数字修约规则-----四舍五入和四舍六入五留双规则

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字修约规则
现在被广泛使用的数字修约规则主要有四舍五入规则和四舍六入五留双规则。

[编辑] 四舍五入规则
四舍五入规则是人们习惯采用的一种数字修约规则。

四舍五入规则的具体使用方法是:
在需要保留有效数字的位次后一位,逢五就进,逢四就舍。

例如:将数字2.1875精确保留到千分位(小数点后第三位),因小数点后第四位数字为5,按
照此规则应向前一位进一,所以结果为2.188。

同理,将下列数字全部修约为四位有效数字,结果为:
0.53664—0.5366 10.2750—10.28 18.06501—18.07 0.58346—0.5835 6.4050—16.41 27.1850—27.19
按照四舍五入规则进行数字修约时,应一次修约到指定的位数,不可以进行数次修约,否则将
有可能得到错误的结果。

例如将数字15.4565修约为两位有效数字时,应一步到位:15.4565——15(正确)。

如果分步修约将得到错误的结果:15.4565——15.457——15.46——15.5——16(错误)。

四舍五入修约规则,逢五就进,必然会造成结果的系统偏高,误差偏大,为了避免这样的状况
出现,尽量减小因修约而产生的误差,在某些时候需要使用四舍六入五留双的修约规则。

[编辑] 四舍六入五留双规则
为了避免四舍五入规则造成的结果偏高,误差偏大的现象出现,一般采用四舍六入五留双规则(Banker's Rounding)。

四舍六入五留双应该改为: 四舍六入逢五无后则留双,这样描述更容易理
解和记住。

四舍六入五留双规则的具体方法是:
(一)当尾数小于或等于4时,直接将尾数舍去。

例如将下列数字全部修约为四位有效数字,结果为:
0.53664—0.5366 0.58344—0.5834 16.4005—16.40 27.1829—27.18
10.2731—10.27 18.5049—18.50
(二)当尾数大于或等于6时,将尾数舍去并向前一位进位。

例如将下列数字全部修约为四位有效数字,结果为:
0.53666—0.5367 8.3176—8.318 16.7777—16.78 0.58387—0.5839 10.29501—10.30 21.0191—21.02
(三)当尾数为5,而尾数后面的数字均为0时,应看尾数“5”的前一位:若前一位数字此时
为奇数,就应向前进一位;若前一位数字此时为偶数,则应将尾数舍去。

数字“0”在此时应被视为
偶数。

例如将下列数字全部修约为四位有效数字,结果为:
0.153050—0.1530 12.6450—12.64 18.2750—18.28 0.153750—0.1538 12.7350—12.74 21.845000—21.84
(四)当尾数为5,而尾数“5”的后面还有任何不是0的数字时,无论前一位在此时为奇数还
是偶数,也无论“5”后面不为0的数字在哪一位上,都应向前进一位。

例如将下列数字全部修约为四位有效数字,结果为:
0.326552—0.3266 12.73507—12.74 21.84502—21.85 12.64501—12.65
18.27509—18.28 38.305000001—38.31
按照四舍六入五留双规则进行数字修约时,也应像四舍五入规则那样,一次性修约到指定的位数,不可以进行数次修约,否则得到的结果也有可能是错误的。

例如将数字10.2749945001修约为四
位有效数字时,应一步到位:10.2749945001——10.27(正确)。

如果按照四舍六入五留双规则分步
修约将得到错误结果:
10.2749945001——10.274995——10.275——10.28(错误)。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档