizedprocessing center.(3) the chain knife Includingsingle-and multi-ring chain ringchain, chain link can take many forms change, see Figure 2.8 a) to c), the basic structure shown in Figure 2. 8 doFeatures: knife apply to the larger capacity of the occasion, the space of the small number of generally applicable to the tool in the 30-120. Only increase the length of the chain tool will increase the number should not be increased circumferential speed of its moment of inertia of the knife does not increase the disc as large.(4) linear combination knife and the knife libraryThe linear knife simple structure in Figure 2.9, tool single order, the capacity of small knife, used for CNC lathe and drill press on. Because the location of fixed knife, ATC completed action by the spindle without manipulator. The cutter knife is generally the turret combination turret with a combination of the disc cutter knife and the chain combination. Every single knife the knife certificates of smaller, faster tool change. There are also some intensive drum wheel, and the lattice-type magazine for the knife, the knife-intensive though.Small footprint, but because of structural constraints, basically not used for single processing center, the concentration used for FMS for the knife system.1.4 Tool storage capacityTool storage capacity of the first to consider the needs of processing, from the use of point of view,generally 10 to 40 knives, knife will be the utilization of the high, and the structure is compact.1.5 Tool options(1) choose to order processing tool according to the order, followed Add to the knife every knife in the Block. Each tool change, the order of rotation of a cutter knife on location, and remove the need knives, has been used by the cutter knife can be returned to the original Block, can also order Add Block, a knife. However, as the knife in the tool in different processes can not be repeated use of the knife must increase the capacity and lower utilization rate.(2) most of the arbitrary choice of the current system of using arbitrary NC election knives, divided into Daotao coding, coding and memory-cutter, three. Daotao coding tool code or knives or Daotao need to install the code used to identify, in accordance with the general principle of binary coding coding. Tool knife election coding method uses a special knife handle structure, and each of the coding tool. Each of the tool has its own code, thereby cutting tool can be in different processes repeatedly used, not to replace the tool back at the original knife, the knife capacity can be reduced accordingly. Memory-election this paper knife, in this way can knives and knife in the position corresponding to the Daotao memory of the PLC in the NC system, no matter which tool on the Inner knife, tool information is always there in mind, PLC . On the knife with position detection devices, will be the location of each Daotao. This tool can be removed and sent back to arbitrary. On the knife is also a mechanical origin, every election, the nearest knife selection.1.6.Control of the knife(1) the knife as a system to control the positioning axis. In the ladder diagram in accordance with the instructions for computing T code comparison of the output angle and speed of instructions to the knife the knife servo drive servo motor. Tool storage capacity, rotation speed, and / deceleration time, and other system parameters can be set in such a manner free from any outside influence positioning accurate and reliable but the cost is higher.(2) knife from the hydraulic motor drives, fast / slow the points, with proximity switches count and positioning. In comparison ladder diagram of the current storage system knife (knife spindle) and goals knife (pre-knife) and computing, then output rotation instructions, judging by the shortest path rotation in place. This approach requires sufficient hydraulic power and electromagnetic valve knife the rotational speed can be adjusted through the throttle. But over time may be oily hydraulic, oil temperature and environmental factors impact the change in velocity and accuracy. Not generally used in large and medium-sized machine tool change frequently.(3) the knife from AC asynchronous motor driven cam mechanism (Markov institutions), with proximity switches count, which means stable operation, and generally accurate and reliable positioning cam used in conjunction with a mechanical hand, ATC fast-positioning.2. ATC, the main types, characteristics, and the scope of application2.1 Auto Rotary ToolRotary Tool automatically on the use of CNC machine tool is a simpleinstallation of automatic tool change, the Quartet and 47.60 Turret Tool various forms, such as rotary turret were installed on four, six or more of the Tool , NCinstructions by ATC. Rotary Tool has two vertical and horizontal, relatively simple structure, applicable to economic CNC lathe.Rotary Tool in the structure must have good strength and stiffness, resistance to bear rough Cutting Tool in the cutting force and reduce the role of deformation and improve processing accuracy. Rotating Tool to choose reliable positioning programme structure and reasonable position, in order to ensure that each rotary turret to a higher position after repeated positioning accuracy (typically 0.001 to 0.005mm). Figure 2.1 shows the spiral movements of the Quartet Turret.Auto Rotary Tool in the simplest of ATC, is 180 º rotary ATC devices, as shown in Figure 2.2 ATC instructions received, the machine control system put ATC spindle control to the designated location at the same time, the tool movement to the appropriate location, ATC, with the rotary axis and at the same time, the knives matching tool; drawbars from Spindle Cutting Tools rip, ATC, will be the tool from their position removed; ATC, 180 º rotary tool spindle and the tool and tool away; ATC, the Rotary At the same time, thetool refocusing its position to accept Spindle removed from the cutting tool; Next, ATC, will be replaced with the cutter knives were unloaded into the spindle and tool: Finally, back to the original ATC, "standby" position. At this point, ATC completed procedures to continue to run. This ATC, the main advantage of simple structure,the less movement, fast tool change. The main disadvantage is that knives must be kept in parallel with the axis of the plane, and after the home side compared to the tool, chip and liquid-cutting knife into the folder, it is necessary to the tool plus protection. Cone knife folder on the chip will cause ATC error, or even damage knife folders, and the possibility of spindle. Some processing centre at the transfer, and the tool side. When the ATC command is called, the transfer-cutter knives will be removed, the machine go forward, and positioning with the ATC, in line with the position. 180 º "Rotary ATC devices can be used horizontal machine, can also be used for vertical machining centers.2. 2 ATC head-turret installedWith rotating CNC machine tool often used such ATC devices, with a few turret head spindle, each with a spindle on both knives, the first tower interim process can be automatic tool change-realization. The advantage is simple structure, tool change time is short, only about 2 s. However, due to spatial constraints, the number of spindle can not be too much, usually only apply to processes less, not to high precision machine tools, such as the NC drill, such as CNC milling machine. In recent years there has been a mechanical hand and the turret head with a knife for the automatic tool change ATC devices, as shown in Figure 2.3. It is in fact a turret head ATC, and the knife-ATC device combination. The principle is as follows:5 turret on the first two tool spindle 3 and 4, when using the tool spindle 4 processing tool, the manipulator 2 will be the next step to the need for the tool does not work on the tool spindle 3 until after the completion of this process , the first rotary turret 180 º, ATC completed. ATC most of their time and processing time coincidence, the only real tool change time turret transposition of the first time, this approach mainly used for ATC and NC NC drilling file bed.2. 3.Daidao system for the automatic tool changeFigure 2.4 shows the knife and the whole machine tool CNC machine tools for the appearance of Fig. Figure 2.5 shows the knife and split-type machine to the appearance of CNC machine tool plans.At this point, knife storage capacity, a heavier tool can, and often additional transport unit to complete the knife between the spindle and cutting tool transport.Daidao the knife from the ATC, the election knives, automatic loading and unloading machine tool and tool exchange institutions (manipulator), composed of four parts, used widely.Tool Automatic Tool Change When CNC tool code and the code in line with directives of the tool selected, the rotary cutter knives will be sent to the ATC position, waiting to grab manipulator. Random knife election is the advantage of the cutter knife in the order has nothing to do with the processing sequence, the same tool can be used repeatedly. Therefore, the relatively small number of knives, knife the corresponding smaller. Random elections knife on the tool must be coded to identify. There are three main coding.1. Tool coding. Adopt special knife handle structure coding, the drawbars on the knife handle back-endpackages such as spacing of the coding part of the lock-nut fixed. Coding diameter ring diameter of a size two,respectively, said that binary "1" and "0" to the two rings are different, can be a series of code. For example, there are six small diameter of the ring can be made to distinguish between 63 (26-1 = 63) of the coding tool. All of 0 normally not allowed to use the the manipulator system, the whole process more complicated ATC. We must first used in the processing of all installed in the standard tool on the knife handle in the machine outside the pre-size, according to a certain way Add to the knife. ATC, selected first in the knife knife, and then from ATC, from the knife from the knife or spindle, exchange, the new knife into the spindle, the old knife back into the knife.ATC, as the former two knives to accommodate a limited number can not be too many, can not meet the needs of complex parts machining, CNC machine tool Automatic Tool Change Daidao the use of the automatic tool change devices. The knife has more capacity, both installed in the spindle box side or above. As for the automatic tool change Daidao device CNC machine tool spindle box only a spindle, spindle components to high stiffness to meet the machining requirements. The number of establishments in larger knife, which can meet the more complex parts of the machining processes, significantly improving productivity. Daidao system for the automatic tool change applied to drilling centres and CNC machining centers. The comparison drawn Daidao automatic tool change system is the most promising.3.PLC control of the knife random mode of election3. 1Common methods of automatic election knifeAutomatic control of the knife CNC refers to the system after the implementation of user instructions onthe knife library automation process, including the process to find knives and automatic tool change [(63,71]. CNC Machining Center device (CNC) directive issued by the election knife , a knife, the tool required to take the knife position, said the election automatic knife. automatically elected knife There are two ways: randomsequence election knives and knife election method.3.1.1 order election knifeTool Selection order is the process tool according to the sequence of the insert knife, the use of knives in order to take place, used knives back at the original knife, can also order Add Block, a knife. In this way, no need Tool identification devices, and drive control is a relatively simple, reliable and can be used directly from the points of the knife machinery to achieve. But the knives in each of the tool in different processes can not be reused, if the tool is installed in accordance with the order of the knife, there will be serious consequences. Theneed to increase the number of knives and knife the capacity of the tool and reduce the utilization of the knife.3.1.2Random election knifeRandom election under the knife is arbitrary instructions to select the required tools, then there must be tool identification devices. Tool knife in the library do not have the processing in accordance with the order of the workpiece can be arbitrary storage. Each of the tool (or knife blocks) are for a code, automatic tool change, the rotary cutter, every tool have been the "tool identification device" acceptable identification. When CNCtool code and the code in line with directives of the tool selected, the rotary cutter knives will be sent to the ATC position, waiting to grab manipulator. Random knife election is the advantage of the cutter knife in the order has nothing to do with the processing sequence, the same tool can be used repeatedly. Therefore, the relatively small number of knives, knife the corresponding smaller. Random elections knife on the tool must be coded to identify. There are three main coding.1. Tool coding. Adopt special knife handle structure coding, the drawbars on the knife handle back-end packages such as spacing of the coding part of the lock-nut fixed. Coding diameter ring diameter of a size two, respectively, said that binary "1" and "0" to the two rings are different, can be a series of code. For example, there are six small diameter of the ring can be made to distinguish between 63 (26-1 = 63) of the coding tool. All of 0 normally not allowed to use the code, to avoid the cutter knife Block did not confuse the situation.2. Knife Block coding. On the knife Block coding, coding tool, and tool into line with the number of knives in the Block. ATC knife when the rotation, so that each knife seats followed through knowledge knife, knife found blocks, knives stopped the rotation. At this time there is no knife handle encoding part of the knife handle simplified.3. Annex coding methods. This style of coding keys, coded cards, coding and coding-disc, which is the most widely used coding keys. First to knives are attached to a tool of the show wrapped coding keys, and when the cutter knife to the store at knife in, so put the number of keys to remember knife Block Road, will be inserted into key to the coding Block next to the key hole in the seat for the knife to the numbers. ConclusionFocused on in today's manufacturing environment tool storage and management of new models and methods, practical application of good results in systems integration and optimization, and other aspects of operations will be further explored, so that it has a higher theoretical and practical level.译文:机床刀具设计课题研究意义机床原来的刀库控制程序是单独设计的,没有采用刀具管理系统,功能也比较单一,只实现了刀库刀具的找刀、刀库最短路径定位、主轴换刀,而且不支持大型刀具。

数控机床改造中英文对照外文翻译文献

数控机床改造中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:The Numerical Control Engine Bed TransformsHarvey B.M ackey First numerical control system development summary brief hi story and tendency.In 1946 the first electronic accounting machine was born the world,this indicated the humanity created has been possib le to strengthen and partially to replace the mental labor the tool. It with the humanity these which in the agricultu re, the industry society created only is strengthens the phy sical labor the tool to compare, got up the quantitive leap ,entered the information society for the humanity to laythe foundation.After 6 years, in 1952, computer technology applied to t he engine bed , the first numerical control engine bed were born in US. From this time on, the traditional engine bed has had the archery target change. Since nearly half centu ry, the numerical control system has experienced two stages and six generation of development.1.1 Numerical control (NC) stage (1952 ~ 1970)The early computer operating speed is low, was not big to then science computation and the data processing influence ,but could not adapt the engine bed real-time control reques t.The people can not but use numeral logic circuit "to buil d"to become an engine bed special purpose computer to take the numerical control system, is called the hardware connecti onnumerical control (HARD-WIRED NC), Jian Chengwei numerical c ontrol (NC). Along with the primary device development, this stage has had been through repeatedly three generations, na mely 1952 first generation of -- electron tube; 1959 second generation of -- transistor; 1965 third generation -- small scale integration electric circuit.1.2 Computer numerical control (CNC) stage (in 1970 ~ presen t)In 1970, the general minicomputer already appeared and th e mass production. Thereupon transplants it takes the numeric al control system the core part, from this time on entered the computer numerical control (CNC) the stage ("which should have computer in front of the general" two characters to ab breviate). In 1971, American INTEL Corporation in the world first time the computer two most cores part -- logic units and the controller, used the large scale integrated circuit technology integration on together the chip, called it the m icroprocessor (MICROPROCESSOR), also might be called the centr al processing element (to be called CPU).The microprocessor is applied to 1974 in the numerical c ontrol system. This is because minicomputer function too stro ng, controlled an engine bed ability to have wealthily (therefore once uses in controlling the multi- Taiwan engine bed at that time, called it group control), was inferior to use d the microprocessor economy to be reasonable. Moreover then small machine reliability was not ideal. The early microproce ssor speed and the function although insufficiently are also high, but may solve through the multi-processor structure. Because the microprocessor is the general-purpose calculator core part, therefore still was called the computer numerical control.In 1990, PC machine (personal computer, domestic custom had called microcomputer) the performance has developed tothe very high stage, may satisfiedly take the numerical cont rol system core part the request. Thenumerical control system henceforth entered based on the PC stage. In brief, the computer numerical control stage has also experienced three generations. Namely 1970 fourth generat ion of -- minicomputer; 1974 five dynasties -- microprocessor and 1990 sixth generation -- (overseas was called PC-BASED) based on PC.Also must point out, although overseas already renamed as the computer numerical control (namely CNC).Also must point out, although overseas already renamed as the computer numerical control (namely CNC), but our countr y still the custom called the numerical control (NC). Theref ore we daily say "numerical control", the materially already was refers to "computer numerical control".1.3 the numerical control future will develop tendency1.3.1 open style continues to, to develop based on the PC sixth generation of directionThe software and hardware resources has which based on P C are rich and so on the characteristic, the more numerical controls serial production factory can step onto this path. Uses PC machine to take at least its front end machine, pr ocesses the man-machine contact surface, the programming, the association .Question and so on net correspondence, undertakes the num erical control duty by the original system. PC machine has the friendly man-machine contact surface, will popularize to all numerical controls system. The long-distance communication, the long-distance diagnosis and the service will be more common.1.3.2 approaches and the high accuracy developmentThis is adapts the engine bed to be high speed and the high accuracy direction need to develop.1.3.3 develops to the intellectualized directionAlong with the artificial intelligence in the computer do mainunceasing seepage and the development, the numerical control system intellectualized degree unceasingly will enhance.(1) applies the adaptive control technologyThe numerical control system can examine in the process some important information, and the automatic control system related parameter, achieves the improvement system running sta tus the goal.(2) introduces the expert system instruction processingThe skilled worker and expert's experience, the processing general rule and the special rule store in the system, take the craft parameter database as the strut, the establishmenthas the artificial intelligence the expert system.(3)introduces the breakdown to diagnose the expert system(4) intellectualized numeral servo driveMay through the automatic diagnosis load, but the automat ic control parameter, causes the actuation system to obtain the best movement.Second, engine bed numerical control transformation necessi ty.2.1 microscopic looks at the transformation the necessityFrom on microscopic looked below that, the numerical cont rol engine bed has the prominent superiority compared to the traditional engine bed, moreover these superiority come from the computer might which the numerical control system contain s.2.1.1 may process the traditional engine bed cannot proce ss the curve, the curved surface and so on the complex com ponents.Because the computer has the excellent operation ability, may the instant accurately calculate each coordinate axis ins tant to be supposed the movement physiological load of exerc ise, therefore may turn round thesynthesis complex curve or the curved surface.2.1.2 may realize the processing automation, moreover is the flexible automation, thus the efficiency may enhance 3 ~ 7 times compared to the traditional engine bed.Because the computer has the memory and the memory prope rty, may the procedure which inputs remember and save, thenthe order which stipulated according to the procedure automat ic carries out, thus realization automation. The numerical co ntrol engine bed so long as replaces a procedure, may reali ze another work piece processing automation, thus causes the single unit and the small batch of production can automate, therefore is called has realized "flexible automation".2.1.3 processings components precision high, size dispersion d egree small, makes the assembly to be easy, no longer needs "to make repairs".2.1.4 may realize the multi- working procedures centralism, r educes the components in engine bed between frequent transpor ting.2.1.5 has auto-alarm, the automatic monitoring, automatic comp ensation and so on the many kinds of autonomy function, thu s may realize long time nobody to safeguard the processing.2.1.6 advantage which derives by above five.For example: Reduced worker's labor intensity, saved the labor force (a person to be possible to safeguard the multi - Taiwan engine bed), reduced the work clothes, reduced the new product trial manufacturing cycle and the production cycl e, might to the market demand make rapid reaction and so o n.Above these superiority are the predecessor cannot imagine, is an extremely significant breakthrough. In addition, the en gine bed numerical control carries out FMC (flexible manufact ure unit), FMS (flexible manufacture system) as well as CIMS (computer integration manufacture system) and so on the enter prise becoming an information based society transformation foundation. The numerical control technology already became the manufacturing industry automation the core technology and the foundation technology.2.2 great watches the transformation the necessityFrom on macroscopic looked that, the industry developed c ountry armed forces, the airplane weapon industry, in the en d of the 70's, at the beginning of the 80's started the l arge-scale application numerical control engine bed. Its essen ce is, uses the information technology to the traditional in dustry (including the armed forces, airplane weapon industry) carries on the technological transformations. Except that uses outside the numerical control engine bed, FMC, FMS in the m anufacture process, but also includes in the product developm ent carries out CAD, CAE, CAM, the hypothesized manufactureas well as carries out MIS in the production management (ma nagement information system), CIMS and so on. As well as in creases the information technology in its production product, including artificial intelligence and so on content. Because uses the information technology to the country foreign troops, the airplane weapon industry carries on the thorough transfor mation (to call it becoming an information based society), f inally causes them the product in the international military goods and in the goods for civilian use market the competit ive power greatly is the enhancement. But we in the informa tion technology transformation tradition industry aspect compar ed to the developed country to fall behind approximately for 20 years. Like in our country engine bed capacity, numerical control engine bed proportion (numerical control rate) to 199 5 only then 1.9%, but Japan has reached 20.8% in 1994, therefore every year has the massive mechanical and electrical products import. This also on from on macroscopic explained the engine bed numerical control transformation necessity. Tho rd, the numerical control transformation content and superiorl y lacks3.1 Transformation industry startingIn US, Japan and Germany and so on the developed countr y, their engine bed transforms took the new economical growt h profession, thrives abundantly, is occupying the golden age .As a result of the engine bed as well as the technical u nceasing progress, the engine bed transformation is "the eter nal" topic. Our country's engine bed transformation industry, also enters from the old profession to by the numerical c ontrol technology primarily new profession. In US, Japan, Ger many, have the broad market with the numerical control techn ological transformations engine bed and the production line, has formed the engine bed and the production line numerical control transformation new profession. In US, the engine be d transformation industry is called the engine bed regenerati on(Remanufacturing) industry. Is engaged in the regeneration ind ustry famous company to include: The Bertsche engineering fir m, the ayton engine bed company, Devlieg-Bullavd (are valuabl e) serves the group, the US equipment company and so on. T he American valuable company has set up the company in Chin a. In Japan, the engine bed transformation industry is calle d the engine bed to reequip (Retrofitting) industry. Is enga ged in the reequipment industry famous company to include: B ig indentation project group, hillock three mechanical companies, thousand substitute fields labor machine company, wild engineering firm, shore field engineering firm, mountain this engineering firm and so on. 3.2 Numerical control transformat ion contentThe engine bed and the production line numerical control transformation main content has following several points: First is extensively recovers the function, to the engine bed, the production line has the breakdown partially to carr y on the diagnosis and the restoration;Second is NC, the addend reveals the installment on the ordinary engine bed, or adds the numerical control system, transforms the NC engine bed, the CNC engine bed;Third is renovates, for increases the precision, the effi ciency and the automaticity, to the machinery, the electricit y partially carries on renovates, reassembles the processing to the machine part, extensively recovers the precision; Does not satisfy the production request to it the CNC system to carry on the renewal by newest CNC;Fourth is the technology renews or the technical innovati on, for enhances the performance or the scale, or in order to use the new craft, the new technology, carries on the b ig scale in the original foundation the technology to renew or the technical innovation, the great scope raises the leve l and the scale renewal transformation. The new electri cal system transforms after, how carries on the debugging as well as the determination reasonable approval standard, also is the technology preparatory work important link. The debugg ing work involves the machinery, the hydraulic pressure, the electricity, the control, and so on, therefore must carry onby the project person in charge, other personnel coordinate. The debugging step may conform to simplicity to numerous, fr om infancy to maturity, carries on from outside to in, afte r also may the partial overall situation, after first the s ubsystem the 3.3 The numerical control transformation superior ly lacks 3.3.1 reduced investment costs, the date of deliv ery are short With purchases the new engine bed to comp are, may save 60% ~ 80% expense generally, the transformatio n expense is low. Large-scale, the special engine bed especi ally is specially obvious. The common large-scale engine bed transforms, only spends the new engine bed purchase expense 1/3, the date of delivery is short. But some peculiar circu mstances, like the high speed main axle, the tray automatic switching unit manufacture and the installment too requires a lot of work, costs a great deal of money, often transforms the cost to enhance 2 ~ 3 times, with purchases the new engine bed to compare, only can economical invest about 50 %.3.3.2 machine capability stable are reliable, the structure i s limitedUses foundation and so on lathe bed, column all is heav y but the firm casting component, but is not that kind of welding component, after the transformation engine bed perform ance high, the quality is good, may take the new equipment continues to use many years. But receives the original mecha nism the limit, not suitably makes the unprecedented transfor mation. 3.3.3 familiar understood the equipment, is advantag eous for the operation serviceWhen purchases the new equipment, did not understand whether the new equipment can satisfy its processing request. Th e transformation then otherwise, may precisely calculate the engine bed the processing ability; Moreover, because many yea rs use, the operator already understood to the engine bed c haracteristic, uses and services the aspect to train the tim e in the operation short, effective is quick. The transforma tion engine bed as soon as installs, may realize the capaci ty load revolution. 3.3.4 may fully use the existing condi tionMay fully use the existing ground, does not need to lik e buys when the new equipment such to have reto construct the ground. 3.3.5 may use the newest control technology enhances the production equipment the automated level and the efficiency, improves the equipment quality and the scale, alters to the old engine bed now the horizontal engine bed. Fourth, numerical control system choiceWhen the numerical control system mainly has three kind of types, the transformation, should act according to the sp ecial details to carry on the choice.4.1 Step-by-steps the open system which the electrical ma chinery drivesThis system servo drive mainly is step-by-steps the elect rical machinery, the power step-by-steps the electrical machin ery, the battery solution pulse motor and so on. Entering s ends out which by the numerical control system for instructi on pulse, after the actuation electric circuit control and t he power enlargement, causes to step-by-step the electrical m achinery rotation, through gear vice- and ball bearing guide screw vice- actuation executive component. So long as the control command pulse quantity, the frequency as well as the circular telegram order, then may control the executive compo nent movement the displacement quantity, the speed and the h eading. This kind of system does not need the physical loca tion and the velocity feedback which obtains to the input e nd, therefore called it the open system, this system displac ement precision mainly decided in step-by-steps the electrical machinery angular displacement precision, transmission part and so on gear guide screw pitches the precision, therefore the system displacement precision is low.This system structure simple, debugging service convenient, work reliable, cost low, is easy to reequip successfully.4.2 The asynchronous motor or the direct current machine drive, diffraction grating survey feedback closed loop numer ical control system .This system and the open system difference is: Physical location feedback signal which by position detector set and so on the diffraction grating, induction synchromesh obtains, carries on the comparison as necessary with the given value, two interpolations enlargements and the transformation, the ac tuation implementing agency, by the speed which assigns turns towards the elimination deviation the direction movement, unti l assigns the position and the feedback physical location in terpolation is equal to the zero. The closed loop enters fo r the systemEnters for the system complex in the structure compared to the split-ring, the cost is also high, requests strictly to the environment room temperature. The design and the debu gging is all more difficult than the open system. But mayobtain compared to the split-ring enters for a system higher precision, quicker speed, actuation power bigger characteristic target. May act according to the product specification, decid ed whether uses this kind of system.4.3 The direct current servo electrical machinery drives, encoder feedback semi-closure link numerical control system .Half closed-loop system examination part installs in among passes in the moving parts, indirectly surveys the executive component the position. It only can compensate a system ring circuit interior part of part the error, therefore, its prec ision compared to closed-loop system precision low, but its structure and the debugging all compares the closed-loop syst em to be simple. In makes the angular displacement examinati on part and the speed examination part and the servo electr ical machinery time a whole then does not need to consider the position detector set installs the question.The current production numerical control system company fa ctory quite are many, overseas famous company like German SI EMENS Corporation,Japanese FANUC Corporation; Native corporation like China Mount Everest Corporation, Beijing astronautics eng ine bed numerical control system group company, Central China numerical control company and Shenyang upscale numerical contr ol country engineering research center.When choice numerical control system mainly is each kind of precision which the engine bed must achieve after the nu merical control transformation, actuates the electrical machine ry the power and user's request.Fifth in the numerical control transformation the mainmechanical part reequips the discussionA new numerical control engine bed, must achieve in the design that, Has the high static dynamic rigidity; Movement vice- between friction coefficient small, the transmission is ceaseless; The power is big; Is advantageous for the operati on and the service. When engine bed numerical control transf ormation should meet the above requirements as far as possib le. Cannot think the numerical control installment and the o rdinary engine bed connects in has met the numerical control engine bed requirements together, but also should carry on t he corresponding transformation to the major component to ena ble it to achieve the certain design request, can obtain th e anticipated transformation goal. 5.1 skids guide railSaid to the numerical control lathe that, the guide rail besides should have the conventional lathe guidance precision and the technology capability, but also must have good bears the friction, the attrition characteristic, and the reduction but sends the dead area because of the friction drag. At t he same time must have the enough rigidity, by reduces the guide rail to distort to processes the precision the influen ce, must have the reasonable guide rail protection and the lubrication.5.2 gearThe common engine bed gear mainly concentrates in the headstock and the gear box.In order to guarantee the transmission precision, on the numerical control engine bed uses the gear precision class i s all higher than the ordinary engine bed. Must be able to achieve the ceaseless transmissionin the structure, thus transforms time, the engine bed maingear must satisfy the numerical control engine bed the reque st, by guarantees the engine bed processing precision.5.3 skids the guide screw and the ball bearing guide screwThe guide screw transmission relates directly to the tran smission chain precision. The guide screw selects mainly is decided requests and drives the torque request in the job p recision. Is not used by job precision request Gao Shike skids the guide screw, but should inspect the original guide screw attrition situation, like the pitch error and the pitc h accumulative error as well as matches the nut gap. The o rdinary circumstances skid the guide screw to be supposed no t to be lower than 6 levels, the nut gap oversized then r eplaces the nut. Uses skids the guide screw relative ball b earing guide screw price to be low, but satisfies the pre cision high components processing with difficulty.The ball bearing guide screw rubs loses slightly, the ef ficiency is high, its transmission efficiency may above 90%; Precision high, the life is long; When start moment of forc e and movement the moment of force approaches, may reduce t he electrical machinery to start the moment of force. Theref ore may satisfiedly compare the high accuracy components proc essing request. 5.4 safe protectionThe effect must take the security as a premise. Transfor ms in the engine bed must take the corresponding measure ac cording to the actual situation, cuts noticeable. The ball b earing guide screw vice- is the precision part, when the wo rk must take strict precautions against the dust is speciall y the scrap and the hard sand grains enters the roller conveyer. On longitudinal guide screw also coca overall sheet i ron safety mask. The big carriage with skids two end surfac es which the guide rail contacts to have to seal, prevented absolutely the flinty granulated foreign matter enters the sl iding surface damage guide rail.Sixth, After the engine bed electrical system transformati on, to operates, the programmers inevitably brings the new r equest. Therefore ahead of time carries on new system knowle dge training to the operator and the programmers to be extr emely important, after otherwise will affect the transformatio n the engine bed rapid investment production. The training c ontent should include the new operation kneading board dispos ition, the function, the instruction meaning generally; New s ystem functional scope, application method and with old syste m difference; Maintenance maintenance request; Programming stan dard and automated programming and so on. The key point is makes, gets a good grasp of the operating manual and the p rogramming instruction booklet.the numerical control transforms se Transforms the scope according to each equipment differently, must beforehand desig n the connection partial transformations, if transforms comple tely, should design the electro-mechanical transformation conne ction, the operation kneading board control and the dispositi on, the interconnection partial contacts, the parameter measur ing point, services the position and so on, the request ope rates and services conveniently, reasonable, the line moves t owards, center the small junction smoothly few, the strong a nd the weak electrical noise is smallest, has the suitable allowance and so on. Partial transformation, but also needsto consider the new old system the performance match, the v oltage polarity and the size transformation, install the posi tion, the digital-analog conversion and so on, when the nece ssity must manufacture the transformation connection voluntaril y.veral examples1st, transforms the X53 milling machine with SIEMENS 810MIn 1998, the company invested 200,000 Yuan, with German Simens the 810M numerical control system, the 611A exchange servo drive system sds was the X53 milling machine carries on X, Y, the Z three axle numerical control transformation to a company's model; Retained the original main axle system and the cooling system; The transformation three axle has us ed the roller lead screw and the gear drive organization on the machinery. The entire transformation work including the m achine design, the electrical design, the PLC procedure estab lishment and the debugging, the engine bed overhaul, finally is the entire machine installment and the debugging. After t he milling machine transforms, processing effective stroke X/Y /The Z axis respectively is 88.0/270/28 billion mm; Maximum speed X/Y/The Z axis respectively is 5000/1500/800 mm/Min; Ma nual speed X/Y/The Z axis respectively is 3000/1000/500 mm/Mi n; The engine bed processing precision achieves ±0.001mm. The engine bed three coordinates linkage may complete each kind of complex curve or the curved surface processi ng.2nd, transforms the C6140 lathe with GSK980T and the exc hange servo drive system sds .In 2000, with Guangzhou numerical control plant production GSK980T numerical control system, the DA98 exchange servo uni t and 4 locations automatic tool rests to an electrical mac hinery branch factory C6140 lathe X, the Z two axes carries on the numerical control transformation; Retained the original main axle system and the cooling system; The transformation two axes have used the roller lead screw and with the ambu lacrum transmission system on the machinery. Entire transforma tion work including machine design, electrical design, engine bed overhaul and entire machine installment and debugging. Af ter the lathe transforms, processing effective stroke X/The Z axis respectively is 3.90/73 million mm; Maximum speed X/The Z axis respectively is 120.0/3 million mm/Min; The manual sp eed is 400mm/Min; Manual is fast is X/The Z axis respective ly is 120.0/3 million mm/Min; The engine bed smallest migrat ion unit is 0.001mm.3rd, transforms the X53 milling machine with SIEMENS 802SIn 2000, the company invests 120,000 Yuan, with German S imens the 802S numerical control system, step-by-steps the ac tuation system is the X53 milling machine carries on X, Y, the Z three axle numerical control transformation to company' s another model; Retained the original main axle system and the cooling system; The transformation three axle has used t he roller lead screw and the gear drive organization on the machinery. The entire transformation work including the machin e design, the electrical design, the engine bed overhaul, fi nally is the entire machine installment and the debugging. A fter the milling machine transforms, processing effective stro。

CA6136普通车床数控改造设计

CA6136普通车床数控改造设计

CA6136普通车床数控改造设计【摘要】目前在一些企业还存在普通车床加工情况,我公司也有一定数量的CA6136普通车床,这些普通机床加工出来的产品普遍存在质量差、品种少、档次低、成本高、供货期长,更主要的是不易形成批量化生产,从而在市场上缺乏竞争力,直接影响一个企业的产品、市场、效益,影响企业的生存和发展,所以必须大力提高机床的数控化率。

同样机床数控化改造的市场也还有很大的发展空间,本文以普通车床CA6136的数控改造为例,介绍了普通车床数控改造的方法。

【关键词】车床CA6136;数控改造;设计我公司有数台CA6136普通车床,曾在生产加工中起作一定的作用,能进行基本的机械零件的加工,但在使用时发现其存在一定的问题,如加工的产品品种少、档次低、质量差,更多是不易形成快速批量化生产,从而提高了制造成本,增加了供货时间,影响了企业的生产经营。

车床作为机械制造业的重要基础设备,它的发展一直引起人们的关注,由于计算机技术的兴起,导致了应用数字化技术进行柔性自动化控制的新一代机床即数控机床广泛应用,它克服了普通机床存在的缺点,为机械加工工艺过程自动化批量化生产的提供了较为理想的手段。

因此人们对传统的机床传动及结构的数控设计改造也有现实的需求。

下面就是对普通车床的数控改造方法进行设计。

一、数控机床改造的步骤1、调研及系统选型?:改造前必须对机床的结构、性能、运行状态、现有加工精度、特殊功能以及用户对系统改造后要求达到的性能进行详细了解。

数控系统主要由控制、驱动和测量系统3部分组成。

究竟是整体改造还是局部改造取决于上述3大系统的状况以及用户的经费。

系统的选型与配置需综合考虑机床状况、用户对功能的要求、改造经费及各种数控系统的特点。

系统配置时,需对电缆长度、电机扭矩及额定转速、主轴功率、系统安装空间等细节予以充分考虑。

2、设计准备阶段:准备阶段的工作包括改造部分电路设计、控制程序编制及技术培训。

电路设计主要是设计新系统硬件与非改造部分的接口,然后根据加工时机床动作的控制逻辑,对PLC进行编程,确保机床动作正确并实现最佳控制,在可能的条件下进行实验室模拟。

机械类数控车床外文翻译外文文献英文文献数控

机械类数控车床外文翻译外文文献英文文献数控

数控加工中心技术发展趋势及对策原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。

CA6132普通车床的数控化改造毕业论文

CA6132普通车床的数控化改造毕业论文

CA6132普通车床的数控化改造班级:指导老师:摘要随着现代科技和社会生产水平的不断提高,零件的精度要求越高,要求用于零件加工的机床有更高的精度和自动化。

考虑到机床的生产能力和成本问题,以旧车床为基础,通过数控化改造提高机床的占有率是一条节约资金而又快速有效的方法。

本文以CA6132作为研究对象,主要研究容如下。

本文对CA6132普通车床的数控化改造进行了深入研究,包括对数控车床结构的分析、数控车床的改造方案、主传动系统的设计、主轴的形状结构的设计与计算、主电动机的选择、进给伺服电机的选用、滚珠丝杆的计算与选用。

根据机械、动力学原理,重新设计了车床的主传动系统,使车床实现变频无级调速。

结合车床工作条件加工质量,合理选择滚珠丝杆、齿轮和伺服电机。

通过以上的设计即可实现数控车床的改造,实现要求的技术参数。

关键词:机床占有率数控化改造伺服电机主传动滚珠丝杆Numerical control innovation of CA6132common latheAbstract:With the continuous improvement of modern science and technology and the level of social production, the higher the accuracy of the parts, the requirements for the machine tool has a higher precision of parts processing and automation. Considering Machine tool production capacity and cost into consideration, improving machine toolˊshare by numerical control transformation is an efficient and quick way.In this paper, the CA6132 ordinary lathe numerical control transformation was studied. That includes the analysis of the numerical control lathe structure, the retrofit scheme of numerical control lathe, the main drive system design, the shape of the spindle structure design and calculation, the choice of main motor, feed servo motor selection, calculation and selection of ball screw. The main drive system of machine tool was redesigned According to the principle of machinery and dynamics, making makes the lathe realize frequency conversionstep less speed regulation. Combined lathe processing quality of working conditions, choose the ball screw, gear, and servo motor. Design of CNC lathe can be realized through the above reform, realizing technical parameters as required.Key words: machine toolˊshare numerical control transformationservo motor目录第1章绪论01.1数控技术与数控机床01.2 数控化改造的背景01.3 数控化改造的优点11.4 普通车床数控化改造的现状21.4.1数控化改造国外发展现状21.4.2 普通机床数控化改造的趋势21.5 数控化改造的目的和容31.5.1 数控化改造的目的31.5.2 数控化改造的容4本章小结4第2章机械部分数控化改造总体方案52.1 CA6132普通车床与数控车床的参数对比52.2 数控化改造的总体设计方案62.2.1主传动系统62.2.2进给传动系统的改造62.2.3刀架的改造72.2.4 改造方案图8本章小结8第3章主传动系统的数控化改造93.1 主传动系统的传动方式93.2 主轴驱动与控制103.3 主轴电动机103.4 主轴组件113.4.1 主轴组件的性能要求113.4.2 主轴113.4.3 主轴轴承123.4.4 主轴组件的计算123.5 带传动设计143.5.1 带轮153.5.2 同步带的选用与计算15本章小结17第4章进给系统的数控化改造184.1 进给伺服系统的组成184.2 进给伺服系统的基本要求184.3 进给伺服系统的控制方式194.4 进给系统改造204.4.1 电动机的选用204.4.2 滚珠丝杆的计算与选择204.4.3 齿轮传动消隙机构28本章小结28第5章自动换刀装置的设计305.1 自动换刀装置的作用与要求305.2 自动换刀装置的选用30本章小结30结论31致 32参考文献33第1章绪论1.1数控技术与数控机床数控技术,简称数控(Numerical Control——NC),是利用数字化信息对机械运动与加工过程进行控制的一种方法。

机床CNC系统的智能数控程序处理器外文文献翻译、中英文翻译

机床CNC系统的智能数控程序处理器外文文献翻译、中英文翻译

An intelligent NC program processor forCNC system of machine toolYadong Liua,_, Xingui Guoa, Wei Lia, Kazuo Yamazakia,Keizo Kashiharab, Makoto FujishimabAbstract NC program interpreting is one of the most important tasks of CNC in machine tool system. The existing CNC systems only supportvendor-specific NC program input, which restrict the applying of other similar functional NC programs with different program format.Especially for those users owning several machine tools with different CNC from the same provider, the diversity of NC programsdramatically increases their cost and time on operator training and machine tool maintenance. In order to deal with the variety of NC program, an intelligent NC program processor (NCPP) is proposed in this paper.1. IntroductionIn the CNC system of modern machine tool, NCprogram interpreting is very important, which is in charge of the accurate resolving of machining intention generated from CAM system. The major function of NCPP is to decode the input into motion command and programmable logiccontroller (PLC) command, and send them to the motion control processor (MCP) and PLC of CNC separately in order to control the movement of the cutting tool and auxiliary machine logic. Most CNC systems can handle only one specific NC program format, while the diversity of NC programs always entangles the machine tool users,especially for those owning several machine tools with different CNC but from the same provider.2. Interface of NC program processorNCPP is one module of the CNC, which requires cooperation between different modules; therefore it’s quite necessary to clarify the interface before starting design. The purpose of NCPP is to translate the input NC program into machine instruction, such asmotion command, PLC command or simple parameter settings and error messages. NIST calls these outputs as Canonical Machining Functions.The canonical machining functions were devised with two objectivesin mind:_ All the functionality of common 3- to 5-axis machining centers had tobe covered by the functions; for any function a machining center can perform, there has to be a way to tell it to do that function._ It must be possible to interpret RS274-compatible NC program into canonical machining function calls.3. Conceptual model of proposed NCPPCompared to the traditional design, the major feature of this NCPPis the structure with separation of NCSD and processing engine.Within thisNCPP, different NC program could be interpreted in terms of different NCSD, while the processing engine keeps the same. For example, suppose the input NC program follows Fanuc specification, the engine will refer to the Fanuc NCSD to do interpretation. Next time, if a NC program following Mitsubishi specification is given, the same engine will refer to the Mitsubishi NCSD to interpret it. For the two cases, it can be seen that each time only different NCSD is chosen, while the processing engine does not change. Such a solution provides dramatic flexibility and stability for the NCPP development, only one set of software code of the processing engine needs to be maintained. Even if there is an input NC program following a NC specification which is not available in the existing NCSDs, a new NCSD can be generated and added easily without recompiling the source code of the processing engine..4. Design of proposed NCPPBased on the conceptual model of the proposed NCPP If looking inside the NCPP, the key portion is the interpreting (processing) engine mentioned before, from a compiler’s point of view, the engine can be divided into four steps in order to check and decode an input NC program.These four steps are:_ Lexical analysis, which checks the character-based error within a NC program._ Syntax analysis, which makes sure the logic relation within each block of NC program is correct._ Semantic analysis, which checks the inter-block logic correctness of a NC program._ Optimization and code generation, which decode block and generate the canonical machining functions.4.1. Lexical analysisThe major functionality of lexical analysis is to merge a sequence of characters from the input NC program intosequence of words, which is a high-level representation unit,Meanwhile, in this step, all blank and comments within the program will be deleted. After lexical analysis, a symbol table with the same information but more systematic compared to the original character-based program will be built. During analysis, all character-based error will be checked, for example whether the unacceptable address letters has been used or not. In this paper, one dictionary has been designed in this step to store all the valid address letters.4.2. Syntax and semantic analysisSyntax analysis is to determine if a sequence of words within a block is syntactically correct, it is also called intra-block check. It includes the range checking of the data portion of a word and the parameters format checking.Semantic analysis checks the major inter-block error,which means tomake sure whether the logical relationship among several blocks of NC program is correct or not, for example, the same group G/M word cannot appear more than once in a block; block/word sequence should be subject to the G/M word execution order table, spindle should be turned on before any cutting motion starts, etc.In order to design NCSD for syntax and semanticanalysis, three kinds of cases of NC blocks should be analyzed:Case 1: Extract data expression in each word of NCprogram. For example, ‘‘X [1+2_3–4/5], Zsin[30],#1 2.0 F #1’’ should be correctly decoded as ‘‘X6.2, Z0.5, F2.0’’. Case 2: Check syntax relation of words within each block. For example, within block ‘‘G17 G02 X10 Y20 I-10F15 S100 M03’’, Z-axis value should not appear since in_ Terms with quote symbol as header and ender are terminal symbol._ Interpreting an expression is to apply one or more of the syntax rules.NC language can be considered as one type of simple computer programming language; therefore it’s quite reasonable to use EBNF to represent the NC program syntax. Based on that, the structure of NCSD can be systematically defined.4.3.1. Syntax representation using EBNFBased on these EBNF representations, case 1 mentioned in Section 4.2 can be easily solved. The fig shows an example of how to interpret word ‘‘X[1+2_3–4/5]’’ using these EBNF representations, as shown in this figure, two stacks (first in last outFundamental EBNF representation of NC languagemechanism) are used: value stack and operator stack. The operator stack is subject to a rule: the priority of each item is always in a decreasing order while the execution with highest priority always happens first. Following is the ordered operation list of interpreting:(1) Apply first EBNF rule defined, read the symbol ‘[’ and push it into the operator stack.(2) Apply EBNF rule 2,1,7,9 in turn, read value ‘1’ and symbol ‘+’, and then push them into value stack and operator stack, respectively.(3) Continue to apply rule 1,7,9 twice, read ‘2’/‘3’ and ‘*’/‘_’ separately, and push them into corresponding stacks.(4) Since operator ‘*’ on the top of the operator stack has higher priority than its previous one ‘+’ and higher than the current one ‘_’, current value 3’ is used to execute multiplication with ‘2’ popped up from the value stack. The result is pushed back into the value stack, while current operator ‘_’ is pushed into the operator stack.(5) Continue the quite similar operation as above mentioned until the operator stack is empty and the last value ‘6.2’ is popped up from the value stack.(6) The last value ‘6.2’ is the final result. Therefore, ‘‘X [1+2_3–4/5’’ is interpreted as ‘‘X6.2’’.For case 2 and 3, Fig. 9 gives the EBNF representation of a general NC block while Fig. 10 shows partial syntax EBNF representation of each G/M/F/S/T word in a group manner.Let us use a NC blocks example shown before in Section4.2 to explain how these EBNF rules are being applied. For each block of the following example:‘‘N0010 G91 G40N0020 S100 M03N0030 G01 G53 X20 F15’’EBNF rules B.1 in Fig. 9 will be firstly applied, and then the detailed word EBNF rules in Fig. 10 will be applied. Now for the first block, assuming the default modal is G01, the rule 1, 2 and 6 of B.1 will take effective, then in rule 6 of B.1, rule B.3 is applied further and a correct check result will be returned. The similar procedure will be done for the second block. Then for the third block, as rule B.3 is applied, rule 4 of B.2 will be applied too, which is (G53_Expr ‘g53’+ABS_Mode+G40_Expr+‘g00’|’g01’). In this rule, ‘ABS_Mode’ (‘g90’) is required when ‘g53’ isEBNF representation of G/M word. given with ‘g01’, however, the third block does not satisfy this rule because ‘INC_Mode’ (‘g91’) is effective (this is given in the first block); therefore a syntax error is found.4.3.2. Syntax dictionary implementation using tool command languageThe above-mentioned EBNF-based syntax of NC program is programmed using tool command language (TCL), one kind of script language which works in an interpretive execution manner instead of compiling way. As all the NC program syntax is represented using TCL as TCL procedures, it will be loaded to work as the syntax dictionary of NCSD in the proposed NCPP.4.4. Processing engine design4.4.1. Conceptual model of processing engine. An event generator and an embedded TCL interpreter are involved to handle each input NC block in terms of the loaded syntax dictionary of NCSD.The event generator triggers the TCL interpreter by extracting words within a NC block according to priority.For each word’s syntax, a corresponding TCL procedure defined in syntax dictionary will be called by the TCL interpreter. The Syntax and semantic analysis will be done during this process; canonical machining functions will be generated too. The dictionary generator in this figure is used to generate the syntax dictionary from NC program syntax EBNFrepresentation whenever a new NC specification is given.4.4.2. Processing flowThe fig shows the complete processing flow of proposed NCPP using one NC block example:(1) Initialization of the environment, which involves initializing parameters of NCPP (such as tool information, tool offset, coordination origin etc), loading the NCSD and starting the embedded TCL interpreter(2) Suppose one block ‘‘N10 G94 G01 G90 X2 Y4 F5 M03 ‘‘is ready to process.(3) NCPP processing engine search for the WORD with highest priority within this block in terms of the priority rules table. In this case first is word G01 and second is M03. As shown in the figure, priority rules table gives the definition of priority of words as they explicitly appear in the same block. Basically, group 1 of G word has the highest priority, followed by group 0 and other groups. For example, if G01 (group 1) and G92 (group 0) both given in a block, G01 should be taken care first. In the same sense, G words precede F, M and T words. In addition, modal information has the same effect, which means that the G modal word from higher priority group takes effect, as there is no G word explicitly appearing in the block.5. Prototype system implementationSo far, a prototype system of proposed NCPP has been implemented using C and TCL. This prototype was developed based on an existing RS274NGC interpreter written by Thomas Kramer from NIST in 2000. The current version realized almost all the functionality proposed in this paper, while the dictionary generator of NCSD is still under developing. By using the standard RS274 and Fanuc specification NC program as input, the result of the developed prototype system shows that a successful design was obtained. After being processed by A NC program example with syntax errors proposed NCPP, two syntax errors are both detected out with error messages, as those shown in the fig in italic and bold fonts. The corresponding canonical machining functions of the given NC program are generated too.6. ConclusionAn intelligent NCPP is proposed for the CNC system of machine tool. It has separated NCSD and processing engine. NCSD varies in terms of different NC program format, while the engine is fixed. Based on this new structure, it is easy to adjust the CNC system to adapt to various NC program format by only updating the corresponding NCSD in NCPP. In this paper, the NCSD has been designed by using EBNF and implemented as TCL procedures.AcknowledgementsThe authors wish to express their sincere appreciation for the generous support from Mori Seiki Corporation which makes this research possible. We also owe our thanks to the work of Dr. Thomas Kramer from NIST, whose work laid a great foundation for this research project. Further readin g[1] Vickors GW, Ly MH, Oetter RG. Numerically controlled machine tools. Chichester, UK: Ellis Horwood; 1990.[2] Peter S. CNC programming handbook. Industrial Press; 2000.[3] Karen AL. Fundamentals of compilers—an introduction to computer language translation. Englewood Cliffs, NJ: Prentice-Hall; 1992. [4] Thomas RK. The NIST RS274/NGC Interpreter—version 3, ISD of NIST; 2000.[5] Frederick MP. Canonical machining functions, ISD of NIST; 1997[6] Ronald M. Writing compilers and interpreters—an applied approach; 1991.[7] ISO/IEC 14977:1996(E) The standard of extended BNF,1997.[8] John KO. TCL and the TK Toolkit. Reading, MA: Addison-Wesley; 1994.机床CNC系统的智能数控程序处理器Yadong Liua,_, Xingui Guoa 、 Wei Lia , Kazuo Yamazakia,Keizo Kashiharab,Makoto Fujishimab摘要NC程序编译是机床CNC 的最重要工作之一。

分析数控机床改造外文文献翻译、中英文翻译、外文翻译

分析数控机床改造外文文献翻译、中英文翻译、外文翻译

Analysis of transformation of numerical controlmachine toolIn order to survival and development of enterprises, improve the rate of CNC machine tools is necessary. Transformation of the equipment needed for NC machine tools in general, including traditional and recently introduced from abroad, due to a problem can not be put into the machine tool equipment and production lines. First, transform the contents of the NCCNC machine tools and production line transformation of the main contents are: (1) restoration of the original function, machine tools, production lines there is some fault diagnosis and recovery; (2)NC-based, in the general machine tools addend remarkable device or add numerical control system; ( 3) The renovation, to improve accuracy, efficiency and degree of automation, mechanical, electrical parts of the renovation, the mechanical part of there-assembly process, to restore the original precision; can not meet the production requirements of its CNC system be updated with the latest CNC; (4) technology updates or technical innovation, in order to improve performance or grade, or for the use of new technology, new technology, based on the original large-scale technology updates or technical innovation.Second, the development trend of CNC systeml. To open, the sixth generation of PC-based directionThe openness of the PC-based, low-cost, high reliability, rich in natural resources such as hardware and software features, and more CNC system manufacturer will be to go down this path. At least with PC, as its front-end machines, to deal with man-machine interface, programming, networking and communications issues, the original system to take over some tasks PC CNC machines has the friendly interface, will reach all of the CNC system. The remote communication, remote diagnostics and maintenance of applications will be more common.2. To the development of high-speed and high precision.3. To the intelligent direction(1) The application of adaptive control technology. Numerical control system can detect the process of important information and automatically adjust system parameters, improving the system operation status.2) the introduction of expert systems to guide processing. Will be skilled workers and expertise, processing and general laws and special laws into the system to process parameter database support, establish an artificial intelligence expert system.(3) the introduction of fault diagnosis expert system(4) intelligent digital servo drives. Can automatically identify the load and automatically adjust the parameters of the drive system to get the best state of operation.Third, the choice of numerical control system1. Open-loop systemThe system's servo-driven device is a stepper motor, power stepper motors, electro-hydraulic pulse motors. This system does not require position and velocity feedback, displacement accuracy depends mainly on the angular displacement precision stepper motor and gear drive components such as precision screw, so displacement of low accuracy. But the system is simple, debugging easy maintenance, reliable, low cost, easily converted successfully.2. Closed-loop systemThe system consists of grating, sensor position detection device synchronization, etc. The actual measured position signal fed back to the computer, compared with a given value, the difference between the two amplification and transformation, driving the implementing agencies in order to eliminate bias. The system complexity, high cost and strict temperature requirements on the environment. But thesystem of high precision, speed and big power. According to technological requirements and decide whether to adopt.3. Semi-closed-loop systemSemi-closed-loop system detects components installed in the middle of transmission parts, the indirect measurement of the location of the implementation of parts. It can only compensate for part of the components within the system loop error, and therefore its more accurate than the accuracy of closed-loop system is low, but its structure and debugging as compared with the closed-loop system is simple.Current production numerical control system are more companies and manufacturers, foreign companies such as Siemens of Germany, Japan, Fanuc, Inc.; domestic Everest companies such as China, the Beijing Aerospace CNC System Corporation, Huazhong CNC CNC high-grade corporate and Shenyang National Engineering Research Center. Select CNC systems are mainly based on numerical control after transformation to be achieved in a variety of precision machine tools, drive motor power and the user's requirements to determine. Fourth, the main steps CNC transformation1. Determination of rehabilitation programs(1) Mechanical and Electrical Repair transformation combined.Generally speaking, in need of transformation of electrical machines, are in need of mechanical repair. To determine repair requirements, scope and content; have to ascertain the electrical modification of the mechanical structure in need of transformation requirements and content; but also determine the transformation of electrical and mechanical repair, reconstruction staggered between the time requirements. Mechanical properties of intact are electrical transformation success.(2) the easier issues first, after the first partial overall. Determine the transformation step, the whole electrical part of the transformation should be divided into several sub-systems, the basic shape of various systems to be connected after the completion of the whole system work. In each subsystem, we should do first the less technical, workload the larger work, and then do a technical high, requiring fine work, can focus people's attention to key areas.(3) selection system under conditions of use. For the transformation of the object to determine its environment and conditions, which the selection of electrical system protection, anti-jamming, self-cooling and air filtering performance can provide the correct basis. Electrical system options must also be considered mature products, their performance should be reasonable and practical, there are spare parts to provide maintenance support, features a number of years to meetthe current and future development requirements.(4) The implementation and responsibilities of personnel involved in reconstruction.(5) The transformation of the determination of the scope and cycle.2. Transformation of the technical preparation(1) mechanical parts ready. In line with the transformation of mechanical electrical repairs should be completed in advance. The same time, be demolished and replaced and processing should be part of such advance planning is necessary to properly interface with the entire transformation.(2) The electrical information on the new system to digest.(3) The conversion of the old system interface design. According to the scope of each of the different equipment modification required to pre-designed interface, part of the conversion, if the entire transformation should be designed to convert mechanical and electrical interfaces, operation panel control and configuration, the Internet part of the contact, parameter measurement, the maintenance and so on. Require the operation and maintenance easy and reasonable, alignments, fluent, primary and secondary connection point less electrical interference with the strength of the smallest, with an appropriate margin and so on. Local transformation, but also need to consider the performance of the system match theold and new, the voltage polarity and size of change, the installation location, digital-analog conversion, etc., if necessary, need to create their own interfaces.(4) operation and programming staff technical training. ①training should cover the new control panel configuration, function and meaning of the instructions; ②the scope of the new system features, use, and the difference between the old system; ③maintenance requirements; ④programming standards and automated programming and more. Focused understood, grasp operating instructions and programming instructions.(5) Debugging steps and acceptance criteria for the determination. Debugging should be done by the project leader carried out with the others. Debugging step can be from simple to complex, from small to large, from outside to inside, you can also after the first local situation, the whole system after the first subsystem. The development of acceptance criteria must be realistic, too high or too low a standard will have a negative impact on the transformation.3. The implementation of reform(1) The overall maintenance of the machine. The long-term use of the original machine, you need to conduct a comprehensive maintenance. Secondly, the response to machine tools to make achange before the geometric accuracy, dimensional accuracy of measurement, and for the record. In this way pairs of reference to guide the transformation of the role, but also in the transformation of the end for comparison analysis.(2) to retain the electrical adjustment of some of the best. If the electrical system as part of the transformation, in turn, should retain the parts of the maintenance and optimization adjustments, such as high power part of the spare parts replacement, electrical maintenance, drying transformer insulation, pollution, cleaning, ventilation and cooling equipment cleaning, servo Drive optimization adjustments, update aging wires and cables, connectors and other fastening. Only the electrical part of the reservation and do excellent optimization adjustment, in order to ensure that transformed the machine tool have lower failure rates.(3) The original systems were dismantled. The removal of the original system must be controlled carefully to the original drawings in time to make mark in the drawings to prevent the omission or been demolished. In the process of demolition will find some of the new system design in the gaps, it is timely to add and correction. Removed the system should be properly safeguarded in case of unsuccessful reconstruction resume use. There is a definite value, and can be used for spare parts.(4) reasonable arrangements for the location and wiring the new system. Connection must be a clear division of labor, there is one person review the inspection to ensure that the connection process specifications, diameter suitable, correct, reliable and beautiful. (5) debugging. Debug must be pre-established procedures and requirements. Debugging the first to test the safety protection system sensitivity, personal and equipment to prevent accidents. Debugging the site must be clean; the moving coordinate extension units at the center of the whole trip; be able to load test, the first no-load after load; can simulate the experiment, the first real action after simulated; be manual, first manually and automatically.4. Acceptance and post-work(1) The mechanical properties of machine tool acceptance. Machine tool should meet the requirements of the mechanical properties, geometric accuracy should be within the limits prescribed.(2) The electrical control functions and control accuracy and acceptance. The various functions of electrical control actions must meet the normal, sensitive and reliable. Control precision application system itself functions (such as step size, etc.) and standard measuring apparatus (such as laser interferometer, coordinate measuring machine, etc.) control checks, to reach within a range. Should also be modified before the machine with the functions andaccuracy to make comparison, access to quantifiable indicators of difference.(3) The test piece cutting and acceptance. Can refer to the relevant domestic and international standards for CNC cutting specimens, in a qualified operator, the programmer with the trial under the cut. Specimen cutting machine tools can be acceptance of stiffness, cutting force, noise, motion trajectory, related actions, are generally not suitable for specimen use of a product part.(4), drawings, information and acceptance. Machine transformation finished, should be promptly drawings, data, transform the file summary, collate, transfer into the file. This is the future and stable operation of the equipment is very important.(5) Summary and improve.5, numerical examples of reconstruction1. Milling machine with the Siemens 810M transformation X53In 1998, the company invested 200,000 yuan, with Germany's Siemens 810M CNC system, 611A AC servo drive system on the company's X53 model of a milling machine to X, Y, Z three-axis numerical control transformation. Retained the original spindle system and cooling system. -Axis transformation of a ball screw used in the machinery and gear transmission mechanism. Thetransformation of work includes mechanical design, electrical design, PLC program preparation and debugging, machine tool repair, machine installation and debugging. After transformation, milling, processing and effective travel X, Y, Z axis respectively, 880mm, 270mm, 280mm; maximum speed of X, Y, Z axis respectively, 5 000mm/min, 1 500mm/min, 800mm/min; point moving speed of X, Y, Z axis respectively 3 000mm/min, 1 000mm/min, 500 mm / min; machining accuracy of ± 0.001 mm. Machine tools, coordinate linkage to be completed by a variety of complex curve or surface processing.2. GSK980T and stepper drive system with the transformation ofC6140 latheIn 1999, the company invested 8 million yuan, with Guangzhou CNC Equipment Factory production GSK980T numerical control system, DY3 hybrid stepper drive unit on the company's a longerC6140 lathe X, Z 2-axis transform. Retained the original spindle system and cooling system. Transformation of two-axis ball screw in the machinery used, and synchronous transmission. The transformation of work includes mechanical design, electrical design, machine overhaul and machine installation and debugging. Lathe After the transformation, processing and effective stroke X, Z axis respectively, 390mm, 1400mm; maximum speed X, Z axisrespectively, 1 200mm/min, 3 000mm/min; jog speed 400mm/min; point moving fast X, Z-axis respectively, 1 200mm/min, 3000mm/min; machine smallest mobile unit 0.001mm.6, numerical transformation of the issues and recommendations1. Transformation problems in NCCNC machine tools through several transformation and found work, there are also many problems, mainly reflected in: (a) The departments, developers uncertain functions, organizational chaos, a serious impact on progress in the transformation; (2) to develop the work process and plans are mostly developed rule of thumb, less reasonable; (3) the training of relevant personnel is not in place, resulting in machine tool technology officers will not be modified after programming, the operator of the machine operator unskilled and so on.2. Transformation of the proposed NC(1) is responsible for transformation of the staff responsibilities of clear penalties and rewards, fully mobilize the enthusiasm of the staff; train a batch of high-quality applications and maintenance personnel, training for selected officers to go out and learn the advanced technologies;(2) To focus on users, maintenance of CNC system of technicaltraining, the establishment of numerical control technology at home and abroad resource library. The establishment of technical data files, do the work of spare parts.分析数控机床改造为了我国民营企业的生存与发展,提高数控机床的速度是必要的。

数控车床主轴部件机械外文文献翻译、中英文翻译、外文翻译

数控车床主轴部件机械外文文献翻译、中英文翻译、外文翻译

数控车床主轴部件机械外文文献翻译、中英文翻译、外文翻译数控车床主轴部件车床是一种主要用于加工旋转表面和平整边缘的机床。

根据使用目的、结构、刀具数量和自动化程度的不同,车床可以分为普通车床、万能车床、转塔车床、立式车床、自动车床和特殊车床。

虽然车床种类繁多,但它们在结构和操作原理上具有共同特性。

普通车床是最常用的代表类型,下面将介绍普通车床的主要部分。

车床床身是车床的主骨架,由两个垂直支柱上的水平横梁组成。

为减振,它通常由灰铸铁或球墨铸铁铸造而成。

车床床身上有导轨,可以让大拖板轻松纵向滑动。

车床床身的高度应适当以方便技师工作。

主轴箱固定在车床床身的左侧,包括轴线平行于导轨的主轴。

主轴通过齿轮箱驱动,齿轮箱可以提供多种不同的速度(通常是6到18速)。

现代车床有些采用无级调速主轴箱,采用摩擦、电力或液压驱动。

主轴往往是中空的,纵向有一通孔,可以通过此孔进给棒料。

同时,此孔为锥形表面,可以安装普通车床顶尖。

主轴外表面是螺纹,可以安装卡盘、花盘或类似的装置。

尾架总成包括底座、尾架体和套筒轴。

底座是能在车床床身上沿导轨滑动的铸件,有定位装置,可以让整个尾架根据工件长度锁定在任何需要位置。

使用手轮和螺杆,与螺杆啮合的是一固接在套筒轴上的螺母。

套筒轴开口端的孔是锥形的,能安装车床顶尖或诸如麻花钻和镗杆之类的工具。

套筒轴通过定位装置能沿着它的移动路径被锁定在任何点。

大拖板的主要功能是安装刀具和产生纵向和/或横向进给。

它实际上是一由车床床身V形导轨引导的、能在车床床身主轴箱和尾架之间滑动的H形滑块。

大拖板可以手动或通过溜板箱和光杆(进给杆)或丝杆(引导螺杆)机动。

本文介绍了在传统普通车床上进行的各种机加工作业。

但是,需要注意的是现代计算机数控车床具有更多的功能,并且可以进行其他操作,例如仿型。

圆柱面车削是所有车床操作中最简单也是最常见的。

工件旋转一整圈产生一个圆心落在车床主轴上的圆;由于刀具的轴向进给运动,这种动作重复许多次。

车床机床改造外文文献翻译、中英文翻译、外文翻译

车床机床改造外文文献翻译、中英文翻译、外文翻译

本科毕业论文中英文翻译学生姓名:所在院系:机电学院所学专业:机械设计制造及其自动化车床车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。

车削很少在其他种类的机床上进行,而且任何一种其他机床都不想车床那样方便地进行车削加工。

由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次装夹中进行几种加工。

因此,在生产中使用的各种车床比任何种类的机床都多。

普通车床:普通车床作为最早的金属切削机床中的一种,目前仍然有许多有用的和人们所需要的特性。

现在,这些机床主要用在规模较小的工厂中,进行小批量的生产,而不是进行大批量的生产。

普通车床的加工偏差主要取决于操作者的技术熟练程度。

设计工程师应该认真的确定由熟练工人在普通车床上加工的试验零件的公差。

在把试验零件重新设计为生产零件时,应该选用经济的公差。

转塔车床:对生产加工设备来说,目前比过去更着重评价是否具有精确的和快速的重复加工能力。

应用这个标准来评价具体的加工方法,转塔车床可以获得较高的质量评定。

在为小批量的零件(100—200件)设计加工方法时,采用转塔车床是经济的。

为了在转塔车床上获得极可能小的公差值,设计人员应该尽量将加工工序的数目减至最少。

自动螺丝车床:自动螺丝车床通常被分为以下几种类型:单轴自动、多轴自动和自动夹紧车床。

自动螺丝车床最初是用来对螺钉和类似的带有螺纹的零件进行自动化和快速加工的。

但是。

这种车床的用途早就超过了这个狭窄的范围。

现在,它在许多类型的精密零件的大批量生产中起着重要的作用。

车床的基本部件有:床身、主轴箱部件、尾架部件、溜板部件丝杠和光杠。

床身是车床的基础件。

它通常是由于经过充分正火或时效处理的灰铸铁或者球墨铸铁之城。

它是一个兼顾的刚性框架,所有其他基本部件都安装在车床身上。

通常在床身上有内外讲足平行的导轨。

有些制造厂对全部四条导轨都采用导轨尖顶朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。

数控技术数控编程外文翻译、中英文翻译、外文文献翻译

数控技术数控编程外文翻译、中英文翻译、外文文献翻译

原文:NC and CNCThe History of NC and CNC DevelopmentNumerical Control (NC) is any machining process in which the operations are executed automatically in sequences as specified by the program that contains the information for the tool movements. The NC concept was proposed in the late 1940s by John Parsons of Traverse City, Michigan. Parsons recommended a method of automatic machine control that would guide a milling cutter to produce a "thru-axis curve" in order to generate smooth profiles on work pieces.In 1949, The U.S. Air Force awarded Parsons a contract to develop a new type of machine tool that would be able to speed up production methods. Parsons commissioned the Massachusetts Institute of Technology (M.I.T.) to develop a practical implementation of his concept. Scientists and engineers at M.I.T. built a control system for a two-axis milling machine that used a perforated paper tape as the input media. In a short period of time, all major machine tool manufacturers were producing some machines with NC, but it was not until the late 1970s that computer-based NC became widely used. NC matured as an automation technology when inexpensive and powerful microprocessors replaced hard-wire logic-making computer-based NC systems.When Numerical Control is performed under computer supervision, it is called Computer Numerical Control (CNC). Computers are the control units of CNC machines, they are built in or linked to the machines via communications channels. When a programmer input some information in the program by tape and so on, the computer calculates all necessary data to get the job done.On the first Numerically Controlled (NC) machines were controlled by tape, and because of that, the NC systems were known as tape-controlled machines. They were able to control a single operation entered into the machine by punched or magnetic tape. There was no possibility of editing the program on the machine. To change the program, a new tape had to be made.Today's systems have computers to control data; they are called Computer Numerically Controlled (CNC) machines. For both NC and CNC systems, workprinciples are the same. Only the way in which the execution is controlled is different. Normally, new systems are faster, more powerful, and more versatileThe Applications of NC/CNCSince its introduction, NC technology has found many applications, including lathes and turning Centers, milling machines and machining centers , punches , electrical discharg machines(EDM) Flame cutters,grinders,and inspection equipment. the most complex CNC machine tools are the turning center,shown in Fig.4-1(Amodern turning center with a ten-station turret that accepts quick-chang tools.Each tool can be positioned in Seconds with the press of a button).And the machine center shown in Fig.4-2(Vertical machining center,the tool magazine is on the machine.the control panel on the right can be swiveled by the operator)and Fig.4-3(horizontal machining center,equipped with an automatic tool changer .tool magazines can store 200 ctting tools.When preparing a progam for a particular operation ,the prommer must select all cutting data using recommendations for conventional machining .this includes proper Selection of cutting speeds,feedrate,tools and tool geometry,and so on.when the programmer has chosen all of the necessary information properly,the operator loads the programme into the machine and presses a button to start the cutting crycle .the CNC machine moves automatically from one maching operation to another , changing the cutting tols and applying the coolent.in a surprisingly short time ,the workpiece is Machined according to the highest quality stangards. But that is not all.no matter how big the work series is,all of the parts will be almost identical in size and surface finishing. At this time of advanced technology,with its high demands for surface finishing and tolerances of components in,for example ,aerospace,nuclear,and medical equipment manufacturing,only CNC machines provide successful results.Numerical control (NC) is a form of programmable automation in which the processing equipment is controlled by means of numbers, letters, and other symbols. The numbers, letters, and symbols are coded in an appropriate format to define a program of instructions for a particular workpart or job. The instructions are provided by either of the two binary coded decimal systems: the Electronic Industries Association (EIA) code, or the American Standard Code for Information Interchange(ASCII). ASCII-coded machine control units will not accept . EIA coded instructions and vice versa. Increasingly, however, control units are being made to accept instructions in either code. 121Automation operation by NC is readily adaptable to the operation of all metalworking machines. Lathes, milling machines, drill presses, boring machines, grinding machines, turret punches, flame or wire-cutting and welding machines, and even pipe benders are available with numerical controls.Basic Components of NCA numerical control system consists of the following three basic components:(1) Program instructions(2) Machine control unit(3) Processing equipmentThe program instructions are the detailed step by step commands that direct the processing equipment. [31In its most common form, the commands refer to positions of a machine tool spindle with respect to the worktable on which the part is fixtured. More advanced instructions include selection of spindle speeds, cutting tools, and other functions.The machine control unit (MCU) consists of the electronics and control hardware that reads and interprets the program of instructions and convert it into mechanical actions of the machine tool or other processing equipment.The processing equipment is the component that performs metal process. In the most common example of numerical control, it is used to perform machining operations. The process-ing equipment consists of the worktable and spindle as well as the motors and controls needed to drive them.Types of NCThere are two basic types of numerical control systems: point to point and contouring.Point to point control system, also called positioning, is simpler than contouring control system. Its primary purpose is to move a tool or workpiece from one programmed point to another. Usually the machine function, such as a drilling operation, is also activated at each point by command from the NC program. Point to point systems are suitable for hole machining operations such as drilling,countersinking, couterbofing, reaming, boring and tapping. Hole punching machines, spotwelding machines, and assembly machines also use point to point NC systems.Contouring system, also known as the continuous path system, positioning and cutting operations are both along controlled paths but at different velocities. Because the tool cuts as it travels along a prescribed path, accurate control and synchronization of velocities and movements are important. The contouring system is used on lathes, milling machines, grinders,incrementally, by one of several basic methods. There are a number of interpolation schemes that have been developed to deal with the various problems that are encountered in generating a smooth continuous path with a contouring type NC system. They include linear interpolation,circular interpolation, helical interpolation, parabolic interpolation and cubic interpolation. In all interpolations, the path controlled is that of the center of rotation of the tool. Compensation for different tools, different diameter tools, or tools wear during machining, can be made in the NC .Programming for NCA program for numerical control consists of a sequence of directions that causes an NC machine to carry out a certain operation, machining being the most commonly used process. Programming for NC may be done by an internal programming department, on the shop floor, or purchased from an outside source. Also, programming may be done manually or with computer assistance.The program contains instructions and commands. Geometric instructions pertain to relative movements between the tool and the workpiece. Processing instructions pertain to spindle speeds, feeds, tools, and so on. Travel instructions pertain to the type of interpolation and slow or rapid movements of the tool or worktable. Switching commands pertain to on/off position for coolant supplies, spindle rotation, direction of spindle rotation, tool changes, workpiece feeding, clamping, and so on. The first NC programming language was developed by MIT developmental work on NC programming systems in the late 1950s and called APT(Automatically Programmed Tools).DNC and CNCThe development of numerical control was a significant achievement in batchand job shop manufacturing, from both a technological and a commercial viewpoint. There have been two enhancements and extensions of NC technology, including:(1)Direct numerical control(2) Computer numerical controlDirect numerical control can be defined as a manufacturing system in which a number of machines are controlled by a computer through direct connection and in real time. The tape reader is omitted in DNC, thus relieving the system of its least reliable component. Instead of using the tape reader, the part program is transmitted to the machine tool directly from the computer memory. In principle, one computer can be used to control more than 100 separate machines. (One commercial DNC system during the 1970s boasted a control capability of up to 256 machine tools.) The DNC computer is designed to provide instructions to each machine tool on demand. When the machine needs control commands, they are communicated to it immediately.Since the introduction of DNC, there have been dramatic advances in computer technology. The physical size and cost of a digital computer has been significantly reduced at the same time that its computational capabilities have been substantially increased. In numerical control, the result of these advances has been that the large hard-wired MCUs of conventionalNC have been replaced by control units based on the digital computer. Initially, minicomputers were utilized in the early 1970s. As further miniaturization occurred in computers, minicomputers were replaced by today's microcomputers.Computer numerical control is an NC system using dedicated microcomputer as the machine control unit. Because a digital computer is used in both CNC and DNC, it is appropriate to distinguish between the two types of system. There are three principal differences:1) DNC computers distribute instructional data to, and collect data from, a large number of machines. CNC computers control only one machine, or a small number of machines.2) DNC computers occupy a location that is typically remote from the machines under their control. CNC computer are located very near their machine tools.3) DNC software is developed not only to control individual pieces of production equipment, but also to serve as part of a management information system in the manufacturing sector of the firm. CNC software is developed to augment the capabilities of a particular machine Tool.译文:数控技术数字控制与计算机数字控制的发展历史数字控制是按照含有机床(刀具)运动信息程序所指定的顺序自动执行操作的加工过程。

机床数控化改造外文文献翻译、中英文翻译

机床数控化改造外文文献翻译、中英文翻译

外文资料First, CNC of the need for transformation1.1, microscopic view of the necessity ofFrom the micro perspective, CNC machine tools than traditional machines have the following prominent superiority, and these advantages are from the NC system includes computer power.1.1.1 can be processed by conventional machining is not the curve, surface and other complex partsBecause computers are superb computing power can be accurately calculated instantaneous each coordinate axis movement exercise should be instantaneous, it can compound into complex curves and surfaces.1.1.2 automated processing can be achieved, but also flexible automation to increase machine efficiency than traditional 3 to 7 times.Because computers are memory and storage capacity, can be imported and stored procedures remember down, and then click procedural requirements to implement the order automatically to achieve automation. CNC machine tool as a replacement procedures, we can achieve another work piece machining automation, so that single pieces and small batch production can be automated, it has been called "flexible automation."1.1.3 high precision machining parts, the size dispersion of small, easy to assemble, no longer needed "repair."1.1.4 processes can be realized more focused, in part to reduce the frequent removal machine.1.1.5 have automatic alarm, automatic control, automatic compensation, and other self-regulatory functions, thus achieving long unattended processing.1.1.6 derived from the benefits of more than five.Such as: reducing the labor intensity of the workers, save the labor force (onecan look after more than one machine), a decrease of tooling, shorten Trial Production of a new product cycle and the production cycle, the market demand for quick response, and so on.These advantages are our predecessors did not expect, is a very major breakthrough. In addition, CNC machine tools or the FMC (Flexible Manufacturing Cell), FMS (flexible manufacturing system) and CIMS (Computer Integrated Manufacturing System), and other enterprises, the basis of information transformation. NC manufacturing automation technology has become the core technology and basic technology.1.2, the macro view of the necessityFrom a macro perspective, the military industrial developed countries, the machinery industry, in the late 1970s, early 1980s, has begun a large-scale application of CNC machine tools. Its essence is the use of information technology on the traditional industries (including the military, the Machinery Industry) for technological transformation. In addition to the manufacturing process used in CNC machine tools, FMC, FMS, but also included in the product development in the implementation of CAD, CAE, CAM, virtual manufacturing and production management in the implementation of the MIS (Management Information System), CIMS, and so on. And the products that they produce an increase in information technology, including artificial intelligence and other content. As the use of information technology to foreign forces, the depth of Machinery Industry (referred to as information technology), and ultimately makes their products in the international military and civilian products on the market competitiveness of much stronger. And we in the information technology to transform traditional industries than about 20 years behind developed countries. Such as possession of machine tools in China, the proportion of CNC machine tools (CNC rate) in 1995 to only 1.9 percent, while Japan in 1994 reached 20.8 percent, every year a large number of imports of mechanical and electrical products. This also explains the macro CNC transformation of the need.Second, CNC machine tools and production lines of the transformation of the market2.1, CNC transformation of the marketMy current machine total more than 380 million units, of which only the total number of CNC machine tool 113,400 Taiwan, or that China's CNC rate of less than 3 percent. Over the past 10 years, China's annual output of about 0.6 CNC machine tools to 0.8 million units, an annual output value of about 1.8 billion yuan. CNC machine tools annual rate of 6 per cent. China's machine tool easements over age 10 account for more than 60% below the 10 machines, automatic / semi-automatic machine less than 20 per cent, FMC / FMS, such as a handful more automated production line (the United States and Japan automatic and semi-automatic machine, 60 percent above). This shows that we the majority of manufacturing industries and enterprises of the production, processing equipment is the great majority of traditional machine tools, and more than half of military age is over 10 years old machine. Processing equipment used by the prevalence of poor quality products, less variety, low-grade, high cost, supply a long period, in view of the international and domestic markets, lack of competitiveness, and a direct impact on a company's products, markets, efficiency and impact The survival and development of enterprises. Therefore, we must vigorously raise the rate of CNC machine tools.2.2, import equipment and production lines of the transformation of NC marketSince China's reform and opening up, many foreign enterprises from the introduction of technology, equipment and production lines for technological transformation. According to incomplete statistics, from 1979 to 1988 10, the introduction of technological transformation projects are 18,446, about 16.58 billion US dollars.These projects, the majority of projects in China's economic construction play a due role. Some, however, the introduction of projects due to various reasons, not equipment or normal operation of the production line, and even paralyzed, and the effectiveness of enterprises affected by serious enterprise is in trouble. Some of the equipment, production lines introduced from abroad, the digestion and absorption of some bad, spare parts incomplete, improper maintenance, poor operating results; onlypay attention to the introduction of some imported the equipment, apparatus, production lines, ignore software, technology, and management, resulting in items integrity, and potential equipment can not play, but some can not even start running, did not play due role, but some production lines to sell the products very well, but not because of equipment failure production standards; because some high energy consumption, low pass rate products incur losses, but some have introduced a longer time, and the need for technological upgrading. Some of the causes of the equipment did not create wealth, but consumption of wealth.These can not use the equipment, production lines is a burden, but also a number of significant assets in stock, wealth is repaired. As long as identifying the main technical difficulties, and solve key technical problems, we can minimize the investment and make the most of their assets in stock, gain the greatest economic and social benefits. This is a great transformation of the market.Third, NC transformation of the content and gifted missing3.1, the rise of foreign trade reformIn the United States, Japan and Germany and other developed countries, and their machine transform ation as new economic growth sector, the business scene, is in a golden age. The machine, as well as technology continues to progress, is a machine of the "eternal" issue. China's machine tool industry transformation, but also from old industries to enter the CNC technology mainly to the new industries. In the United States, Japan, Germany, with CNC machine tools and technological transformation of production lines vast market, has formed a CNC machine tools and production lines of the new industry. In the United States, transforming machine tool industry as renewable (Remanufacturing) industry. Renewable industry in the famous companies: Borsches engineering company, atoms machine tool company, Devlieg-Bullavd (Bo) services group, US equipment companies. Companies in the United States-run companies in China. In Japan, the machine tool industry transformation as machine modification (Retrofitting) industry. Conversion industry in the famous companies: Okuma engineering group, Kong 3 Machinery Company, Chiyoda Engineering Company, Nozaki engineering company, Hamada engineeringcompanies, Yamamoto Engineering Company.3.2, the content of NCMachine tools and production line NC transformation main contents of the following:One is the restoration of the original features of the machine tools, production line of the fault diagnosis and recovery; second NC, in the ordinary machine augends significant installations, or additions to NC system, transformed into NC machine tools, CNC machine tools; its Third, renovation, to improve accuracy, efficiency and the degree of automation, mechanical, electrical part of the renovation, re-assembly of mechanical parts processing, restore the original accuracy of their production requirements are not satisfied with the latest CNC system update; Fourth, the technology updates or technical innovation, to enhance performance or grades, or for the use of new technology, new technologies, based on the original technology for large-scale update or technological innovation, and more significantly raise the level, and grades of upgrading.3.3, NC transformation of the gifted missing3.3.1 reduce the amount of investment, shorter delivery timeCompared with the purchase of new machine, the general can save 60% to 80% of the costs and transforming low-cost. Especially for large, special machine tools particularly obvious. General transformation of large-scale machine, spent only the cost of the new machine purchase 1 / 3, short delivery time. But some special circumstances, such as high-speed spindle, automatic tray switching systems and the production of the installation costs too costly and often raise the cost of 2 to 3 times compared with the purchase of new machine, only about 50 percent of savings investment.3.3.2 stable and reliable mechanical properties, structure limitedBy the use of bed, column, and other basic items are heavy and solid casting components, rather than kind of welding components of the machine after the high-performance, quality, and can continue to use the new equipment for many years. But by the mechanical structure of the original restrictions, it is not appropriate to thetransformation of a breakthrough.3.3.3 become familiar with the equipment, ease of operation and maintenanceThe purchase of new equipment, new equipment do not know whether to meet the processing requirements. Transformation is not, can be used to calculate the machine processing capacity; In addition, since the use of many years, the operator of the machine has long been understood that in the operation, use and maintenance of the training time is short, quick. Transformation of the machine tools installed, we can achieve full load operation.3.3.4 can take full advantage of the existing conditionsTake full advantage of the existing foundation, not like buying new equipment as necessary to build a foundation.3.3.5 can be used as control technologyAccording to the development speed of technological innovation and in a timely manner increased level of automation in production equipment and efficiency, improve the quality of equipment and grades, and the old machine will be replaced by the current level of machine.Fourth, the main steps of CNC machine tools4.1, for the determination of transformationThrough analysis of the feasibility of transforming the future, we can against a Taiwan or a few machines determine the current status of reform programmes, which are generally include:4.1.1 mechanical and electrical repair of combiningGenerally speaking, the need for a transformation of the electrical machine, are subject to mechanical repairs. Repairs to determine the requirements, scope, content must be decided by electrical machinery required to transform the structure of the request; transformation to determine electrical and mechanical repair, alteration between the staggered time requirements. The mechanical properties of intact electrical transform the basis of success.4.1.2 easy first, and to the overall situation after the first localThe removal of the original system must control the original drawings, carefully, to make drawings in a timely manner marked to prevent the demolition or omission (of local circumstances). In the process of demolition will discover some new system design in the gaps, and that should be promptly added, removed and parts of the system should be disaggregated, safekeeping, in case of failure or partial failure reinstated. There is a definite value, and can be used for spare parts for other machines. Must not extravagantly used and misplaced.4.2 reasonable arrangements for a new location and routing systemUnder the new system design drawings and reasonable new system configurations, including fixed box, panel installation, alignments, and the fixed position adjustment components, sealing and necessary, such as decoration. Connection must be a clear division of work, it was reviewed inspection to ensure connectivity of norms, diameter appropriate, accurate, reliable handsome.4.3 DebuggingCommissioning must be identified in advance by the steps and requirements. Debugging should be cool-headed, keep records, in order to identify a nd solve problems. Commissioning of the first test sensitivity security protection systems to prevent physical, equipment accidents. Debugging the scene must be cleaned, no superfluous items; coordinates extension units in the campaign centre of the whole trip; empty can test, first empty after loading; can simulate the test, after the first real dynamic simulation; can manually the upper hand After moving automatically.4.4, acceptance and post-workAcceptance of the work to employ the staff to join, has been developed in accordance with the acceptance criteria. The transformation of the late work is also very important, it is conducive to enhancing the level of technical projects and equipment as soon as possible so that production. Acceptance and post include:4.4.1 machine mechanical properties acceptanceAfter mechanical repairs and maintenance as well as a full transformation, the mechanical properties of the machine tools should meet the requirement, in the geometric accuracy should be within the limits prescribed.4.4.2 electrical control function and control accuracy acceptanceElectrical control the various functions of action must be normal, sensitive and reliable. Application control accuracy of the system itself functions (such as stepping dimensions, etc.) and standard measurement apparatus (such as laser interferometer, coordinate measurement machines) inspection, the scope of accuracy achieved. At the same time also and the transformation of the former machine tool accuracy of the various functions and to contrast, poor access to quantifiable indicators.4.4.3 specimen cutting AcceptanceYou can refer to the CNC machine tool cutting at home and abroad specimen standards, qualified operatives, with the programming staff to test cutting. Acceptance specimen cutting machine stiffness can be cutting, noise, trajectory, and other related actions, the general should not be used for product components specimen use.4.4.4 drawings, information acceptanceMachine transformation of the latter should be timely drawings (including schematics, layout plans, wiring diagram, ladder diagram, etc.), information (including various brochures), the transformation of files (including the transformation before and after the various records) summary, collating, transfer to stall. Maintain data integrity, effective, continuous, and that the future stability of the equipment running is very important.4.4.5 summing up, enhancingAfter the end of each should be promptly summed up, helps improve the operational level of technical personnel, but also conducive to the whole enterprise technical progress.中文译文一、机床数控化改造的必要性1.1、微观看改造的必要性从微观上看,数控机床比传统机床有以下突出的优越性,而且这些优越性均来自数控系统所包含的计算机的威力。

数控专业毕业设计外文翻译----中国数控车床的现状和发展趋势分析

数控专业毕业设计外文翻译----中国数控车床的现状和发展趋势分析

Not only the Chinese numerical control lathe present situation andthe trend of developmentanalysis numerical control technology application has brought the revolutionary change for the traditional manufacturing industry, causes the manufacturing industry to become the industrialization the symbol, moreover along with numerical control technology unceasing development and application domain expansion, it to national economy and the people's livelihood some important professions (IT, automobile, light industry, medical service and so on) development more and more vital role, because these professions must equip the digitization already was the modern development major tendency. The current numerical control lathe presents following trend of development. 1. high speed, high precisionHigh speed, precise is the engine bed development eternal goal.Development progresses by leaps and bounds which along with the science and technology, the mechanical and electrical products renewal speed speeds up, increasingly is also high to the components processing precision and the surface quality request.In order to satisfy this complex changeable market the demand, the current engine bed to the high-speed cutting, is doing the cutting and does the direction of cut to develop, the processing precision also in unceasingly enhances. On the other hand, the electricity main axle and the straight line electrical machinery success application, the ceramics ball bearing, the high accuracy lead greatly hollow in cold and the ball bearing nut strong cold low temperature high speed ball bearing guide screw vice-and the belt ball bearing retainer straight line guide rail vice-and so on engine bed function part appearing on the market, also for the engine bed to high speed, the precise development has created the condition. The numerical control lathe picks uses electricity the main axle, has cancelled links and so on leather belt, band pulley and gear, reduced the master drive rotation inertia greatly, enhanced the main axle dynamic speed of response and the work precision, when thorough settlement main axle high-speed operation transmission and so on leather belt and band pulley vibrations and noise question.Picks uses electricity the main axle structure to be possible to enable the main axle rotational speed to achieve above 10000r/min.The straight line motor-driven speed is high, adds the moderating properties to be good, has the superior response characteristic and the followed precision. Made the servo with the straight line electrical machinery to actuate, to omit the ball bearing guide screw this intermediate drive link, eliminated the transmission gap (including reverse gap), themovement inertia was small, the system rigidity was good, could locate precisely under high speed, thus increased the servo precision enormously.Straight line trundle guide rail, because it has respectively to the gap for the zero and the extremely small rolling friction, wears slightly, gives off heat may ignore, has the extremely good thermostability, increased the entire journey pointing accuracy and the repetition pointing accuracy. Through the straight line electrical machinery and the straight line trundle guide rail vice-application, may make the engine bed the rapid traverse speed to enhance 60~80m/min from present 10~20m/mim, even reaches as high as 120m/min.2. redundant reliablenumerical control engine bed reliability is a numerical control engine bed product quality crucial target.Whether does the numerical control engine bed display its high performance, the high accuracy and the high efficiency, and obtains the good benefit, the key is decided by its reliable height.3. function recombinefunction recombine goal is further enhances the engine bed the production efficiency, uses reduces to few in the non-processing non-cutting time.Through the function recombine, may expand the engine bed the use scope, enhances the efficiency, realizes multipurpose one machine, one machine many energy, namely a numerical control lathe already may realize the turning function, also may realize the milling processing; Or in also may realize the abrasive machining by the mill primarily engine bed on.4. intellectualizations, the network, the flexibility and the integrated21st century numerical control equipments has certain intellectualized system. In order to pursue the processing efficiency and the processing quality aspect intellectualization, like processing process adaptive control, craft parameter automatic production; In order to enhance the actuation performance and the use connection aspect intellectualization, like feed-forward control, electrical machinery parameter auto-adapted operation, automatic diagnosis load automatic designation model, self regulating grade; Simplification programming, simplification operation aspect intellectualization, like intellectualized automatic programming, intellectualized man-machine contact surface and so on; Also has the intelligence to diagnose, aspect and so on intelligent monitoring contents, by facilitates the system the diagnosis and the service and so on. The numerical control engine bed the tendency which develops to the flexibility automated system is: From (numerical control single plane, processing center and numerical control compound processing engine bed), line (FMC, FMS, FTL, FML) to surface (construction sectionworkshop independent manufacture island, FA), body (CIMS, distribution network integration manufacture system) the direction develops, on the other hand develops to the attention utility and the efficient direction. The flexible automation technology is the manufacturing industry adapts the dynamic market demand and the product rapid renewal main method, is the various countries' manufacturing industry development mainstream tendency, is the advanced manufacture domain foundation technology.Its key point is by enhances the system the reliability, changes into the premise practical, take the easy networking and the integration as the goal, the attention enhancement unit technology development and the consummation.The CNC single plane to the high accuracy, the high velocity and the high flexible direction develops. The numerical control engine bed and the constitution flexibility manufacture system can conveniently and joints and so on CAD, CAM, CAPP and MTS, develops to the information integration direction.The network system to the opening, the integration and the intellectualized direction develops.中国数控车床的现状和发展趋势分析数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。

【精品】50中英文双语毕业设计外文文献翻译成品 :叶轮叶片五轴数控铣削的计算机辅助仿真加工制造程序设计

【精品】50中英文双语毕业设计外文文献翻译成品 :叶轮叶片五轴数控铣削的计算机辅助仿真加工制造程序设计

此文档是毕业设计外文翻译成品(含英文原文+中文翻译),无需调整复杂的格式!下载之后直接可用,方便快捷!本文价格不贵,也就几十块钱!一辈子也就一次的事!外文标题:Computer Aided Simulation Machining Programming In 5-Axis Nc Milling Of Impeller Leaf外文作者:Liu Huran文献出处: Physics Procedia,2018,1457-1462(如觉得年份太老,可改为近2年,毕竟很多毕业生都这样做)英文1089单词, 4890字符(字符就是印刷符),中文1576汉字。

Computer Aided Simulation Machining Programming In 5-Axis Nc Milling Of Impeller LeafAbstractAt present, cad/cam (computer-aided design and manufacture) have fine wider and wider application in mechanical industry. For the complex surfaces, the traditional machine tool can no longer satisfy the requirement of such complex task. Only by the help of cad/cam can fulfill the requirement. The machining of the vane surface of the impeller leaf has been considered as the hardest challenge. Because of their complex shape, the 5-axis cnc machine tool is needed for the machining of such parts. The material is hard to cut, the requirement for the surface finish and clearance is very high, so that the manufacture quality of impeller leaf represent the level of 5-axis machining. This paper opened a new field in machining the complicated surface, based on a relatively more rigid mathematical basis. The theory presented here is relatively more systematical. Since the lack of theoretical guidance, in the former research, people have to try in machining many times. Such case will be changed. The movement of the cutter determined by this method is definite, and the residual is the smallest while the times of travel is the fewest. The criterion is simple and the calculation is easy.Keywords: milling cutter; contact; nc machiningIntroductionAt present, cad/cam (computer-aided design and manufacture) have fine wider and wider application in mechanical industry. For the complex surfaces, the traditional machine tool can no longer satisfy the requirement of such complex task. Only by the help of cad/cam can fulfill the requirement. The machining of the vane surface of the impeller leaf has been considered as the hardest challenge. Because of their complex shape, the 5-axis cnc machine tool is needed for the machining of such parts. The material is hard to cut, the requirement for the surface finish and clearance is very high, so that the manufacture quality of impeller leaf represent the level of 5-axis machining. This paper opened a new field in machining the complicated surface,based on a relatively more rigid mathematical basis. The theory presented here is relatively more systematical. Since the lack of theoretical guidance, in the former research, people have to try in machining many times. Such case will be changed. The movement of the cutter determined by this method is definite, and the residual is the smallest while the times of travel is the fewest. The criterion is simple and the calculation is easy.The method presented in this paper combined the impeller leaf design, NC machining and computersimulation together. The design and calculation is convenient, and the machining is of high efficient.Side milling of the impeller leaf in 4 coordinates simultaneous controls Suppose that the equation of the impeller leaf could be expressed as:Let the impeller leaf rotate an angle of 错误!未找到引用源。

机床——机械类外文文献翻译、中英文翻译

机床——机械类外文文献翻译、中英文翻译

毕业设计(论文)外文资料翻译系部:专业:姓名:学号:外文出处:English For Electromechanical(用外文写)Engineering附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文机床机床是用于切削金属的机器。

工业上使用的机床要数车床、钻床和铣床最为重要。

其它类型的金属切削机床在金属切削加工方面不及这三种机床应用广泛。

车床通常被称为所有类型机床的始祖。

为了进行车削,当工件旋转经过刀具时,车床用一把单刃刀具切除金属。

用车削可以加工各种圆柱型的工件,如:轴、齿轮坯、皮带轮和丝杠轴。

镗削加工可以用来扩大和精加工定位精度很高的孔。

钻削是由旋转的钻头完成的。

大多数金属的钻削由麻花钻来完成。

用来进行钻削加工的机床称为钻床。

铰孔和攻螺纹也归类为钻削过程。

铰孔是从已经钻好的孔上再切除少量的金属。

攻螺纹是在内孔上加工出螺纹,以使螺钉或螺栓旋进孔内。

铣削由旋转的、多切削刃的铣刀来完成。

铣刀有多种类型和尺寸。

有些铣刀只有两个切削刃,而有些则有多达三十或更多的切削刃。

铣刀根据使用的刀具不同能加工平面、斜面、沟槽、齿轮轮齿和其它外形轮廓。

牛头刨床和龙门刨床用单刃刀具来加工平面。

用牛头刨床进行加工时,刀具在机床上往复运动,而工件朝向刀具自动进给。

在用龙门刨床进行加工时,工件安装在工作台上,工作台往复经过刀具而切除金属。

工作台每完成一个行程刀具自动向工件进给一个小的进给量。

磨削利用磨粒来完成切削工作。

根据加工要求,磨削可分为精密磨削和非精密磨削。

精密磨削用于公差小和非常光洁的表面,非精密磨削用于在精度要求不高的地方切除多余的金属。

车床车床是用来从圆形工件表面切除金属的机床,工件安装在车床的两个顶尖之间,并绕顶尖轴线旋转。

车削工件时,车刀沿着工件的旋转轴线平行移动或与工件的旋转轴线成一斜角移动,将工件表面的金属切除。

车刀的这种位移称为进给。

车刀装夹在刀架上,刀架则固定在溜板上。

溜板是使刀具沿所需方向进行进给的机构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文原文:The number of common lather controls reformation method anddesignAbstract:The tool machine number controls currently the market of turn the reformation still has very big development space in the our country, now our country the tool machine number control to turn a rate not to arrive 3%.Use the product that the common tool machine process widespread existence quality bad, the species be little, the file time be low, cost Gao, provide a goods period long, thus in the nations, local lack a competition ability on the market, directly influence a product, market, performance of business enterprise, influence existence and development of business enterprise, so have to strongly raise the number of tool machine to control to turn a rate.This text with the number of lather control a reformation for example, introduced a tool machine number to control the method of reformation, include it structural of reformation design, the choice of function and accuracy and finally reform the assurance of project.Keywords:The number control; Reform; Lather1. The tool machine number control the meaning of reformation(1)Economical funds. The number of tool machine's controling a reformation to together purchase new tool machine to compare generally can save 60% or so expenses and the large and special equipments is particularly obvious.Generally large tool machine reformation need to spend new tool machine purchase commodity of 1/3.Even carry on the structure of the original tool machine to thoroughly reform to get stripe to also need to cost to purchase new tool machine 60% expenseses, and can make use of existing foundation.(2)The function stabilizes credibility.Because of original each foundation of tool machine piece through long-term time limited efficacy almost will not produce to transform in response to the dint but influence accuracy.(3) Raise a production efficiency. Tool machine after count controling a reformation can immediately carry out a processed automation efficiency can compare traditional tool machine to raise 3-500%.To complicated spare parts the difficulty more high effect raise more many.And canneed not or little pack with the work, not only economized expenses but also can shorten production to prepare a period.2. The number of common lather control to turn a reformation designThe number of tool machine controls a reformation, mainly is the design which carries on a creation to the structure of the original tool machine, end make the tool machine attain more ideal appearance.The number controls lather is machine electricity the integral whole turn of typical model representative, its machine structure together common tool machine have many likeness of place.However, modern of number's controling tool machine be then to in brief control a traditional tool machine equipment last number system, is not a foundation in traditional tool machine either and only play chess a department to take in to improve but become.(those are subjected to a funds etc. condition restriction, but refit traditional tool machine suggest number control be another matter of tool machine)The traditional tool machine exists some weaknesses and flap sex such as the rigid shortage, anti- bad, hot transform greatly, glide noodles of friction resistance big and spread the existence cleft of the of move the component etc., and is hard to be competent number control tool machine to process requests such as accuracy, surface quality, rate of production and service life etc..The number of modern controls a technique, especially process center, regardless is it accept a parts, lord to spread to move system and enter to spread to move system, knife to have system and lend support to function etc. parts structure, still whole layout, exterior shape's etc.s all have already veried greatly took place to change and have already become number control the special machine structure of tool machine.Therefore, we in the process of carrying on a number to control a reformation to the common tool machine, should while consider various circumstance make various function index signs of common tool machine possibly control tool machine with number to connect near.3. Count to control the function of the lather and the choice of the accuracyIsing not all old tool machines can carry on a number to control a reformation and the reformation of tool machine mainly should have two conditions:The first, the tool machine foundation piece has to be enough rigid.The second, the expenses of reformation wants accommodation, economy good.Do a decision to the function index sign of tool machine before refitting lather.The lather which refits behind can process a work piece of biggest turn rounddiameter and the biggest length, main electric motor power's etc. generally and will not change.Process the flat surface degree, straight line degree, cylinder degree of work piece and rough degree's etc. basically still are decide in the tool machine original level.Mainly have next say the choice of function and accuracy to need before refit an assurance.(1)The stalk becomes soon method, series, turn soon scope, power and whether need the few controls to move a parking etc..(2)Enter to sport:Enter to the speed:Z to;(usually is a 8~400 mms/min)X to.(usually is a 2~100 mms/min) Fast ambulation:Z to;(usually is a 1.2~4 ms/min)X to.(usually is a 1.2~3 ms/min) Pulse equivalent:At selection inside the 0.025~0.005 mms, usually Z to is a X to of 200%.Process pitch scope:Include can process a pitch type(metric system, English system, mold number, path stanza and awl thread etc.), general pitch at 10 mms in not all difficult attain.(3)Enter to drive a way for sport.(generally and all choose to enter electrical engineering to drive with the step)(4)Spread to move for sport whether need to be refit roll bead silk Gang to spread to move.(5)Whether knife needs to install an au to turn a knife or not, if install a demand certain the work number.(6)Other function index signs choose:Put to repair function:The lather processes to need to have straight line and arc to put to repair function.The knife has to compensate and the cleft be in expiation of:For promising to certainly process accuracy, generally need to consider that the constitution knife repairs to compensate function with cleft.Show:A tube still a LCD of the adoption figures perhaps display show, show of number how much etc. problem want to process function effective demand to make sure according to the lather, generally speaking show more simple the cost be more low and also easily carry out.Diagnose function:In bar of operation importation of the procedure be wrong and immediately appear of false action, can at number control reformation system to design join necessary spare part and software, make it be able to indicate a tool machine to appear to break down perhaps function expiration of parts of etc., carry out limited diagnosis function.Above is the lather number control reformation the lather number needs to be consider of some in general use function index signs, have of lather reformation according to need would also some specialized requests, pare a big pitch thread such as the car and work under the bad environment of dust palliative interference, the car knife high accuracy to knife etc., should have a specialized design of aim at sex this time.4. The lather number control a reformation project a choiceWhen the number controls the contentses such as function and accuracy etc. of lather basic make selection after, can make sure a reformation project according to this.Currently tool machine number's controling a reformation technique has already be gradually maturing, the appropriation turn of the tool machine number control function and function that the reformation system have generally and all can satisfy the normal regulations of lather to process a request.Therefore, more typical lather number controls a reformation project and can choose for:Install appropriation lather a number to control reformation system, replace into give the glide silk Gang for exercise spread to move for roll bead silk Gang to spread to move, the adoption tread to drive into the electrical engineering into give to exercise, allocation the pulser carry out a thread to process function, allocation auto turn a knife realization to automatically change the knife function.Currently more typical economic type appropriation lather the number control reformation system to have following and basic allocation and function:(1)Adopt a single slice tiny machine to control CPU for the lord, have straight line and arc to put to repair, the code plait distance, knife have repair and cleft to compensate function, figures to take care of two sit mark to show and automatically turn the control, thread of a knife to process in the meantime etc. control function.(2) Have a step to enter electrical engineering to drive system, pulse equivalent or control accuracy generally for:The Z is a 0.01 mms, X to for the 0.005 mms.(want and correspond silk Gang of lead the distance to match each other a set)(3)Process procedure to mostly depend a front-panel keystroke, the code draw up and drop to give or get an electric shock an automatic protection a saving machine saving;Can carry on the spot to edit modification and try movement operation to the procedure.(4)Have the list tread or continuous performance procedure, circulation performance procedure,machine extreme limit position automatically only for, super distance, and enter to automatically terminate to wait to the speed procedure each kind of number control basic function.5. The lather number control to reform a solid exampleReform object to control to turn a reformation for the common lather number of the CA6140 type, it adopted 1 kind more and in brief but more and typically refits a project, the lather which reforms behind enter to sport from tread to drive into the electrical engineering AN and the B, they install in the bedside box(or bed body coda) and drag along at the back of the plank respectively and pass deceleration wheel gear and maneuver to arouse maneuver of lather toward the silk Gang into give sport.Can well develop the effect that the number controls lather for the lather which makes to reform an empress, maneuver to generally need to be transpose toward the silk Gang Luo female pair roll the bead silk Gang Luo a mother pair.When make use of original silk Gang Luo a mother pair, for the sake of decrease reformation workload, lengthways drive electrical engineering and deceleration box generally pack a coda at the bed body and link lather to spread to move system(principal axis system) at first at this time and lengthways silk Gang's spreading a dynamic clutch haven't tore down, work hour should make to be placed in to take off to open position.Together manage, shed off a Gua pole etc. original horizontal auto enter to the organization if tored down, work should also make it be placed in blank on schedule(empty block) position. After reform of enter to the quantity value of pulse equivalent depend tread to be apart from Cape and decelerate a wheel gear ratio, silk Gang to lead a distance into the electrical engineering step three moderate an assurance.The of threes converts a relation can the following type mean: (θ /360)×(ac/bd) × T=δθ In type-tread to gather Cape(degree) into the electrical engineering step;T-the silk Gang drive lead a distance(mm);A, b, c, d-wheel gear Chi number, be single reduce several:00, it equal the c, d 1;The δ -pulse equivalent be worth(mm).Tread into the parameter of electrical engineering according to the resistance Ju and slice size and tool machine model number of scraps dosage to choose, the number of common lather(like C6140, C620 etc.ses) controls to much adopt in the reformation 0.08-0.15(N?M)the quiet dint Ju tread into the electrical engineering, if choose 0.08(N?M)of conduct and actions be horizontal toenter to the electrical engineering;Choose 0.15(N?M)of conduct and actions lengthways enters to the electrical engineering.If demand, can change the original knife in to automatically turn a knife, then can control conversion knife to carry on slicing scraps to process with the procedure number.When the number controls system to send out to change the knife signal, first after the electric appliances K1 action, change the knife electric motor is turn to drive a Gua round a Gua pole organization, make to rise up the knife body.When the top knife body rise certain height, leave to match to turn dish to rise a function, arouse to revolve to carry on choosing knife up the knife body.The knife sends letter dish above in to have 1 to spread a feeling machine in response to each knifes Anne, be to revolve a certain knife up the knife body, the spread of the knife's feeling machine controls system exportation signal toward the number, number control system knife signal and instruction knife the signal carry on a comparison, be two signal homologies, explain that the last knife body has already revolved the knife choose.Count to control a system control to release after the electric appliances K1 at this time, absorb to match after the electric appliances K2, change the knife electric motor reversal, the activity sell at anti- depend dish top beginning fixed position.Under the function that activity sell anti- depend, the Luo pole arouses to descend up the knife body, until the Chi tooth dish bites to match, completion Jing fixed position, and pass a Gua round a Gua pole to lock tight Luo mother, make knife tightly solid.Count to control a system control to release after the electric appliances K2 at this time, change the knife electric motor to stop to turn, complete to change the knife action.Can also reserve an original knife to still adopt to move conversion knife to have, but have to establish procedure pause while change the knife.If need to process a thread, then want outside principal axis to carry or other appropriate parts pack the previous pulser C, sends out pulse to make the step enter electrical engineering to match with a revolve of principal axis accurately but produce to homologously enter to sport with it, then promise the principal axis turn each time and the car knife moves 1 to lead a distance.Above-mentioned reformation project in, don't replace a silk Gang's method to be number control system to appear break down, still can process, but glide the silk Gang Luo female pair to easily wear away past need to usually check to fix, and power with process the accuracy all and rather rolls the bead silk Gang Luo mother pair drive a way.Moreover drag along lead of plank and bed body a track not enough parallelism or perpendicularity, and their friction lead greatly, the silk Gang stalk line with lead the track's existence parallelism's error margin's etc.'s problem all willmake to drive resistance increment.For reducing resistance is tread with exaltation efficient into the dint Ju of electrical engineering with process accuracy. As to it's should the tool machine reformation also carry on gearing to adjust to try and check and accept after complete.Generally speaking, in response to special ttention position and foundation of the gearing, make the tool machine be placed in a good and stable work environment.It secondly is the circumstance of conjunction circumstance and each oil road, electric circuit which checks each spare part, plug-in completely, carry on the conjunction that the number controls system again.When complete the adjustment that the number controls system, had the tool machine allied machine to switch on electricity the condition of run-in, can cut off number control the power supply of system, link the motive line of electric motor, the instauration reports to the police enactment, prepare to switch on electricity run-in.The purpose of run-in is the gearing which investigates tool machine whether firmness, each spread to move, manipulate, control, lubricate, the liquid press, annoy to move etc. whether system is normal or not with intelligent and dependable.The acceptance that the number after reform controls tool machine is with gearing to adjust to try a work synchronously carry on.One set tool machine the number control to reform intact empress of examination acceptance the work be a complicated work, it experiment examination means and technique request to be very high also, it needs to use various instrument of high accuracy, to the machine of tool machine, electricity, liquid, annoy each part of and whole machines to carry on single-item function comprehensive function examination, include circulate just degree and heat transformed etc. a series experiment, controled the examination of function in response to the special attention tool machine number among them, end get the comprehensive evaluation of that tool machine.6. ConclusionPass by a great deal of fulfillment proves that the common tool machine number controls to turn a reformation to have must economy, function and stability.Its reformation involves realms, such as machine, electricity and calculator...etc., is that an ories is deep and practices strong system engineering.Should work well to reform ex- technique preparation while carrying on a number to control a reformation.Reform process in, the machine fixs to combine together with electricity reformation, first easy empress difficult, first partial empress overall situation.译文:普通车床的数控改造方法及设计摘要:目前机床数控化改造的市场在我国还有很大的发展空间,现在我国机床数控化率不到3%。

相关文档
最新文档