液压缸的设计计算
液压缸设计计算范文
液压缸设计计算范文液压缸是一种利用液压力来产生线性运动的设备。
液压缸的设计计算是指在给定工作条件下,根据液压系统参数及工作要求,计算液压缸的尺寸、力学参数、压力等重要参数,以确保液压缸能够正常工作。
1.功率计算:根据所需的输出力和速度,计算液压缸的功率要求。
功率可以通过公式P=F×V/1000来计算,其中P表示功率,F表示输出力,V表示速度。
2.液压力计算:根据所需的输出力,计算液压压力的大小。
液压力可以通过公式P=F/A来计算,其中P表示液压力,F表示输出力,A表示活塞面积。
3.活塞面积计算:根据所需的液压力,计算活塞的面积。
活塞面积可以通过公式A=F/P来计算,其中A表示活塞面积,F表示输出力,P表示液压力。
4. 活塞直径计算:根据所需的活塞面积,计算活塞的直径。
活塞直径可以通过公式D= 2 × sqrt(A/π)来计算,其中D表示活塞直径,A表示活塞面积,π表示圆周率。
5.液压缸行程计算:根据工作要求和装置的限制条件,计算液压缸的最大行程。
行程可以通过设备的限制条件来确定,如设备的尺寸、行程限制等。
6.液压缸稳定性计算:根据液压缸的结构和工作要求,计算液压缸的稳定性。
稳定性计算包括校核液压缸的抗屈曲、抗剪切等能力,以确保液压缸在工作中不发生变形或破坏。
7.寿命计算:根据液压缸的设计参数和工作条件,计算液压缸的寿命。
寿命计算包括根据液压缸的设计寿命和使用条件,计算液压缸的可靠性和寿命预测。
在进行液压缸设计计算时,需要考虑以下几个重要因素:1.工作条件:包括工作压力、工作温度、介质类型等。
2.力学要求:包括输出力、速度、行程等。
3.设备限制:包括装置的尺寸、行程限制等。
4.安全要求:包括液压缸的稳定性、可靠性等。
在进行液压缸设计计算时,需要根据实际情况进行具体分析。
一般来说,液压缸的设计计算是一个复杂的工作,需要涉及力学、流体力学、材料力学等多个学科的知识,并以此为基础进行具体计算。
液压缸计算公式
液压缸计算公式液压缸是一种常见的液压传动装置,广泛应用于各个行业。
液压缸的计算公式是用来计算液压缸的力和速度的。
下面将详细介绍液压缸的计算公式以及其应用。
液压缸的计算公式主要包括液压缸的力计算公式和速度计算公式。
液压缸的力计算公式可以通过以下公式得出:F = P × A其中,F表示液压缸的输出力,P表示液压缸的工作压力,A表示液压缸的有效工作面积。
液压缸的工作压力可以通过液压系统的设计压力确定,液压缸的有效工作面积可以通过液压缸的结构参数计算得出。
通过这个公式,可以很方便地计算出液压缸的输出力。
液压缸的速度计算公式可以通过以下公式得出:V = (Q × 1000) / A其中,V表示液压缸的运动速度,Q表示液压缸的流量,A表示液压缸的有效工作面积。
液压缸的流量可以通过液压系统的流量计算得出。
通过这个公式,可以计算出液压缸的运动速度。
液压缸的计算公式的应用非常广泛。
在液压系统的设计和工程中,液压缸的计算公式可以用来确定液压缸的尺寸和工作参数,从而满足系统的工作要求。
在机械制造和工程维修中,液压缸的计算公式可以用来评估液压缸的工作性能和故障排除。
液压缸的计算公式还可以用来优化液压系统的设计。
通过合理选择液压缸的尺寸和工作参数,可以提高液压系统的效率和稳定性。
同时,液压缸的计算公式也可以用来对液压系统进行性能测试和评估,为系统的优化提供依据。
液压缸的计算公式是液压系统设计和工程应用中的重要工具。
通过合理应用这些公式,可以方便地计算液压缸的力和速度,从而满足系统的工作要求。
液压缸的计算公式的应用范围广泛,对于液压系统的设计、制造和维修都具有重要意义。
希望本文的介绍对读者有所帮助。
液压油缸压力计算公式液压油缸设计计算公式
液压油缸压力计算公式液压油缸设计计算公式液压油缸(也称为液压缸)是将液压能转化为机械能的设备,它是液压系统中的关键组成部分。
在液压系统中,通过在液压缸两端施加不同的压力,使活塞在缸内运动,从而实现工作负载的移动、提升或压缩等操作。
液压油缸的设计计算需要考虑以下几个因素:负载大小、工作压力、缸径、活塞杆直径、活塞杆材料、油缸结构等。
下面是一般液压油缸设计计算的几个常用公式。
1.计算液压油缸的工作面积:液压油缸的工作面积可以根据液压系统的要求和负载大小来确定。
工作面积的计算公式如下:A=F/P其中,A表示油缸的工作面积,F表示需要承载的负载,P表示液压系统中的工作压力。
2.计算液压油缸的压力:液压油缸的压力可以根据所施加的负载和工作面积来确定。
压力的计算公式如下:P=F/A其中,P表示液压油缸的工作压力,F表示需要承载的负载,A表示油缸的工作面积。
3.计算液压油缸的活塞杆材料选取:液压油缸的活塞杆材料需要根据所承载负载和工作压力来选择,以满足强度和刚度的要求。
常见的活塞杆材料有碳钢、不锈钢、铬钼合金钢等。
一般用弯曲应力公式进行计算,考虑到材料的抗弯刚度,活塞杆的直径可以根据以下公式得到:d=((32*M*L)/(π*σ))^(1/3)其中,d表示活塞杆的直径,M表示活塞杆所承受的最大弯矩,L表示活塞杆的长度,σ表示选定材料的抗弯应力。
4.计算液压油缸的活塞直径:液压油缸的活塞直径可以通过活塞面积和活塞杆直径计算得到。
计算公式如下:D=(4*A)/(π*d^2)其中,D表示液压油缸的活塞直径,A表示油缸的工作面积,d表示活塞杆的直径。
5.计算液压油缸的油缸容积:液压油缸的油缸容积可以通过活塞面积和活塞行程来计算。
计算公式如下:V=A*l其中,V表示油缸的容积,A表示油缸的工作面积,l表示活塞的行程。
通过上述公式的计算,可以得到液压油缸的设计参数,从而满足液压系统的工作要求。
需要注意的是,在实际设计过程中,还应该考虑其他因素,如密封结构、摩擦损失、液压系统的动态响应等,以确保液压油缸的安全可靠运行。
液压缸设计计算公式
液压缸设计计算公式2、计算依据参数2.1 工作压力: 25 MPa2.2 试验压力: 37.5 MPa2.3 油缸内径: 190 mm2.4 活塞杆外径:55 mm2.5 工作行程: 1090 mm3、液压缸理论工作能力:22 推力:F=πDp/4=π×190×25/4=708463(N)****** 推2222 拉力:F=π(D-d)p/4=π×(190-55)×25/4=649097(N) 拉式中:D:油缸内径(mm)p:工作压力(MPa)d:活塞杆外径(mm)4、强度计算4.1 缸筒壁厚计算:按试验压力p=37.5 Mpa、安全系数n=3(静载荷) 计算:当3.2?D/δ,16时δ=[(Pd)/(2.3[σ]-p)ψ]+C=[(37.5×190)/(2.3×326.67-37.5)×1]+C=10.98(mm)取δ=11mm。
因此缸筒壁厚只要大于11 mm即可满足强度要求。
式中:p:油缸试验压力(MPa) p=30MPaD:油缸内径(mm)[σ]:缸筒材料许用应力(MPa)[σ] =σ/n=980/3=326.67(M Pa) bσ:缸筒材料的抗拉强度(MPa) b查手册:27SiMn的σ=980MPa bn:取安全系数n=3(静载荷)ψ:强度系数(当为无缝钢管时ψ=1)C:计入壁厚公差及腐蚀的附加厚度(一般应将壁厚圆整至标准厚度值)4.4 活塞杆螺纹连接强度计算活塞杆试验最大拉力:22 P=π(D-d)p/422 =π×(190-55)×37.5/4=973646(N)活塞杆危险断面处的拉应力:2 σ =P/ [π×d/4] 12 =973646/[π×45.2/4]=607.1(MPa)式中:P:活塞杆试验最大拉力(N)D:油缸内径(mm)d:活塞杆外径(mm)d:活塞杆危险断面处直径,初选是活塞杆O型圈沟槽1 (mm)σ:活塞杆材料屈服强度(MPa) s查手册 42CrMo钢调质,取σ=930MPa sn:安全系数,取n=1.5因为σ ?[σ]=620MPa,所以螺纹强度能够满足要求。
液压的缸设计计算
第一局部 总体计算1、 压力油液作用在单位面积上的压强AFP = Pa式中:F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2m从上式可知,压力值的建立是载荷的存在而产生的。
在同一个活塞的有效工作面积上,载荷越大,克制载荷所需要的压力就越大。
换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。
额定压力〔公称压力〕PN,是指液压缸能用以长期工作的压力。
最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。
通常规定为:P P 5.1max ≤ MPa 。
耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。
通常规定为:PN P r 5.1≤ MPa 。
液压缸压力等级见表1。
2、 流量单位时间油液通过缸筒有效截面的体积:tVQ = L/min由于310⨯=At Vν L 则 32104⨯==νπνD A Q L/min对于单活塞杆液压缸: 当活塞杆伸出时32104⨯=νπD Q当活塞杆缩回时 32210)(4⨯-=νπd D Q式中:V ——液压缸活塞一次行程中所消耗的油液体积,L ; t ——液压缸活塞一次行程所需的时间,min ;D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。
3、速比液压缸活塞往复运动时的速度之比: 式中:1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ;D ——液压缸缸径,m ; d ——活塞杆直径,m 。
计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。
速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。
4、液压缸的理论推力和拉力活塞杆伸出时的理推力: 6261110410⨯=⨯=p D p A F πN活塞杆缩回时的理论拉力: 62262210)(410⨯-=⨯=p d D p F F πN式中:1A ——活塞无杆腔有效面积,2m ; 2A ——活塞有杆腔有效面积,2m ;P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。
液压缸的设计和计算
液压缸设计和计算液压缸的设计和计算液压缸的设计是整个液压系统设计中的一部分,它是在对整个系统进行了工况分析,编制了负载图,选定了工作压力之后进行的; 一、设计依据:1了解和掌握液压缸在机械上的用途和动作要求;2了解液压缸的工作条件;3了解外部负载情况;4了解液压缸的最大行程,运动速度或时间,安装空间所允许的外形尺寸以及缸本身的动作;5设计已知液压系统的液压缸,应了解液压系统中液压泵的工作压力和流量的大小、管路的通径和布置情况、各液压阀的控制情况;6了解有关国家标准、技术规范及参考资料;二、设计原则:1保证缸运动的出力、速度和行程;2保证刚没各零部件有足够的强度、刚度和耐用性;3保证以上两个条件的前提下,尽量减小缸的外形尺寸;4在保证刚性能的前提下,尽量减少零件数量,简化结构;5要尽量避免缸承受横向负载,活塞杆工作时最好承受拉力,以免产生纵向弯曲;6缸的安装形式和活塞杆头部与外部负载的连接形式要合理,尽量减小活塞杆伸出后的有效安装长度,增加缸的稳定性;三、设计步骤:1根据设计依据,初步确定设计档案,会同有关人员进行技术经济分析;2对缸进行受力分析,选择液压缸的类型和各部分结构形式;3确定液压缸的工作参数和结构尺寸;4结构强度、刚度的计算和校核;5根据运动速度、工作出力和活塞直径,确定泵的压力和流量;6审定全部设计计算资料,进行修改补充;7导向、密封、防尘、排气和缓冲等装置的设计;8绘制装配图、零件图、编写设计说明书;四、液压缸设计中应注意的问题液压缸的设计和使用正确与否,直接影响到它的性能和是否易于发生故障;所以,在设计液压缸时,必须注意以下几点:1、尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性;2、考虑液压缸行程终了处的制动问题和液压缸的排气问题;3、正确确定液压缸的安装、固定方式;4、液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便;5、在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸;6、要保证密封可靠,防尘良好;五、计算液压缸的结构尺寸1、缸筒内径D 根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径;液压缸的有效工作面积为…… 24D p F A π== 以无杆腔作工作腔时………… p FD π4=以有杆腔作工作腔时………… 24d p F D +=π 2、活塞杆外径d 通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性;若速度比为v λ,则 vv Dd λλ1-= 也可根据活塞杆受力状况来确定:受拉力作用时,d =~; 受压力作用时,则有3、缸筒长度L 缸筒长度L 由最大工作行程长度加上各种结构需要来确定,即:l —— 活塞的最大工作行程;B —— 活塞宽度,一般为~1D ;A —— 活塞杆导向长度,取~D ;M —— 活塞杆密封长度,由密封方式定;C —— 其他长度; 注意:从制造工艺考虑,缸筒的长度最好不超过其内径的20倍;六、强度校核对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核;1、缸筒壁厚校核δ 缸筒壁厚校核分薄壁和厚壁两种情况;当D/δ≥10时为薄壁,壁厚按下式进行校核:δ≥δδδ2[δ]当D/δ<10时为厚壁,壁厚按下式进行校核:δ≥δ2(√[δ]+0.4δδ[δ]−1.3δδ−1)pt ——缸筒试验压力,随缸的额定压力的不同取不同的值D ——缸筒内径σ——缸筒材料许用应力2、活塞杆直径校核活塞杆的直径d按下式进行校核:3、液压缸盖固定螺栓直径校核液压缸盖固定螺栓直径按下式计算:F ——液压缸负载k ——螺纹拧紧系数~Z ——固定螺栓个数σ——螺栓材料许用应力七、液压缸稳定性校核活塞杆轴向受压时,其直径d一般不小于长度L的1/15;当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk ,以免发生纵向弯曲,破坏液压缸的正常工作;Fk 的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行;• 当活塞杆细长比 21/ψψ>k r l 时,则• 当活塞杆细长比21/ψψ≤k r l 且120~2021=ψψl -- 安装长度,其值与安装方式有关;Ψ1 -- 柔性系数,对钢取Ψ1=85;Ψ2 -- 末端系数,由液压缸支承方式决定;E -- 活塞杆材料的弹性模量,对钢取E=× 1011Pa ;J -- 活塞杆横截面惯性矩;A -- 活塞杆横截面面积;f -- 由材料强度决定的实验数值,对钢取f=×108 N /m2; α--系数,对钢取α=1/5000;rk --活塞杆横截面的最小回转半径;八、缓冲计算液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求;液压缸在缓冲时,缓冲腔内产生的液压能E 1和工作部件产生的机械能E 2分别为:当E 1=E 2时,工作部件的机械能全部被缓冲腔液体所吸收,则有九、油缸的试验1.油缸试验压力,低于16MPa乘以工作压力的,高于16乘以工作压力的;2.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;3.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同;4.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置;。
常用液压设计计算公式
常用液压设计计算公式液压设计计算是指根据液压原理和工作条件,对液压系统进行各种设计参数的计算。
常用的液压设计计算公式包括以下几个方面:1.流量计算公式:流量是液压系统中液体通过单位时间内的体积或质量,常用的流量计算公式有:-液体通过管道的流速公式:v=A/t其中,v为液体的流速,A为液体通过的横截面积,t为流经该横截面的时间。
-流量公式:Q=Av其中,Q为液体的流量,A为液体通过的横截面积,v为液体的流速。
2.压力计算公式:压力是液体对单位面积的作用力,常用的压力计算公式有:-压力公式:P=F/A其中,P为液体的压力,F为作用在液体上的力,A为液体所受力的面积。
- 泊松公式:P=gh其中,g为重力加速度,h为液体的高度。
3.功率计算公式:功率是液压系统中单位时间内产生或消耗的能量,常用的功率计算公式有:-功率公式:P=Q×P其中,P为液体的功率,Q为液体的流量,P为液体的压力。
-功率公式:P=F×v其中,P为液体的功率,F为作用在液体上的力,v为液体的流速。
4.流速计算公式:流速是单位时间内液体通过管道的速度,常用的流速计算公式有:-流速公式:v=Q/A其中,v为液体的流速,Q为液体的流量,A为液体通过的横截面积。
- 流速公式:v=√(2gh)其中,v为液体的流速,g为重力加速度,h为液体的高度。
5.根据功率计算液压缸的力和速度:-液压缸力的计算公式:F=P/A其中,F为液压缸的力,P为液体的压力,A为液压缸的有效工作面积。
-液压缸速度的计算公式:v=Q/A其中,v为液压缸的速度,Q为液体的流量,A为液压缸的有效工作面积。
以上是液压设计常用的一些计算公式,根据具体液压系统的工作条件和设计要求,可以选择适合的公式进行计算。
在实际设计中,还需要考虑液体的黏度、泄漏、阻力等因素对计算结果的影响,综合考虑才能得到更精确的设计结果。
液压缸的计算范文
液压缸的计算范文液压缸是一种将液压能转化为机械能的设备,广泛应用于工业生产中,包括汽车制造、建筑工程、农业机械等领域。
液压缸的计算包括力学计算、液压计算和参数选择等方面。
下面将详细介绍液压缸的计算方法。
一、力学计算:液压缸的力学计算主要涉及材料的最大抗拉强度、扭矩计算、弹簧力计算和轴的挠度计算等。
1.最大抗拉强度计算液压缸的寿命与承载能力有关,材料的最大抗拉强度是评估其承载能力的重要指标。
液压缸的最大抗拉强度的计算公式为:最大抗拉强度=材料的抗拉强度×空心面积。
2.扭矩计算扭矩是一个对液压缸的瞬时力矩的评估。
液压缸的扭矩计算公式为:扭矩=力矩×转速。
3.弹簧力计算弹簧力是指液压缸在运动过程中受到的弹簧的力。
液压缸的弹簧力计算公式为:弹簧力=弹簧常数×表示位移的参数。
4.轴的挠度计算轴的挠度是指轴在承受力时的变形程度。
液压缸的轴的挠度计算公式为:挠度=(力×长度^3)/(弹性模量×断面惯量)。
二、液压计算:液压计算是液压缸设计中的重要过程,主要涉及液压缸的压力计算、液体流量计算和功率计算等。
1.压力计算液压缸的压力计算是指在给定的液体流量和缸的截面积下,计算液压缸所需的压力。
压力计算公式为:压力=力/面积。
2.流量计算液压缸的流量计算是指在给定的工作压力下,计算液压缸所需的液体流量。
流量计算公式为:流量=需要的液体流量/时间。
3.功率计算液压缸的功率计算是指在给定的压力和流量下,计算液压缸的功率。
功率计算公式为:功率=压力×流量。
三、参数选择:液压缸的参数选择是确保其正常工作的关键步骤,主要包括推力、速度、行程、缸筒直径和活塞杆直径等参数的选择。
1.推力的选择液压缸的推力是指在给定的工作条件下,液压缸所能提供的最大力。
推力的选择应满足工作条件所需的最小信号力。
2.速度的选择液压缸的速度是指液压缸的活塞在单位时间内的位移速度。
速度的选择应满足工作条件所需的最大速度。
液压缸设计计算实例
液压缸设计计算实例液压缸是一种常用于工业设备中的液压传动装置,主要由一个活塞、一个油缸和两个密封件组成。
它通过液压力将活塞推动,从而实现各种机械运动或工艺过程。
液压缸的设计计算主要包括以下几个方面:液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计。
下面以液压缸在机械设备中的应用为例,进行设计计算。
液压缸的油缸内径可以根据活塞面积计算得到,油缸内径=2×√(A/π)=2×√(0.04/π)≈0.36m。
为了方便选用标准化油缸,取油缸内径为0.35m。
根据液压缸的工作行程和速度,可以计算出整个工作周期的时间 t=行程/速度=1000mm/0.5m/s=2000s。
液压缸的密封件设计和选择也是重要的一步。
常见的密封元件有油封、活塞密封圈和导向环等。
根据液压缸的工作压力和速度,可以选择适用的密封件类型和尺寸,确保密封性能以及使用寿命。
液压缸的工作压力计算也是必要的。
液压缸工作时,会受到工作压力的作用,为了保证液压缸的安全性和可靠性,需要计算液压缸允许的最大工作压力。
液压缸的最大工作压力一般按照材料、工艺和安全要求确定,常用的安全系数为2倍。
根据工作压力和安全系数,可以计算出液压缸最大允许工作压力为12.5MPa×2=25MPa。
液压缸的材料和结构设计也需要考虑。
液压缸常用的材料有铸铁、铝合金和不锈钢等,根据具体的应用场景和要求选择适合的材料。
液压缸的结构设计包括油缸壁厚、密封件槽设计、支撑结构等,需要根据实际情况和安全性要求进行设计。
综上所述,液压缸设计计算涉及液压缸的尺寸计算、密封件的设计和选择、液压缸的工作压力计算、液压缸的材料和结构设计等方面。
通过合理计算和选取,可以设计出安全可靠的液压缸,满足机械设备的工作需求。
液压缸缸体长度的计算公式
液压缸缸体长度的计算公式
液压缸缸体长度的计算公式是根据液压系统中的工作压力、缸体直径和活塞杆长度来确定的。
液压缸是一种用液压力驱动的推拉装置,广泛应用于各种工程和机械设备中。
液压缸的缸体长度计算公式如下:
缸体长度 = 活塞杆长度 + 2 ×缸体壁厚
其中,活塞杆长度指的是液压缸活塞杆的长度,缸体壁厚是液压缸缸体壁的厚度,通常为设计要求的一小部分。
这个公式的基本原理是根据液压系统的工作压力和活塞杆的长度确定液压缸的推力需求,然后根据推力需求确定缸体的尺寸。
活塞杆长度是由液压缸的应用需求和操作环境决定的;缸体壁厚是为了保证液压缸的结构强度和安全性而设计的。
在实际应用中,还需考虑液压缸的材质和制造工艺,以及缸体与其他部件的连接方式,从而综合考虑各种因素来确定液压缸的合适长度。
此外,还需进行合理的安全余量设计,以确保液压缸在工作过程中的稳定性和可靠性。
总之,液压缸缸体长度的计算公式是基于液压系统的工作压力、活塞杆长度和缸体壁厚来确定的。
这个公式可以为液压缸的设计和制造提供参考,并确保液压缸在工作过程中具备所需的推拉能力和结构强度。
液压设计需要哪些计算公式
液压设计需要哪些计算公式液压系统是一种利用液体传递能量的动力传动系统,广泛应用于机械工程、航空航天、船舶、汽车等领域。
在液压系统的设计过程中,需要进行各种计算以确保系统的安全可靠性和性能指标的满足。
本文将介绍液压系统设计中常用的计算公式,包括液压缸的推力计算、液压泵的流量计算、液压阀的压降计算等内容。
1. 液压缸的推力计算。
液压缸是液压系统中常用的执行元件,其推力的计算是设计液压系统时的重要参数。
液压缸的推力计算公式为:F = P × A。
其中,F为液压缸的推力,单位为牛顿(N);P为液压缸的工作压力,单位为帕斯卡(Pa);A为液压缸的有效工作面积,单位为平方米(m²)。
2. 液压泵的流量计算。
液压泵是液压系统中的动力源,其流量的计算是设计液压系统时的关键参数。
液压泵的流量计算公式为:Q = V × n。
其中,Q为液压泵的流量,单位为立方米每秒(m³/s);V为液压泵的排量,单位为立方厘米每转(cm³/r);n为液压泵的转速,单位为转每分钟(r/min)。
3. 液压阀的压降计算。
液压阀是液压系统中的控制元件,其压降的计算是设计液压系统时的重要参数。
液压阀的压降计算公式为:ΔP = K × Q²。
其中,ΔP为液压阀的压降,单位为帕斯卡(Pa);K为液压阀的流量系数,是与液压阀的结构和工作原理相关的参数;Q为液压阀的流量,单位为立方米每秒(m³/s)。
4. 液压管路的压力损失计算。
液压管路是液压系统中的传输元件,其压力损失的计算是设计液压系统时的重要参数。
液压管路的压力损失计算公式为:ΔP = f × L × (Q/D)²。
其中,ΔP为液压管路的压力损失,单位为帕斯卡(Pa);f为液压管路的摩阻系数,是与管路材料和管路形状相关的参数;L为液压管路的长度,单位为米(m);Q为液压管路的流量,单位为立方米每秒(m³/s);D为液压管路的直径,单位为米(m)。
液压油缸设计计算公式
液压油缸的主要设计技术参数一、液压油缸的主要技术参数:1.油缸直径;油缸缸径,内径尺寸。
2. 进出口直径及螺纹参数3.活塞杆直径;4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.255.油缸行程;6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。
7.油缸的安装方式;达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。
应该说是合格与不合格吧?好和合格还是有区别的。
二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。
液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面:1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;2.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同。
3.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置,也因此它是液压缸的主要指标之。
液压油缸常用计算公式液压油缸常用计算公式项目公式符号意义液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min)液压油缸需要的流量(l/min) Q=V×A/10=A×S/10tV :速度(m/min)S :液压缸行程(m)t :时间(min)液压油缸出力(kgf) F = p × AF = (p × A) -(p×A)( 有背压存在时)p :压力(kgf /cm 2 )泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm )泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π液压所需功率(kw) P = Q × p / 612管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm)管内压力降(kgf/cm 2 )△P=0.000698×USLQ/d 4U :油的黏度(cst)S :油的比重L :管的长度(m)Q :流量(l/min)d :管的内径(cm)液压常用计算公式项目公式符号意义液壓缸面積(cm2) A =πD2/4D:液壓缸有效活塞直徑 (cm)液壓缸速度(m/min)V = Q / A Q:流量 (l / min) 液壓缸需要的流Q=V×A/10=A×V:速度 (m/min)非标液压、机电、试验、工控设备开发研制。
液压缸计算公式(液压缸内径和活塞杆直径的确定等)
1、液压缸内径和活塞杆直径的确定液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径:p FD π4==⨯⨯14.34=F :负载力 (N )A :无杆腔面积 (2mm )P :供油压力 (MPa)D :缸筒内径 (mm)1D :缸筒外径 (mm)2、缸筒壁厚计算π×/≤≥ηδσψμ1)当δ/D ≤0.08时pDp σδ2max 0>(mm )2)当δ/D=0.08~0.3时maxmax 03-3.2p Dp p σδ≥(mm )3)当δ/D ≥0.3时⎪⎪⎭⎫⎝⎛-+≥max max 03.14.02p p D p p σσδ(mm ) n bp σσ=δ:缸筒壁厚(mm )0δ:缸筒材料强度要求的最小值(mm )m ax p :缸筒内最高工作压力(MPa )p σ:缸筒材料的许用应力(MPa )b σ:缸筒材料的抗拉强度(MPa )s σ:缸筒材料屈服点(MPa )n :安全系数3 缸筒壁厚验算21221s )(35.0D D D PN -≤σ(MPa) D D P s rL 1lg3.2σ≤ PN :额定压力rL P :缸筒发生完全塑性变形的压力(MPa)r P :缸筒耐压试验压力(MPa)E :缸筒材料弹性模量(MPa)ν:缸筒材料泊松比 =0.3同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即:()rL P PN 42.0~35.0≤(MPa)4 缸筒径向变形量⎪⎪⎭⎫ ⎝⎛+-+=∆ν221221D D D D E DP D r (mm )变形量△D 不应超过密封圈允许范围5 缸筒爆破压力DD PE b 1lg 3.2σ=(MPa)6 缸筒底部厚度PP D σδmax21433.0≥(mm )2D :计算厚度处直径(mm )7 缸筒头部法兰厚度PL a d r Fbh σπ)(4-=(mm )F :法兰在缸筒最大内压下所承受轴向力(N )b :连接螺钉孔的中心到法兰内圆的距离(mm )a r :法兰外圆的半径(mm )L d :螺钉孔直径如不考虑螺钉孔,则:Pa r Fbh σπ4=(mm )8 螺纹强度计算螺纹处拉应力()2214D d KF-=πσ (MPa)螺纹处切应力)(2.033101D d KFd K -=τ (MPa)合成应力P n στσσ≤+=223 许用应力0sn P σσ=F :螺纹处承受的最大拉力0d :螺纹外径 (mm )1d :螺纹底径 (mm )K :拧紧螺纹系数,不变载荷取K=1.25~1.5,变载荷取K=2.5~4 1K :螺纹连接的摩擦因数,1K =0.07~0.2,平均取1K =0.12s σ:螺纹材料屈服点(MPa )0n :安全系数,取0n =1.2~2.59 缸筒法兰连接螺栓强度计算螺栓螺纹处拉应力zd KF214πσ= (MPa )螺纹处切应力zd KFd K 31012.0=τ (MPa)合成应力P n σστσσ≤≈+=3.1322z :螺栓数量10、缸筒卡键连接卡键的切应力(A 处)lD P l D D P 441max 121max ==ππτ (MPa)卡键侧面的挤压应力 )2(h 4)2(44121max 2212121max h D D P h D D D P c -=--=πππσ卡键尺寸一般取h=δ,l=h,2hh h 21==验算缸筒在A 断面上的拉应力[]22121max 22121max)(4-)(4D h D D P D h D D P --=-=ππσ (MPa)11、缸筒与端部焊接焊缝应力计算()n d D F b σηπσ≤-=21214 (MPa)1D :缸筒外径 (mm )1d :焊缝底径 (mm )η:焊接效率,取η=0.7b σ:焊条抗拉强度 (MPa)n :安全系数,参照缸筒壁的安全系数选取如用角焊ησh D F 12= h —焊角宽度 (mm )12、活塞杆强度计算1)活塞杆在稳定工况下,如果只承受轴向推力或拉力,可以近似的用直杆承受拉压载荷的简单强度计算公式进行计算:P d Fσπσ≤=24 (MPa)2)如果活塞杆所承受的弯曲力矩(如偏心载荷等),则计算式: P d W M A F σσ≤⎪⎪⎭⎫⎝⎛+= (MPa) 3)活塞杆上螺纹、退刀槽等部位是活塞杆的危险截面,危险截面的合成应力应该满足:P n F σσ≤≈222d 8.1 (MPa) 对于活塞杆上有卡键槽的断面,除计算拉应力外,还要计算校核卡键对槽壁的挤压应力:()[]pp c d d F σπσ≤+-=243212 F :活塞杆的作用力(N )d :活塞杆直径 (mm )P σ:材料许用应力,无缝钢管P σ=100~110MPa ,中碳钢(调质)P σ=400MPad A :活塞杆断面积 (2mm )W :活塞杆断面模数 (3mm )M :活塞杆所承受弯曲力矩(N.m )2F :活塞杆的拉力 (N )2d :危险截面的直径 (mm )1d :卡键槽处外圆直径 (mm )3d :卡键槽处内圆直径 (mm )c :卡键挤压面倒角 (mm )pp σ:材料的许用挤压应力(MPa )13、活塞杆弯曲稳定行计算活塞杆细长比计算 dL B 4=λ B L :支铰中心到耳环中心距离(油缸活塞杆完全伸出时的安装距);1)若活塞杆所受的载荷力1F 完全在活塞杆的轴线上,则按下式验算:kK n F F ≤1 2261210B K L K I E F ⨯=π (N )()()51108.111⨯=++=b a E E (MPa ) 圆截面:44049.064d d I ==π(4m )K F :活塞杆弯曲失稳临界压缩力 (N )K n :安全系数,通常取K n =3.5~6K :液压缸安装及导向系数(见机械设计手册5卷21-292) 1E :实际弹性模量(MPa )a :材料组织缺陷系数,钢材一般取a ≈1/12b :活塞杆截面不均匀系数,一般取b ≈1/13E :材料弹性模量,钢材 5101.2⨯=E (MPa )I :活塞杆横截面惯性矩(4m )d A :活塞杆截面面积 (2m )e :受力偏心量 (m )s σ:活塞杆材料屈服点(MPa )S :行程 (m )2)若活塞杆所受的载荷力1F 偏心时,推力与支承的反作用力不完全处在中线上,则按下式验算:βσsec 81106e d A F d S K +⨯= (N )其中:62010⨯=EI L F a B K β 一端固定,另一端自由0a =1,两端球铰0a =0.5,两端固定0a =0.25, 一端固定,另一端球铰0a =0.3514、 缸的最小导向长度220DS H +≥(mm )导向套滑动面的长度1)在缸径≤80mm 时A=(0.6~1)D2)在缸径>80mm 时A=(0.6~1)d活塞宽度取B=(0.6~1)D15、圆柱螺旋压缩弹簧计算材料直径:PKCP d τn 6.1≥CC C K 615.04414+--= 或按照机械设计手册选取(5卷11-28) d DC = 一般初假定C-5~8有效圈数:'8'd3n n 4P P D P F Gd n ==弹簧刚度n C GDn D G P 43488d '==总圈数x n +=1nx :1/2 (见机械设计手册第5卷 11-18) 节距:n dH t )2~1(0-=间距:d t -=δ自由高度:d n H )(10+=最小工作载荷时高度:101-F H H =GD C P Gd D P F 414311n 8n 8==或者'11P PF =最大工作载荷时的高度n n F H H -0=GD C P Gd D P F n n 443n n 8n 8==或者'n1P P F = 工作极限载荷下的高度j j F H H -0=GDC P GdD P F j j 443j n 8n 8==或者'j 1P P F =弹簧稳定性验算 高径比:DH b 0=应满足下列要求两端固定 b ≤5.3 一端固定,另一端回转 b ≤3.7 两端回转 b ≤2.6 当高径比大于上述数值时,按照下式计算:n B C P H P C P >0'=C P :弹簧的临界载荷 (N )B C :不稳定系数 (见机械设计手册第5卷 11-19) n P :最大工作载荷 (N )强度验算: 安全系数 P S S ≥+=maxmin075.0τττ0τ: 弹簧在脉动循环载荷下的剪切疲劳强度,(见机械设计手册第5卷 11-19)m ax τ: 最大载荷产生的最大切应力 n 3max 8P d KDπτ=, m in τ: 最小载荷产生的最小切应力 13in8P dKD m πτ=, P S :许用安全系数 当弹簧的设计计算和材料实验精度高时,取P S =1.3~1.7 , 当精确度低时,取 P S =1.8~2.2静强度: 安全系数P SS S ≥=maxττ S τ:弹簧材料的屈服极限15 系统温升的验算在整个工作循环中,工进阶段所占的时间最长,为了简化计算,主要考虑工进时的发热量。
液压缸计算
液压缸设计计算说明 系统压力为1p =25 MPa本系统中有顶弯缸、拉伸缸以及压弯缸。
以下为这三种液压缸的设计计算。
一、 顶弯缸 1 基本参数的确定(1)按推力F 计算缸筒内径D根据公式 3.5710D -=⨯ ① 其中,推力F=120KN系统压力1p =25 MPa带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。
若速比为ϕ,则d = ② 取ϕ=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm8050D d ϕ===1.6 (3)最小导向长度H 的确定对一般的液压缸,最小导向长度H 应满足202L DH ≥+ ③ 其中,L 为液压缸行程,L=500mm带入③式,计算得H=65mm (4)活塞宽度B 的确定活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2A BC H +=-⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1假设此液压缸为厚壁缸筒,则壁厚1]2D δ=⑧ 液压缸筒材料选用45号钢。
其抗拉强度为σb =600MPa 其中许用应力[]b nσσ=,n为安全系数,取n=5将数据带入⑧式,计算得δ=8.76mm故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其强度要求。
液压油缸设计计算公式
液压油缸的主要设计技术参数的主要技术参数:一、液压油缸1.油缸直径;油缸缸径,内径尺寸。
2. 进出口直径及螺纹参数3.活塞杆直径;计算的时候经常是油缸压力;油缸工作压力,4.16,高于16MPa乘以1.5用试验压力,低于1.25 乘以油缸行程;5.活塞杆伸出收根据工况情况定,6.是否有缓冲;缩如果冲击大一般都要缓冲的。
7.油缸的安装方式;频繁出现故障的油达到要求性能的油缸即为好,应该说是合格与不合格吧?好和合格缸即为坏。
还是有区别的。
结构性能参数包括:液压油缸二、液压缸1.4.3.速度及速比;的直径;2.活塞杆的直径;工作压力等。
衡量一个油缸的性能好坏液压缸产品种类很多,油缸的工作性能主要出厂前做的各项试验指标,主要表现在以下几个方面:专业文档供参考,如有帮助请下载。
.是指液压缸在无负载状态下的最低启动压力:1.它是反映液压缸零件制造和装配最低工作压力,精度以及密封摩擦力大小的综合指标;是指液压缸在满负荷运动时没最低稳定速度:2.有爬行现象的最低运动速度,它没有统一指标,对最低稳定速度要求也承担不同工作的液压缸,不相同。
内部泄漏:液压缸内部泄漏会降低容积效率,3.影响液压缸的定位精度,使液加剧油液的温升,稳定地停在缸的某一位置,也压缸不能准确地、因此它是液压缸的主要指标之。
液压油缸常用计算公式常用计算公式液压油缸义符号意公项目式(cm) :液压缸有效活塞直径 D 液压油缸面积(cm 2 ) D 2 /4 A=π(m/min) 液压油缸速度(l / min) Q :流量V = Q / A(m/min) V :速度液压油缸需要的流量S :液压缸行程(m)A/10=A×S/10t Q=V×(l/min) (min) :时间tA F = p ×(kgf) 出力液压油缸:压力p (kgf /cm 2 ) A) A) F = (p ×-(p×专业文档供参考,如有帮助请下载。
液压缸的设计与计算
液压缸的缓冲装置
必要性 缓冲原理 缓冲装置类型
宝鸡理工学校
缓冲的必要性
由于惯性力较大,活塞运动到终端时会撞 击缸盖,产生冲击和噪声,严重影响加工 精度,甚至使液压缸损坏。 ∴ 常在大型、高速、或高精度液压缸中设置 缓冲装置或在系统中设置缓冲回路。
宝鸡理工学校
∵ 在质量较大、速度较高(v>12m/min),
宝鸡理工学校
设计依据
缸工作压力、运动速度、工作条件、
加工工艺及拆 装检修等。
宝鸡理工学校
4、3、2 缸体与端盖的结构设计
缸体与端盖的连接 活塞和活塞杆结构 活塞杆头部的连接 液压缸的缓冲装置 液压缸的排气装置
宝鸡理工学校
缸体与端盖的连接
法兰连接 半环连接 螺纹连接 拉杆连接 焊接连接
宝鸡理工学校
缓冲原理
利用节流方法在液压缸的回油腔产 生阻力,减小速度,避免撞击。
宝鸡理工学校
缓冲装置类型
(1) (2) (3) (4) 圆柱形环隙式缓冲装置 圆锥形环隙式缓冲装置 可变节流槽式缓冲装置 可调节流孔式缓冲装置
宝鸡理工学校
液压缸的排气装置
必要性 排气方法
宝鸡理工学校
排气的必要性
∵ 系统在安装或停止工作后常会渗入空气
宝鸡理工学校
(三)液压缸缸体长度L
原则:由液压缸最大行程、活塞宽 度、活塞杆导向套长 度、活 塞杆密封 长度和特殊要求的 其它长度确定, 为减小加工难 度,一般液压缸缸体长度不 应大于内径的20—30倍。
宝鸡理工学校
三 缸筒壁厚δ
中低压系统,无需校核 确定原则 < 高压大直径时,必须校核δ
宝鸡理工学校
导向长度H≥L/20+D/2 (L为液压缸最大行程) 活塞宽度B =(0、6——1、0)D; A =(0.6—10)D (D<80mm) 导向套滑动面长度A A =(0.6—1)d (D≥80mm) 如装有隔套K时, C = H -(A+B)/2
液压缸的设计与计算
液压缸的设计与计算一液压缸的主要尺寸液压缸的主要尺寸包括:液压缸内径D、活塞杆直径d、液压缸缸体长度l。
(一)液压缸内径D1 根据最大总负载和选取的工作压力来确定以单杆缸为例:无杆腔进油时 D =√4F1/π(p1-p2)-d2p2/p1-p2有杆腔进油时 D =√4F2/π(p1-p2)+d2p1/p1-p2 若初步选取回油压力p2=0,则上面两式简化为:无杆腔进油时 D =√4F1/πp1有杆腔进油时 D =√4F2/πp1+d22 根据执行机构的速度要求和选定的液压泵流量来确定无杆腔进油时:D=√4qv/πv1有杆腔进油时:D=√4qv/πv1+ d2计算所得液压缸的内径(即活塞直径)应圆整为标准系列值。
(二)活塞杆直径d原则:活塞杆直径可根据工作压力或设备类型选取当液压缸的往复速度比有一定要求时 d = D√λv-1/λv计算所得活塞杆直径d亦应圆整为标准系列值。
(三)液压缸缸体长度L原则:由液压缸最大行程、活塞宽度、活塞杆导向套长度、活塞杆密封长度和特殊要求的其它长度确定其中:活塞宽度=(0。
6--1。
0);D<80mm时,C=(0.6-10)D导向套长度C〈D≥80mm时,C=(0.6-1)d为减小加工难度,一般液压缸缸体长度不应大于内径的20--30倍。
二液压缸的校核1 缸体壁厚δ的校核中低压系统,无需校核原则〈高压大直径时,必须校核δ校核方法:1)薄壁缸体(无缝钢管)当δ/ D≤0.08时:δ≥pmaxD/2[б]2)厚壁缸体(铸造缸体)当δ/ D=0.08--0.3时:δ≥pmaxD/2.3 [б]-3pmax当δ/ D≥0.3时:δ≥D/2(√[б]+ 0.4 pmax/[б] -1.3pmax-12 液压缸缸盖固定螺栓直径d1的校核∵液压缸缸盖固定螺栓在工作过程中同时承受拉应力和剪切应力∴可按下式校核d1≥√5.2KF/πz[б]3 活塞杆稳定性验算当液压缸承受轴向压缩载荷时:若l/d≤10时,无须验算l/d≥10时,应该验算,可按材料力学有关公式进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压缸的设计计算?
作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。
由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。
设计内容
液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。
其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。
液压缸的类型及安装方式选择
液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。
为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。
液压缸可广泛的分为通用型结构和专用型结构。
而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸
前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。
缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。
前、后端盖和活塞等主要零件均为通用件。
因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。
但是,受到行程长度、缸筒内径和额定压力的限制。
如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。
(2)焊接型液压缸
缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。
焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。
但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。
焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。
(3)法兰型液压缸
缸筒与前、后端盖均为法兰连接,而法兰与缸筒有整体、焊接、螺纹等连接方式。
法兰型液压缸的特点是额定压力较高,缸筒内径大,外形尺寸大。
适用于较严酷的冲击负载和外界工作条件,又称重载型液压缸。
法兰型液压缸通常额定压力Mpa P n 35≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 8≤。
由此可知,我们设计的液压升降平台车的液压缸应选择(2)焊接型液压缸比较合适。
当然对缸筒的连接还需根据具体情况具体分析确定 液压平台的运动与负载分析?
液压平台的运动方式主要是实现各个液压缸的上升和下降,但在上升和下降过程中在起升阶段会有一段的加速运动,等到加速到所要求的速度时,平台将实现一段的匀速运动,随后减速停止。
在整个运动的过程中,液压升降平台的外在负载主要由汽车的重力和平台自身的自重组成。
所以外在负载的大小相对来说是稳定不变的。
液压缸的设计计算与选取
汽车质量kg m 2000=
四个液压柱中液压缸的单缸最大升起的质量kg m M 5004=÷= 升降平台的最大起升高度:?m h 5.1= 上升速度等于下降速度:?s m v /1.0= 液压平台上升工况的最大负载 液压缸的机械效率:95.0=η
液压缸的工作压力由表3-1可知MPa P 5.1=
表3-1不同负载条件下的工作压力
1
、液压缸
内径D 的计算
由公式η
πP D F max
4=
(kN F 5max =;Mpa P 5.1=;95.0=η;) 解得m D 066858.0=。
根据表3-2可知,圆整成标准值后,得液压缸内径D=80mm 。
2、缸筒壁厚和外径计算
本设计的内径D 为80mm,查液压设计手册液压缸的外径D1为95mm,缸壁的厚度为。
一般按正规的方法选取液压缸壁厚都能满足其强度,但为安全起见我们还要进行校核。
由于D=80mm ,外径D1=95mm ,则25.0094.0≤=D δ,可按第一强度理论,即按照薄壁圆筒的中径公式计算,则有 式中 δ---缸筒壁厚; D ---缸筒内径;
P max ---缸筒试验压力,液压缸的额定压力Mpa P n 16≤时的P P n 5.1max =,额定压力MPa P n 16>时的P P n 25.1max =; ][σ---材料许用应力。
σb 为材料的抗拉强度,n 为安全系数,55.3-=n ,这里取5=n 。
选用45号钢,并且调质HB 285241-,查阅《工程力学》刘静香着可知45号钢的抗拉强度
MPa b
598530-=σ
,现取MPa b 560=σ,故:
由于液压缸的工作压力MPa MPa P 165.1<=,故取MPa P P n 25.25.1max == 所以mm m D
P
8.00008.0112
280
25.2]
[2max
==⨯⨯=
=
σδ
因为>,故强度足够。
活塞杆是液压缸专递动力的主要零部件,它要承受拉力、压力、弯力和震动冲击等多种作用,必须有足够的强度和刚度。
1、活塞杆直径的计算
根据活塞杆受力状况来确定,一般为受拉力作用时,d=~。
受压力作用时:? P <5MPa 时,d=~?
5MPa <P <7MPa 时,d=~ P>7MPa 时,d= 因为P=,D=,故d=
根据下表可知活塞杆直径d=40mm
2、活塞杆强度校核 (1)按强度条件校核 由公式 ]
[4σπF
d ≥
式中 d---活塞杆的直径; F---活塞杆上的作用力;
σ---活塞杆材料许用应力,n b σσ=,
σ
b
为材料的抗拉强度,n 为安全
系数,一般取4.1≥n 。
由45号钢的许用应力MPa n b 3735
.1560
==
=σσ,N F 5000= 得 m d 00413.0≥,而mm d 40=,故活塞杆强度符合要求。
(2)按弯曲稳定性校核
当活塞杆全部伸出后,活塞杆外端到液压缸支撑点之间的距离d l 10>时,应进行稳定性校核。
按材料力学理论,当一根受压直杆的轴向载荷F 超过临界受压载荷F K 时,即可能失去原有直线状态的平衡,称为失稳,其稳定条件为
式中 F ---液压缸的最大推力; F K ---液压缸的临界受压载荷;
n k ---稳定安全系数,一般取42-=n k 。
液压缸临界受压载荷F K 与活塞杆和缸体的材料、长度、刚度以及两端支撑状况有
关。
F K 的相关计算如下:
由公式 l
F EJ
n k 2
2π=
式中 l ---活塞杆的计算长度;
n ---端点安装形式系数,两端固定,故4=n ; E---材料的弹性模量,钢材的Pa E 101.211
⨯= ; J---活塞杆的横截面转动惯量,实心杆的64
4
d
J π=。
而10256.17
4
64
-⨯==
d
J π,m l 5.1=,
故kN EJ
n l
F k 2.462
2
==
π,
而kN kN F n
F k
k
55.115=<
=(当n k 取4时),
故活塞杆弯曲稳定性符合要求。
当活塞杆全部伸出时,从活塞支撑面中点到导向套滑动面中点的距离称为最小导向长度。
如果导向长度过短。
将使液压缸因间隙引起的初始挠度增大,影响液压缸的工作性能和稳定性。
因此,在设计时必须保证液压缸有一定的最小导向长度。
对于一般液压缸,最小导向长度应满足下式要求: 式中 L---最大工作行程; D---缸筒内径。
液压缸工作行程的确定:
升降液压缸的最大升起高度为?,依据表3-4选取液压缸工作行程为:800mm?。
故L=,D=,代入公式
得:mm D
L H 802
20=+=
活塞宽度B 的计算: mm D B )80~48()0.1~6.0(==
取mm B 60=。
导向套滑动面的长度A,由公式d A )0.1~6.0(=
由前面的数据可知,mm d 40=,故取mm d A 40~24)0.1~6.0(== 取mm A 30=。
中隔圈K 的长度C:
由公式C B A H ++=2,得:mm B
A H C 352
=+-=。