《用坐标表示平移》练习题(含答案)

合集下载

1用坐标表示平移

1用坐标表示平移
第七章 平面直角坐标系
7.2.2 用坐标表示平移
-
教学新知
点平移与坐标变化规律: 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得 到对应点的坐标是(x+a ,y) 或(x-a ,y);将点(x,y)向上(或下) 平移b个单位长度,可以得到对应点的坐标是(x,y+b)或(x,y-b).
知识梳理
答案:解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移 后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4) 平移后点的坐标为:(-1,1);(5)平移后点的坐标为:(3,-4).
中考在线 考点:坐标与图形变化——平移。
【例1】(2015•大连)在平面直角坐标系中,将点P(3,2) 向右平移2个单位,所得的点的坐标是( D ).
【例2】(2015•济南)如图7-2-51,在平面直角坐标系中, △ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个 单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的 对应点A1的坐标为( D ).
A.(4,3) B.(2,4) C.(3,1) D.(2,5)
知识梳理
图7-2-51
课堂练习
6.点P(a,b)向左平移1个单位长度,再向上平移1个单位长度, 得到点(3,-4),则a=__4__,b=___-_5__.
讲评:本题考查了图形的平移变换.根据点的坐标的平移规律可得a-1=3, b+1=-4,再解可得a、b的值.
课堂练习
图7-2-54
课堂练习
讲评:考查了坐标与图形性质,坐标与图形变化-平移.(1)根据长方形 形状求出BC到y轴的距离,CD到x轴的距离,然后写出点B、C、D的坐标即 可;(2)根据图形写出平移方法即可.

20版初中《金榜学案》数学七年级下人教版配套课件:7.2.2 用坐标表示平移

20版初中《金榜学案》数学七年级下人教版配套课件:7.2.2 用坐标表示平移

【新知预习】阅读教材P75—P77,填写下面表格:
左右 用坐标 平移 表示点 的平移 上下
平移
在平面直角坐标系中,将点(x,y)向左 或向右平移a个单位长度,可以得到相 应的坐标__(_x_-_a_,_y_)__,__(_x_+_a_,_y_)__.
在平面直角坐标系中,将点(x,y)向上 或向下平移a个单位长度,可以得到相 应的坐标__(_x_,_y_+_a_)__,__(_x_,_y_-_a_)__.
2
【我要做学霸】 点的平移规律 (1)向右平移a个单位长度,坐标P(x,y)⇒P___(_x_+_a_,_y_)_. (2)向左平移a个单位长度,坐标P(x,y)⇒P___(_x_-_a_,_y_)_. (3)向上平移b个单位长度,坐标P(x,y)⇒P___(_x_,_y_+_b_)_. (4)向下平移b个单位长度,坐标P(x,y)⇒P___(_x_,_y_-_b_)_.
A.a=5,b=2
B.a=4,b=-1
C.a=4,b=5
D.a=7,b=2
3.三角形ABC与三角形A′B′C′在平面直角坐标系中 的位置如图,若点P(m,n)是三角形ABC内部一点,则平移 后的对应点P′的坐标为___(_m_-_4_,_n_-_4_)___.
知识点一 点的平移(P75“探究”拓展) 【典例1】如图,点A,B的坐标分别为(1,0),(0,2),若 将线段AB平移到A1B1的位置,点A1,B1坐标分别为(2,a), (b,3),试求a2-2b的值.
解:(1)∵点A(2,n)在第一象限,把点A向右移p个单位长 度得点B,∴B(2+p,n). (2)①点A向下平移4个单位长度得到点C(2,n-4), ∵点C距x轴1个单位长度, ∴|n-4|=1,n=5或3, 当n=5时,C(2,1),则A(2,5),

七年级下册练习及答案用坐标表示平移

七年级下册练习及答案用坐标表示平移

用坐标表示平移一、单选题(共29题;共58分)1.已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A. B. C. D.2.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A. (﹣1,2)B. (2,1)C. (2,﹣1)D. (3,﹣1)3.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A. (1,1)B. (-1,3)C. (5,1)D. (5,3)4.已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A. (-3,5),(-6,3)B. (5,-3),(3,-6)C. (-6,3),(-3,5)D. (3,-6),(5,-3)5.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)6.将△ABC的三个顶点的横坐标都加上6,纵坐标都减去5,则所得图形与原图形的关系是()A. 将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B. 将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C. 将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D. 将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位7.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是()A. (﹣2,﹣3)B. (﹣2,6)C. (1,3)D. (﹣2,1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A. (0,﹣9)B. (﹣6,﹣1)C. (1,﹣2)D. (1,﹣8)9.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)10.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2)则点B′的坐标为()A. (4,3)B. (3,4)C. (-1,-2)D. (-2,-1)11.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A. 平行于y轴B. 平行于x轴C. 与y轴相交D. 与y轴垂直12.在平面直角坐标系中,已知线段AB的两个端点分别是A(- 4 ,-1).B(1,1) 将线段AB平移后得到线段A ’B’,若点A’的坐标为(-2 , 2 ) ,则点B’的坐标为()A. ( 3 , 4 )B. ( 4 , 3 )C. (-1 ,-2 )D. (-2,-1)13.在平面直角坐标系中,将点关于原点对称得到点,再将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)15.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A. (2,)B. (1,2)C. (1,)D. (,1)16.在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)17.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(2,5),则点B(﹣4,﹣1)的对应点D的坐标为()A. (﹣8,﹣3)B. (4,2)C. (0,1)D. (1,8)18.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A. 5个B. 4个C. 3个D. 2个19.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (4,0)D. (0,-4)20.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度的到点A′,则点A′的坐标是()A. (-5,6)B. (1,2)C. (1,6)D. (-5,2)21.若将点A(m+2,3)先向下平移1个单位,再向左平移2个单位,得到点B(2,n﹣1)则()A. m=2,n=3B. m=2,n=5C. m=﹣6,n=3D. m=﹣6,n=522.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. -1B. -4C. 2D. 323.在平面直角坐标系中,已知点,,平移线段,使点落在点处,则点的对应点的坐标为()A. B. C. D.24.若点A的坐标是,AB=4,且AB平行于y轴,则点B的坐标为()A. B. 或 C. D. 或25.过点和作直线,则直线()A. 与轴平行B. 与轴平行C. 与轴相交D. 与轴,轴均相交26.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)27.在平面直角坐标系中,点向左平移个单位长度得到的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限28.点先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A. B. C. D.29.在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.二、填空题(共20题;共25分)30.抛物线y=x2+4x+3向下平移4个单位后所得的新抛物线的表达式是________.31.将点P(a+1,2a)向上平移8个单位得到点在第二象限,则a的取值范围是________.32.在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为________ .33.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是________.34.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.35.将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.36.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是________.37.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案

人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
故选C.
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案) (31)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案) (31)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)一、单选题1.将点(-3,4)向右平移3个单位、向下平移2个单位后的坐标为( ) A.(-6,0) B.(6,0) C.(0,-2) D.(0,2)【答案】D【解析】【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,即可求解.【详解】解:横坐标右移加,左移减;纵坐标上移加,下移减,将点A(-3,4)向右平移3个单位,再向下平移2个单位,得到的点A′的坐标是(0,2).故选:D.【点睛】本题主要考查了在平面直角坐标系中,图形的平移与图形上某点的平移相同,难度适中.2.在平面直角坐标系中,点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为()A.(﹣3,﹣1)B.(﹣3,7)C.(1,﹣1)D.(1,7)【答案】C【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:点M(﹣1,3),先向右平移2个单位,再向下平移4个单位,得到的点的坐标为(﹣1+2,3﹣4),即(1,﹣1),故选:C.【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.3.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为( ) A.(6,3) B.(0,3) C.(6,﹣1) D.(0,﹣1)【答案】D【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】解:由题意A (1,3)的对应点的坐标为(-2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B (3,1)的对应点的坐标为(0,-1).故选:D .【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.抛物线23y x =先向下平移1个单位,再向左平移2个单位,所得的抛物线是( )A .23(2)1y x =+-.B .23(2)1y x =-+C .2(2)1y x =--D .23(2)1y x =++ 【答案】A【解析】【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将抛物线y=3x 2先向向下平移1个单位可得到抛物线y=3x 2-1;由“左加右减”的原则可知,将抛物线y=3x 2-1先向左平移2个单位可得到抛物线23(2)1y x =+-.故选A.本题考查二次函数图象与几何变换,解题的关键是掌握函数图象平移的法则“左加右减,上加下减”的原则.5.将点A(3, 1)向上平移2个单位得到点B , 点B 的坐标是( )A .(5,3)B .(1, 3)C .(3, 3)D .(5, 1)【答案】C【解析】【分析】根据点的平移规律,向上平移2个单位,将纵坐标加2即可.【详解】点A(3, 1)向上平移2个单位,纵坐标加2得(3, 3),故B 的坐标是(3, 3),选C.【点睛】本题考查点的平移,熟练掌握上下平移是改变纵坐标,左右平移改变横坐标是关键,与函数图像平移的“左加右减”要进行区分. 6.点()34--,先向上平移5个单位,再向右平移4个单位后的坐标为( )A .()20,B .()71-,C .()19-,D .()11, 【答案】D【解析】【分析】根据坐标系中点的平移规律,上下平移改变纵坐标,左右平移改变横坐标,即可解答.向上平移5个单位,纵坐标为-4+5=1,向右平移4个单位,横坐标为-3+4=1,所以平移后的坐标为()11,,故选D.【点睛】本题考查坐标系中点的平移,熟记平移规律是解题的关键.7.将△ABC向左平移2个单位长度后得到△A'B'C'.若点A的坐标是(-3,7),则点A'的坐标是( )A.(-5,5) B.(-1,9) C.(-5,7) D.(-1,7)【答案】C【解析】【分析】根据平移点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减)求解.【详解】解:∵△ABC向左平移2个单位长度后得到△A′B′C′,∴点A(-3,7)向左平移2个单位长度后得到的点A′的坐标为(-5,7).故选:C.【点睛】本题考查了坐标与图形变化——平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.8.在平面直角坐标系中,将点(2,3)向右平移2个单位,所得到的点的坐标是()A.(2,5 )B.(4,3 )C.(0,3 )D.(2,1 )【答案】B【解析】【分析】把点(2,3)的横坐标加2,纵坐标不变得到(4,3),就是平移后的对应点的坐标.【详解】点(2,3)向右平移2个单位长度后得到的点的坐标为(4,3).故选B.【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键.9.在如图所示的网格中,有两个完全相同的直角三角形纸片,如果把其中一个三角形纸片先横向平移m格,再纵向平移n格,就能使它的一条边与另一个三角形纸片的一条边重合,拼接成一个四边形,那么m n 的结果()A.只有一个确定的值B.有两个不同的值C.有三个不同的值D.有三个以上不同的值【答案】B【解析】【分析】根据使一个三角形的一条边与另一个三角形的一条边重合,分情况讨论平移方式,然后分别求出m+n即可.【详解】解:①上边的三角形向右平移两个单位,向下平移三个单位,此时m+n=5;②上边的三角形向右平移两个单位,向下平移五个单位,此时m+n=7;③上边的三角形向左平移两个单位,向下平移三个单位,此时m+n=5;所以m n+的结果有两个不同的值,故选B.【点睛】本题考查图形的平移,根据题目要求判断出平移方式是解题关键.A B,其中点A,B的对应点分别10.如图,线段AB经过平移得到线段''A B 为点'A,'B,这四个点都在格点上.若线段AB上有一个点(),P a b,则点P在''上的对应点P'的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b ++ 【答案】A【解析】【分析】 先根据点A 到它的对应点'A 的平移规律即可得到线段AB 到线段''A B 的平移规律,从而得到点P 到对应点P' 的平移规律,即可得到P'的坐标【详解】解:∵点A (1,﹣1)到它的对应点'A (﹣1,2)的平移规律是:先向左平移2个单位,再向上平移3个单位,∴AB 到线段''A B 的平移规律是:先向左平移2个单位,再向上平移3个单位,∴点(),P a b 平移后对应点P'的坐标为:()2,3a b -+故选A.【点睛】此题考查的是坐标与图形的变化——平移:横坐标为左减右加,纵坐标为上加下减,掌握点的平移规律是解决此题的关键.。

《用坐标表示平移》参考课件

《用坐标表示平移》参考课件
-3
4
A (-2,-3)
y
C (-2,4)
B (-2,2)
1、向上平移5个单位长度
2、向上平移7个单位长度
请你观察ABC三点的坐标的变化,你能发现什么规律吗?
A (-2,-3)
C (-2, 4)
B (-2, 2)
(1)左、右平移:
向右平移a个单位
(2)上、下平移:
原图形上的点(x,y) ,
1
A
1
C
1
B
1
A
1
C
1
B
1
总结规律2:
(1)横坐标变化,纵坐标不变:
向右平移a个单位
原图形上的点(x,y) ,
(x+a,y)
图形上点的坐标变化与图形平移间的关系
向左平移a个单位
原图形上的点(x,y) ,
(x-a,y)
向上平移b个单位
原图形上的点(x,y) ,
3
2
1
-2
-1
-3
4
y
A
B
C
-5
-4
A1
B1
C1
(4,3)
(1,2)
(3,1)
(-2,3)
(-3,1)
(-5,2)
二. 探索图形上点的坐标变化与图形平移间的关系
1.例题探索 如图,△ABC三个顶点的坐A(4,3),B(3,1),C(1,2) (1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变 (2)依次连接A1,B1,C1,各点,得到三角形A1B1C1
将△ABC三个顶点的纵坐标都减去5,横坐标不变。
2
3
A2
C2
B2
1
A

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。

人教版七年级数学第七章第2节《坐标方法的简单应用》单元训练题 (7)(含答案解析)

人教版七年级数学第七章第2节《坐标方法的简单应用》单元训练题 (7)(含答案解析)
(2) 的面积为_______.
23.这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:
(1)用坐标表示狮子所在的点_____________;
(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣3),请直接在图中标出大象所在的位置;(描出点,并写出大象二字)
故选:C.
本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,读懂题意是解题关键.
12.B
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
解:将点A(﹣4,3)先向右平移2个单位,再向下平移2个单位,
得到B点的坐标是(﹣4+2,3﹣2),
即(﹣2,1),
故选:B.
本题考查了坐标与图形变化-平移,关键是掌握点的坐标与图形的平移的关系.
【解析】
根据平面直角坐标系点的平移规律即可解出.
∵A(-3,4)向左平移两个单位长度
∴横坐标为-3-2=-5
∴平移后坐标为(-5,4)
故答案是(-5,4).
本题主要考察平面直角坐标系点的平移,找准平移对象是解题关键.
21.请在图中建立平面直角坐标系,使学校的坐标是 ,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.
22.如图,在平面直角坐标系中,每个小正方形的边长为一个单位长度.已知△ABC的顶点A(−2,5)、B(−4,1)、C(2,3),将△ABC平移得到 ,点 对应点 (B对应点 ,C对应点 ).
(1)画出 ,并写出点 的坐标_______;
本题考查了坐标与图形变化-平移,熟练掌握平移变化与坐标变化规律是解答的关键.
6.A

人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)

人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)

人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)如图,平面直角坐标系中,A (﹣3,0)B (0,4)把△AOB 按如图标记的方式连续做旋转变换,这样得到的第2017个三角形中,O 点的对应点的坐标为_____.【答案】(8064,0)【解析】解:∵A (﹣3,0),B (0,4),∴OA =3,OB =4,由勾股定理得:AB =,∴△ABC 的周长=3+4+5=12.∵△OAB 每连续变换3次后与原来的状态一样,2017÷3=672…1,∴第2017个三角形的直角顶点是第673个循环组第一个三角形的直角顶点,∴三角形2017的直角顶点O 的横坐标=672×12=8064,∴三角形2017的直角顶点O 的坐标为(8064,0).故答案为:(8064,0).点睛:本题考查了坐标与图形变化﹣旋转,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.42.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.【答案】(2,0)【解析】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.43.在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为_____.【答案】22016【解析】根据点A0的坐标为(1,0),可得OA=1.然后根据题意,将线段OA绕原点O沿逆时针方向旋转45°,可知360°÷45°=8,可得A1、A9、A17、···A2017都在第一象限,再根据OA1=2OA=2,∠A1OA=45°,可求得A1的纵坐标为同理可得,A 99;∴A201720172016故答案为:20162.44.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】【分析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).45.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N的坐标______.【答案】()7,2-或()3,2--.【解析】【分析】根据“平行于x 轴的直线上的点的坐标的特征”结合已知条件分析解答即可.【详解】∵MN ∵x 轴,且M 的坐标为(2,-2),∵可设点N 的坐标为(a ,-2),又∵MN=5, ∵25a -=,∵25a -=或25a -=-,解得:7a =或3a =-,∵点N 的坐标为(7,-2)或(-3,-2).故答案为:(7,-2)或(-3,-2).【点睛】本题解题有以下两个要点:(1)平行于x 轴的直线上的点的纵坐标相等;(2)平行于x 轴的直线上两点间的距离等于这两个点的横坐标差的绝对值.46.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线段A ′B ′,若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是___.【答案】(6,4)【解析】【分析】先求出点A 经过怎样的平移得到A ′,再将B 进行同样的平移即可.【详解】∵-2+5=3,1+1=2,∴A 点向右平移5个单位长度,向上平移1个单位长度,∴1+5=6,3+1=4,∴点B ′的坐标为(6,4).【点睛】此题主要考察线段的平移,根据对应点的平移分式相同是解题的关键.47.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.【答案】15 (7,3)【解析】分析:该题是点的坐标规律,通过对部分点分析,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯, 12342,6,12,20,a a a a ==== 找出规律.详解:由题意,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯,则12342,6,12,20,a a a a ====1122,a =⨯=2236,a =⨯=33412,a =⨯=44520,a =⨯= ,()1n a n n =+,第12秒的时候在()33,3,A 向下运动3秒,到点()3,0.即在第15秒的时候运动到点()3,0.77856,A =⨯=即粒子运动56秒后到点()77,7.A 然后粒子向下运动4秒后到点()7,3. 即粒子运动60秒后的坐标为()7,3.故答案为:()15,7,3.点睛:属于找规律题目,找出它们之间的规律是解题的关键.48.如图,在平面直角坐标系中,点A 的坐标为(﹣2,,以原点O为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________.【答案】(【解析】作AB ⊥x 轴于点B ,∴AB=OB=2,则tan ∠AOB=AB BO == ∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A ′后,∠A ′OC=165°-30°-90°=45°,OA ′=OA=2OB=4,∴A ′C=OC=即A ′(−),故答案为:(.49.如图,在直角坐标系中,设一动点M 自P 0(1,0)处向上运动1个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…如此继续运动下去,设P n (x n ,y n ),n =1,2,3,…求x 1+x 2+…+x 99+x 100的值.【答案】50【解析】由题意可得:x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2;∴原式=2×(100÷4)=50.故答案为:50.50.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为_____.【答案】3【解析】【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=1BC=3,2于是得到AA′=3.【详解】∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=12BC=3,∴AA′=3.故答案是:3.点睛:考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.。

最新人教版七年级数学下册第七章 平面直角坐标系 7.2.2 用坐标表示平移 基础训练题(含答案)

最新人教版七年级数学下册第七章 平面直角坐标系 7.2.2  用坐标表示平移 基础训练题(含答案)

最新人教版七年级数学下册第七章平面直角坐标系基础训练题(含答案)7.2.2 用坐标表示平移1.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是()A.(2,3) B.(2,-1) C.(4,1) D.(0,1)2.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3) B.(2,2) C.(2,4) D.(3,3)3.如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为()A.(5,1) B.(1,1) C.(7,1) D.(3,3)4.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(-2,-4) B.(-2,4)C.(2,-3) D.(-1,-3)5.(钦州中考)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5) B.(-8,5) C.(-8,-1) D.(2,-1)6.如果一个图案沿x轴负方向平移3个单位长度,那么这个图案上的点的坐标变化为()A.横坐标不变,纵坐标减少3个单位长度B.纵坐标不变,横坐标减少3个单位长度C.横纵坐标都没有变化D.横纵坐标都减少3个单位长度7.在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是___________,A1的坐标是___________8.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为___________9.在平面直角坐标系中,三角形ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向___________平移了___________个单位长度.10.已知三角形ABC,若将三角形ABC平移后,得到三角形A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则三角形ABC是向_________平移_________个单位得到三角形A′B′C′.11.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为___________.12.已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(-9,-4)13.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为()A.(1.4,-1) B.(1.5,2)C.(-1.6,-1) D.(2.4,1)14.已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是___________,B点坐标是___________,C点坐标是___________.15.如图,A,B的坐标分别为(1,0),(0,2),若将线段AB平移到线段A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=___________.16.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.参考答案:1.D2.C3.B4.A5.D6.B7.(3,0) (4,3)8.(2,7)9.下210.左211.(-5,4)12.A13.C14.(-5,0) (-5,-3) (0,-3)15.216.解:(1)三角形ABC向下平移7个单位得到三角形A1B1C1.A1(-3,-3),B1(-4,-6),C1(-1,-5).(2)三角形ABC向右平移6个单位,再向下平移3个单位得到三角形A2B2C2.A2(3,1),B2(2,-2),C2(5,-1).。

坐标方法的简单应用知识点(含例题)

坐标方法的简单应用知识点(含例题)

坐标方法的简单应用1.用坐标表示地理位置用坐标表示地理位置的过程和方法(1)建立坐标系,选择一个__________参照点为原点,确定__________的__________.参照点不同,地理位置的坐标也不同. (2)根据具体问题确定__________.(3)在坐标平面内画出这些点,并写出各点的__________和各个地点的__________.2.用坐标表示平移在平面直角坐标系中,(1)将点(x ,y )向右平移a 个单位长度,对应点的横坐标__________a ,而纵坐标不变,即坐标变为__________.(2)将点(x ,y )向左平移a 个单位长度,对应点的横坐标__________a ,而纵坐标不变,即坐标变为__________.(3)将点(x ,y )向下平移a 个单位长度,对应点的纵坐标__________a ,而横坐标不变,即坐标变为__________.(4)将点(x ,y )向上平移a 个单位长度,对应点的纵坐标__________a ,而横坐标不变,即坐标变为__________.3.图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x ,y )(),x a y +−−−−−−→向右平移a 个单位 原图形上的点(x ,y )(),x a y -−−−−−−→向左平移a 个单位(2)横坐标不变,纵坐标变化:原图形上的点(x ,y )(),x y b +−−−−−−→向上平移b 个单位 原图形上的点(x ,y )(),x y b -−−−−−−→向下平移b 个单位(3)横坐标、纵坐标都变化:原图形上的点(x ,y )(),x a y b ++−−−−−−−→向右平移a 个单位,向上平移b 个单位 原图形上的点(x ,y )(),x a y b +-−−−−−−−→向右平移a 个单位,向下平移b 个单位原图形上的点(x ,y )(),x a y b -+−−−−−−−→向左平移a 个单位,向上平移b 个单位 原图形上的点(x ,y )(),x a y b --−−−−−−−→向左平移a 个单位,向下平移b 个单位K 知识参考答案:1.(1)适当的,x 轴和y 轴,正方向(2)单位长度(3)坐标,名称2.(1)加上,(x +a ,y )(2)减去,(x -a ,y )(3)减去,(x ,y -a )(4)加上,(x ,y +a )一、用坐标表示地理位置1.确定坐标原点用坐标表示地理位置时,要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置.不同的原点产生的地理位置的坐标也不同.原点不同,地理位置的坐标也不同.用适当的位置表示原点,可以降低计算的难度. 2.如何确定x 轴与y 轴的方向坐标轴的方向通常是选择以水平线为x 轴,以向右为正方向(正东),以竖直线为y 轴,以向上为正方向(正北),这样可以使东西南北的方向与地理位置的方向保持一致.【例1】如图,是A ,B ,C ,D 四位同学的家所在位置,若以A 同学家的位置为坐标原点建立平面直角坐标系,那么C 同学家的位置的坐标为(1,5),则B ,D 两同学家的坐标分别为A.(2,3),(3,2)B.(3,2),(2,3)C.(2,3),(-3,2)D.(3,2),(-2,3)【答案】D【解析】建立平面直角坐标系如图,点B(3,2),D(−2,3),故选D.【例2】张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,其他四个景点大致用坐标表示肯定错误的是A.熊猫馆(1,4)B.猴山(6,0)C.百鸟园(5,-3)D.驼峰(3,-2)【答案】C【解析】若以大门为坐标原点建立直角坐标系,根据各点在坐标系中的位置及坐标的符号,可判定熊猫馆,猴山,百鸟园在第一象限,而驼峰在第四象限,观察各选项可知C 选项百鸟园在第四象限,故C错误,故选C.【例3】在一次“寻宝”游戏中,“寻宝”人找到了如图所示标志点A(3,3),B(5,1),则“宝藏”所在地点C的坐标为A.(6,4) B.(3,3)C.(6,5) D.(3,4)【答案】A【解析】如图,根据点A(3,3),B(5,1)可确定如图所示的平面直角坐标系,所以点C 的坐标为(6,4).【例4】如图,已知棋子“車”的位置表示为(–2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为A.(3,2) B.(3,1)C.(2,2) D.(–2,2)【答案】A【解析】棋子“车”的坐标为(–2,3),棋子“马”的坐标为(1,3),它们的纵坐标都是3,它们的横坐标分别为–2,1,可以确定棋子“炮”的坐标为(3,2).【例5】如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为A.(2,3) B.(0,3)C.(3,2) D.(2,2)【答案】D【解析】若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为(2,2).故选D.【例6】如图是某学校的平面示意图.A,B,C,D,E,F分别表示学校的第1,2,3,4,5,6号楼.(1)写出A,B,C,D,E的坐标;(2)位于原点北偏东45°的是哪座楼,它的坐标是多少?【解析】(1)根据平面直角坐标系得:A(2,3),B(5,2),C(3,9),D(7,5),E(6,11).(2)位于原点北偏东45°的点是点F,其坐标为(12,12).二、用坐标表示平移1.一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作一次平移得到.2.对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度.如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或下)平移a个单位长度.【例7】如图所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到A';将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B';则A'与B'相距A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度【答案】A【例8】如图所示,点G(–2,–2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为A.(6,5) B.(4,5)C.(6,3) D.(4,3)【答案】D【解析】本题主要考查了用坐标表示平移.注意左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.将点G先向右平移6个单位长度,即G′的横坐标为–2+6=4,再向上平移5个单位长度,即G′的纵坐标为–2+5=3,所以G′的坐标为(4,3),故选D.【例9】将线段AB在坐标系中作平行移动,已知A(-1,2),B(1,1),将线段AB平移后,其两个端点的坐标变为A(-2,1),B(0,0),则它平移的情况是A.向上平移了1个单位长度,向左平移了1个单位长度B.向下平移了1个单位长度,向左平移了1个单位长度C.向下平移了1个单位长度,向右平移了1个单位长度D.向上平移了1个单位长度,向右平移了1个单位长度【答案】B【解析】由点A,B的平移规律可知,此题规律是(x–1,y–1),照此规律可知线段AB 向下平移了1个单位长度,向左平移了1个单位长度.故选B.【名师点睛】本题考查了平移变换,根据左右平移,横坐标变化,纵坐标不变,上下平移,横坐标不变,纵坐标变化,熟记“左减右加,下减上加”是解题关键.【例10】在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(__________);点A4n的坐标为(__________)(n是正整数).【答案】10,0;2n,0.【解析】观察发现,第4次跳动至点的坐标是(2,0),第8次跳动至点的坐标是(4,0),第12次跳动至点的坐标是(6,0),则第4n次跳动至点的坐标是(2n,0),故A20(10,0),故答案为:(10,0);(2n,0).【例11】将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′;(2)分别写出A′,B′,C′的坐标.【解析】(1)如图:(2)A′(2,0),B′(-1,-7),C′(7,-2).。

七年级数学下册平面直角坐标系(用坐标表示平移)练习题

七年级数学下册平面直角坐标系(用坐标表示平移)练习题

七年级数学下册平面直角坐标系(用坐标表示平移)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.2.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数t ,将得到的点先向右平移a 个单位,再向上平移b 个单位(a >0,b >0),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B '.①a =__,b =__;①已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标是 __.3.如图,平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D 的位置用数对表示为 ________.4.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画出111A B C △,使它与△ABC 的相似比为2,且它与△ABC 在位似中心O 的两侧,并写出点B 的对应点1B 的坐标是______.二、单选题5.如图,平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,连接EC ,CD ,若AB =BC ,那么在以下四个结论:①四边形ABEC 是平行四边形;①四边形BDEC 是菱形;①AC DC ⊥;①DC 平分①BDE ,正确的有( )A .1个B .2个C .3个D .4个6.将点P (﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是( )A .(﹣1,6)B .(﹣9,6)C .(﹣1,2)D .(﹣9,2)7.如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--8.已知1y =4x y +的平方根为( )AB .C .2D .±29.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比( ) A .向右平移了2个单位B .向左平移了2个单位C .向上平移了2个单位D .向下平移了2个单位10.在平面直角坐标系中,将点A ()21,m 沿着y 轴的正方向向上平移()24+m 个单位后得到点B .有四个点E()21,-m , F ()224,+m m , M ()21,3+m , N ()21,4m ,一定在线段AB 上的是( )A .点EB .点FC .点MD .点N 11.如图,在平面直角坐标系中,点M 到y 轴的距离为2,到x 轴的距离比到y 轴距离的2倍少1,则点M 的坐标为( )A .()3,2B .()3,2-C .()2,3-D .()2,3-12.将点P (3,4)向下平移1个单位长度后,落在函数k y x =的图象上,则k 的值为( ) A .12k = B .10k = C .9k = D .8k13.A B C '''∆是由ABC ∆平移得到的,点()1,4A -的对应点为()1,7A ',点()1,1B 的对应点为()3,4B ',则点()4,1C --的对应点C '的坐标为( )A .()6,2-B .()6,4--C .()2,2-D .()2,4--三、解答题14.如图,能否通过平移、轴对称或旋转,由ABC 得到DEC ?15.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且①EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且①EAF=45°,AG①EF于点G,求①EFC的周长.参考答案:1.(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.2. 12##0.5 2 (1,4)【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102t a t b -+=-⎧⎨⨯+=⎩,3202t a t b +=⎧⎨⨯+=⎩,解可得t 、a 、b 的值,设F 点的坐标为(x ,y ),点F '点F 重合可列出方程组,再解可得F 点坐标.【详解】解:①由点A 到A ',可得方程组3102t a t b -+=-⎧⎨⨯+=⎩; 由B 到B ',可得方程组3202t a t b +=⎧⎨⨯+=⎩, 解得12122t a b ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, 故答案为:12,2①设F 点的坐标为(x ,y ),点F '点F 重合得到方程组1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得14x y =⎧⎨=⎩, 即F (1,4).故答案为:(1,4).【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 3.(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可.【详解】解:∵平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3), 由A ,B 坐标可得B 向右平移3个单位,向上平移3个单位,可以得到点A①点D 可由点C 向右平移3个单位,向上平移3个单位得到,∵点C 坐标为(5,3)则点D 坐标为(8,6);故答案为:(8,6).【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键.4.图见解析,点1B 的坐标是(-4,-2)【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点1B 的位置写出坐标即可.【详解】解:如图所示:111A B C △就是所要求画的,点B 的对应点1B 的坐标是(-4,-2),故答案为:(-4,-2).【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.5.D【分析】利用平移的性质、平行四边形的判定、菱形的判定与性质逐项判断即可.【详解】解:①平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,①AD CE AC BE ∥,∥,①四边形ABEC 是平行四边形,故①正确;①平移①ABC 到①BDE 的位置,①AB =BD=CE ,BC =DE ,①AB =BC ,①AB =BD=CE =BC =DE ,①四边形BDEC 是菱形,故①正确;①四边形BDEC 是菱形,①BE CD ⊥,①AC BE ,AC CD ∴⊥,故①正确;①四边形BDEC 是菱形,①DC 平分①BDE ,故①正确;①正确的有4个.故选D .【点睛】本题主要考查了平移的性质、平行四边形的判定、菱形的判定与性质.6.C【分析】直接利用平移中点的变化规律求解即可.【详解】将点()54P ﹣,先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()5442+﹣,﹣,即()12﹣,, 故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,平移点的变化规律是:横坐标右移加、左移减;纵坐标上移加、下移减.7.C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出①ABC 平移后的①DEF ,再利用旋转得到①A 'B 'C ',由图像可知A '(-1,-3),故选:C .【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.8.B【分析】根据二次根式有意义列不等式组410140xx-≥⎧⎨-≥⎩,求出14x=与1y=,再求代数式的值,然后求平方根即可.【详解】解:410 140xx-≥⎧⎨-≥⎩,解得14x=,当14x=时,1y=,①144124x y+=⨯+=,①4x y+的平方根为:故选B.【点睛】本题考查二次根式有意义的条件,代数式的值,平方根,掌握二次根式有意义条件,代数式的值,平方根是解题关键.9.B【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【详解】解:在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比向左平移了2个单位.故选:B.【点睛】此题主要考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.C【分析】根据平移的过程以及四个点的坐标进行分析比较即可判断.【详解】解:①将A(1,m2)沿着y的正方向向上平移m2+4个单位后得到B点,①B(1,2m2+4),①m2≥0,①2m2+4>0,①线段AB在第一象限,点B在点A上方,且与y轴平行,距离y轴1个单位,因为点E(1,-m2)在点A下方,当m=0时,E点可以跟A点重合,点E不一定在线段AB上.点F(m2+4,m2)距离y轴(m2+4)个单位,不在线段AB上;点M(1,m2+3)在点A上方,且距离y轴1个单位,在线段AB上;点N(1,4m2)是将A沿着y的正方向向上平移3m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是M点.故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决本题的关键是掌握平移的性质.11.D【分析】根据题意得出点M到x轴的距离为2×2-1=3,然后结合图象即可确定点的坐标.【详解】解:①点M到y轴的距离为2,到x轴的距离比到y轴距离的2倍少1,①点M到x轴的距离为2×2-1=3,①点M在第四象限,①M(2,-3),故选:D.【点睛】题目主要考查坐标系中点到坐标轴的距离,理解题意,结合函数图象求解是解题关键.12.C【分析】首先求出P点平移后得到的点的坐标为(3,3),再利用待定系数法把点代入反比例函数关系式,即可求得k的值.【详解】解:点P(3,4)向下平移1个单位长度后得到点(3,3),把(3,3)代入函数kyx中,得k=9,故选C.【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.13.C【分析】直接利用平移中点的变化规律求解即可.【详解】由点A(−1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,①点C(−4,−1)的对应点C′的坐标为(−2,2),故选C.【点睛】此题考查坐标与图形变化-平移,解题关键在于得到平移的方式.14.左图中①ACB绕着点C顺时针旋转90°能得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,能得到①DCE.【分析】根据旋转以及轴对称的性质解答即可.【详解】解:左图中①ACB绕着点C顺时针旋转90°得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,得到①DCE.【点睛】本题考查了图形的旋转以及对称翻折,熟知旋转以及轴对称的性质是解题的关键.15.(1)EF=BE+DF(2)过程见解析【分析】对于(1),先将①DAF绕点A顺时针旋转90°,得到①BAH,可得①ADF①①ABH,再根据全等三角形的性质得AF=AH,①EAF=①EAH,然后根据“SAS”证明①F AE①①HAE,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得①F AE①①HAE,可得AG=AB=AD,再根据“HL”证明Rt①AEG①Rt①ABE,得EG=BE,同理GF=DF,可得答案.(1)EF=BE+DF.理由如下:如图,将①DAF绕点A顺时针旋转90°,得到①BAH,①①ADF①①ABH,①①DAF=①BAH,AF=AH,第 11 页 共 11 页 ①①EAF=①EAH=45°.①AE=AE ,①①F AE ①①HAE ,①EF=HE=BE+HB ,①EF=BE+DF ;(2)由(1),得①F AE ①①HAE ,AG ,AB 分别是①F AE 和①HAE 的高,①AG=AB=AD=8.在Rt ①AEG 和Rt ①ABE 中,AE AE AG AB =⎧⎨=⎩, ①Rt ①AEG ①Rt ①ABE (HL ),①EG=BE ,同理GF=DF ,①①EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点睛】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.。

人教版七下数学7.1平面直角坐标系专题练习(含答案)

人教版七下数学7.1平面直角坐标系专题练习(含答案)

平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

广元市第二中学七年级数学下册 第七章 平面直角坐标系 7.2.2 用坐标表示平移同步练习含解析新人教

广元市第二中学七年级数学下册 第七章 平面直角坐标系 7.2.2 用坐标表示平移同步练习含解析新人教

用坐标表示平移知识要点:在平面直角坐标系中,(1)将点(x,y)向右平移a个单位长度,对应点的横坐标加上a,而纵坐标不变,即坐标变为(x+a,y).(2)将点(x,y)向左平移a个单位长度,对应点的横坐标减去a,而纵坐标不变,即坐标变为(x-a,y).(3)将点(x,y)向下平移a个单位长度,对应点的纵坐标减去a,而横坐标不变,即坐标变为(x,y-a).(4)将点(x,y)向上平移a个单位长度,对应点的纵坐标加上a,而横坐标不变,即坐标变为(x,y+a)一、单选题1.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(–2,1),则点B的对应点的坐标为A.(5,3)B.(–1,–2)C.(–1,–1)D.(0,–1)4.已知三角形的三个顶点坐标分别为(-2,1),(2,3),(-3,-1),把这个三角形运动到一个确定位置,在下列各点的坐标中,是经过平移得到的是( )A.(0,3),(0,1),(-1,-1) B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3) D.(-1,3),(3,5),(-2,1)5.将某图形中所有点的横坐标都减去 2,纵坐标不变,则该图形()A.向上平移 2 个单位B.向下平移 2 个单位C.向右平移 2 个单位D.向左平移 2 个单位6.如图,已知点,的坐标分别为(3,0),(0,4),将线段平移到,若点的对应点的坐标为(4,2),则的对应点的坐标为().A.(1,6)B.(2,5)C.(6,1)D.(4,6)7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )A.3:4 B.5:8 C.9:16 D.1:28.在内的任意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.二、填空题9.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为_____.A 向左平移2个单位再向上平移3个单位得到点10.在平面直角坐标系中,将点(2,3)B,则点B的坐标是__________.11.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于________cm.12.如图,在△AOB中,AO=AB,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′、B′在x轴上.则点B'的坐标是______BC ,现将三角形ABC沿直线BC向右平13.如图,已知三角形ABC的面积为16,8移a个单位到三角形DEF的位置,当边AB所扫过的面积为32时,那么a的值为__________.三、解答题14.在如图所示的平面直角坐标系中描出下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.15.已知:△ABC 与△A'B'C 在平面直角坐标系中的位置如图.(1)分别写出B 、B'的坐标:B______;B′______;(2)若点P (a ,b )是△ABC 内部一点,则平移后△A'B'C 内的对应点P′的坐标为______;(3)求△ABC 的面积.16.如图,方格纸中每个小格子的边长均为1个单位长度,ABC ∆的三个顶点和点P 都在方格纸的格点上,(1)若将ABC ∆平移,使点P 恰好落在平移后得到的A B C '''∆的内部,则符合要求的三角形能画出_______个,请在方格纸中画出符合要求的一个三角形;(2)在(1)的条件下,若连接对应点BB '、CC ',则这两条线段的位置关系是______;(3)画一条直线l ,将ABC ∆分成两个面积相等的三角形.17.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间答案1.B2.A3.C4.D5.D6.A7.B8.D9.210.(4,6)-11.1212.(2,0)13.814.(1)易知C向x负半轴移动6个单位,即往左边移动6个单位,与D重叠.(2)连接CE,因为两点坐标x值相等,故CE垂直于x轴交于H点,平行于y轴(3)四边形DEGC面积=S△EDC+S△GEC=1111DC610102 2222EC EC GH⋅+⋅=⨯⨯+⨯⨯=4015.解:(1)由图知点B′的坐标为(2,0)、点B坐标为(-2,-2),故答案为:(2,0)、(-2,-2);(2)由图知△ABC向左平移4个单位,再向下平移2个单位可得到△A'B'C′,则平移后△A'B'C内的对应点P′的坐标为(a-4,b-2),故答案为:(a-4,b-2);(3)△ABC的面积为2×3-12×1×3-12×1×1-12×2×2=2.16.解:(1)∵△ABC内部有10个格点,∴使点P恰好落在平移后得到的△A'B'C'的内部,则符合要求的格点三角形能画出10个,如图所示,△A'B'C'即为所求(答案不唯一);故答案为:10;(2)连接对应点BB'、CC',则这两条线段的位置关系是平行或在同一条直线上;故答案为:平行或在同一条直线上;(3)如图所示,直线l即为所求(答案不唯一).17.解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴PA=2.∴S△OAP=12OA×PA=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,PA=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒第2课时平方差公式的应用【知识与技能】进一步体会平方差公式的意义,会利用公式进行计算,能够掌握平方差公式的一些应用。

湘教版八年级数学下册第三章3.3.2 简单平移的坐标表示 同步练习题( 教师版)

湘教版八年级数学下册第三章3.3.2 简单平移的坐标表示  同步练习题( 教师版)

湘教版八年级数学下册第三章3.3.2 简单平移的坐标表示同步练习题一、选择题1.将平面直角坐标系中点(-1,2)向右平移1个单位长度后得到的点的坐标是(A)A.(0,2)B.(-2,2)C.(-1,3)D.(-1,1)2.将平面直角坐标系中某点向上或向下平移,则点的(A)A.横坐标不变B.纵坐标不变C.横、纵坐标都变D.无法确定3.点M(2,-1)向上平移2个单位长度得到的点的坐标是(B)A.(2,0)B.(2,1)C.(2,2)D.(2,-3)4.在平面直角坐标系中,将点P(-2,3)向下平移4个单位长度得到点P′,则点P′所在象限为(C)A.第一象限B.第二象限C.第三象限D.第四象限5.点A(-1,a)向上平移3个单位长度正好在坐标轴上,则a的值为(C)A.1B.-1C.-3D.36.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比(A)A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度7.若将点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则点B的坐标为(B)A.(-1,0)B.(-1,-1)C.(-2,0)D.(-2,-1)8.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是(C)A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)9.在平面直角坐标系Oxy中,线段AB的两个端点坐标分别为A(-1,-2),B(2,1),平移线段AB,得到线段A′B′.已知点A′的坐标为(2,1),则点B′的坐标为(D)A.(4,2)B.(5,2)C.(6,4)D.(5,4)二、填空题10.在平面直角坐标系中,把点A(2,3)向左平移1个单位长度得到点A′,则点A′的坐标为(1,3).11.如图所示,由图1变到图2,是将图1的金鱼向下平移了1个单位长度.图1 图212.如图,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为(1,-3).13.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).14.平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1.若点A1的坐标为(3,1),则点C1的坐标为(7,-2).15.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是(-5,1).16.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)三、解答题17.如图,在平面直角坐标系中,点A,B的坐标分别为(2,3),(4,1),将△ABO向下平移3个单位长度后得到△A′B′O′,请画出△A′B′O′,并写出点A′,B′的坐标.解:如图所示.A′(2,0),B′(4,-2).18.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-1,-2),B(-2,-4),C(-4,-1).(1)把△ABC向上平移3个单位长度后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2.解:(1)如图,△A1B1C1即为所求,B1(-2,-1).(2)如图,直线l及△A2B2C2即为所求.19.如图,将△ABC先向上平移4个单位长度,再向左平移5个单位长度,得到△A′B′C′,写出△A′B′C′的顶点坐标,并画出该图形.解:如图,A′(-2,3),B′(-4,2),C′(-2,0),△A′B′C′即为所求.20.已知:如图,下列网格中,每个小正方形的边长都是1个单位长度,四边形ABCD的各个顶点A,B,C,D都在格点上.(1)把四边形ABCD先向右平移4个单位长度,再向上平移2个单位长度,请你画出平移后得到的图形;(2)写出A,B,C,D四点平移后的对应点A′,B′,C′,D′的坐标.解:(1)如图所示,四边形A′B′C′D′即为所求.(2)A′(4,2),B′(0,6),C′(2,2),D′(1,1).21.点A在平面直角坐标系Oxy中的坐标为(2,5),将平面直角坐标系Oxy中的x轴向上平移2个单位长度,y轴向左平移3个单位长度,得到平面直角坐标系O′x′y′,在新的平面直角坐标系O′x′y′中,点A的坐标为(5,3).22.如图所示,矩形ABCD在平面直角坐标系内,点A的坐标是A(2,1),且边AB,CD与x轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点重合?2,1),AB=4,AD=2,∴BC到y轴的距离为4+2,CD到x轴的距离为2+1=3.∴B(4+2,1),C(4+2,3),D(2,3).(2)由图可知,将矩形先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度),能使A点与原点重合.23.一个正方形在平面直角坐标系内的位置如图所示,已知点A的坐标为(3,0),线段AC与BD的交点是点M.(1)写出点M,B,C,D的坐标;(2)当正方形中的点M由现在的位置经过平移后,得到点M′(-4,6)时,写出点A,B,C,D的对应点A′,B′,C′,D′的坐标.解:(1)M(3,3),B(6,3),C(3,6),D(0,3).(2)A′(-4,3),B′(-1,6),C′(-4,9),D′(-7,6).24.在方格纸中,把一个图形先沿水平方向平移|a|格(当a为正数时,表示向右平移;当a为负数时,表示向左平移),再沿竖直方向平移|b|格(当b为正数时,表示向上平移;当b为负数时,表示向下平移),得到一个新的图形,我们把这个过程记为[a,b].例如,把图中的△ABC先向右平移3格,再向下平移5格得到△A′B′C′,可以把这个过程记为[3,-5].若△A′B′C′经过[5,7]得到△A″B″C″.(1)在图中画出△A″B″C″;(2)写出△ABC经过平移得到△A″B″C″的过程:把图中的△ABC先向右平移3格,再向下平移5格得到△A′B′C′,把△A′B′C′向右平移5格,然后向上平移7格得到△A″B″C″;(3)若△ABC经过[m,n]得到△DEF,△DEF再经过[p,q]后得到△A″B″C″,试求m与p,n与q分别满足的数量关系.解:(1)如图所示.(3)根据平移的性质:“上加下减,左减右加”,可知m+p=8,n+q=2.。

人教版七年级下册数学用坐标表示地理位置同步练习题(含答案)

人教版七年级下册数学用坐标表示地理位置同步练习题(含答案)

人教版七年级下册数学用坐标表示地理位置同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,有一抛物线形拱桥,当拱顶离水面2m时,水面宽4m,当水面宽增加()4m 时,则水面应下降的高度是()A.2m B.1m C D.)2m 2.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75º方向处B.在5km处C.在南偏东15º方向5km处D.在南偏东75º方向5km处3.如图是被墨迹污染的旅游区各景点地图,隐约可见,第一景点的坐标为(0,3),第二景点的坐标为(5,3),景区车站坐标为(0,0),则车站大约在()A .点AB .点BC .点CD .点D4.下列图形中,表示南偏西60︒的射线是( ).A .B .C .D .5.如图,若炮的位置是()47,,那么卒的位置可以记作( )A .(43),B .()15,C .()34,D .(33),6.下列语句正确的是( ).A .在平面直角坐标系中,(3,5)-与(5,3)-表示两个不同的点B .平行于x 轴的直线上所有点的横坐标都相同C .若点(,)P a b 在y 轴上,则0b =P 到x轴的距离为3D.点(3,4)7.如图所示,在平面直角坐标系中,将点A(-1,0)做如下的连续平移,A(-1,0)→A1(-1,1)→A2(2,1)→A3(2,-4)→A4(-5,-4)→A5(-5,5)…,按此规律平移下去,则A102的点坐标是()A.(100,101)B.(101,100)C.(102,101)D.(103,102)二、填空题8.如图的方格图是某学校平面示意图,若建立适当的平面直角坐标系,花坛的位置可用坐标(3,0)表示,则教学楼的位置用坐标表示为______.9.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,1),“炮”位于点(﹣1,2),则“马”位于点_________.10.如图,已知棋子“车”的位置表示为(﹣2,3),棋子“马”的位置表示为(1,3),则棋子“炮”的位置可表示为________.11.如图,利用平面直角坐标系画出的正方形网格中,若(12)A ,,(21)B ,,则点C 的坐标为________.12.如图,四个白色全等直角三角形与四个黑色全等三角形按如所示方式摆放成“风车”型,且黑色三角形的顶点E 、F 、G 、H 分别在白色直角三角形的斜边上,已知∠ABO =90°,OB =3,AB =4,若点A 、E 、D 在同一直线上,则OE 的长为______.13.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.三、解答题14.在雷达探测区域,可以建立平面直角坐标系表示位置.在某次行动中,当我方两架飞机在A (-1,2)与B (3,2)位置时,可疑飞机在(-1,-3)位置,你能找到这个直角坐标系的横、纵坐标的位置吗?把它们表示出来并确定可疑飞机的位置,说说你的做法.15.如图,是一个简单的平面示意图,已知OA =2km ,OB =6km ,OC =BD =4km ,点E 为OC 的中点,回答下列问题:(1)由图可知,高铁站在小明家南偏西65°方向6km 处.请类似这种方法用方向与距离描述学校、博物馆相对于小明家的位置;(2)图中到小明家距离相同的是哪些地方?(3)若小强家在小明家北偏西60°方向2km 处,请在图中标出小强家的位置.16.下图是一零一校园内一些地点的分布示意图,在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系.当表示礼堂的点的坐标为()2,0,表示第三教学楼的点的坐标为()3,2-时,图中画出平面直角坐标系,并写出田径场、图书馆和第一教学楼的坐标.参考答案:1.B【分析】以拱形桥顶为坐标原点,建立如图直角坐标系xOy ,水面宽为AB 与y 轴交于E ,水面下降后宽度为CD 与y 轴交于F ,由OE =2m ,AB =4m ,抛物线的对称轴为y 轴,可求点B (2,-2)利用待定系数法可求抛物线解析式为212y x =-,设水面下降nm ,可求D n -2-),由点D 在抛物线上,代入解析式212n =--2-解方程即可. 【详解】解:以拱形桥顶为坐标原点,建立如图直角坐标系xOy ,水面宽为AB ,与y 轴交于E ,水面下降后宽度为CD ,与y 轴交于F ,∠OE =2m ,AB =4m ,抛物线的对称轴为y 轴,∠点B (2,-2)设抛物线为y =ax 2,∠抛物线过点B ,∠-2=4a , ∠12a =-, ∠抛物线解析式为212y x =-, 设水面下降nm ,∠CD =AB +()()4=4+4=∠D n -2-),∠点D 在抛物线上,∠212n =--2-, 解得n =1.故选择B .【点睛】本题考查建立平面直角坐标系,待定系数法求抛物线解析式,利用抛物线上点坐标与解析式关系求解是关键.2.D【分析】根据方向角的定义解答即可.【详解】观察图形可得,目标A在南偏东75°方向5km处,故选D.【点睛】本题考查了方向角的定义,正确理解方向角的意义是解题关键.3.B【分析】根据已知的坐标,建立平面直角坐标系即可解答.【详解】根据已知的坐标,可建立平面直角坐标系,如图,由此可得到坐标原点是B点,故选:B.【点睛】本题考查了平面直角坐标系的内容,熟练掌握点的坐标特点是解题的关键.4.D【分析】根据方位角的概念,由南向西旋转60度即可.【详解】根据方位角的概念,结合题意要求和选项,由南向西旋转60度,故选D.【点睛】考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南).5.B【分析】根据炮的位置所代表的点的横纵坐标,与卒的位置所代表的点的横纵坐标之间的数量关系确定卒的位置即可.【详解】解:∠炮的位置(4,7),观察图可知,炮的横坐标比卒大3,纵坐标比卒大2,∠卒的横坐标为:431-=,卒的纵坐标为:725-=,∠卒的位置应该表示为:(1,5),故选:B .【点睛】此题主要考查了坐标确定位置,正确找出两点间的坐标位置关系是解题关键. 6.A【分析】根据平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点逐一判断即可得.【详解】A.在平面直角坐标系中, (−3,5) 与 (5,−3) 表示两个不同的点,此选项正确,符合题意;B.平行于 x 轴的直线上所有点的纵坐标都相同,此选项错误,不符合题意;C.若点 P (a ,b ) 在 y 轴上,则a =0 ,此选项错误,不符合题意;D.点 P (−3,4) 到 x 轴的距离为4,此选项错误,不符合题意;故选:A.【点睛】本题主要考查坐标与图形的性质,解题的关键是掌握平行与坐标轴的直线上点的坐标特点、坐标的概念、坐标轴上点的坐标特点及点到坐标轴的距离等知识点.7.C【分析】根据题意可知,点A 平移时每4次为一个周期,由102÷4=25•••2,可知点A 102的坐标与A 4n +2的点的坐标规律相同,分别求出A 2,A 6,A 10的坐标,找出规律,进而求解即可.【详解】解:由题意可知,将点A (-1,0)向上平移1个单位长度得到A 1(-1,1),再向右平移3个单位长度得到A 2(2,1),再向下平移5个单位长度得到A 3(2,-4),再向左平移7个单位长度得到A 4(-5,-4);再向上平移9个单位长度得到A 5(-5,5)…, ∠点A 平移时每4次为一个周期.∠102÷4=25•••2,∠点A102的坐标与A4n+2的点的坐标规律相同.∠A2(2,1),A6(6,5),A10(10,9),以此类推,∠A4n+2(4n+2,4n+1),∠A102的点坐标是(102,101).故选:C.【点睛】本题考查了规律型:点的坐标.分析题意得出点A平移时每4次为一个周期,进而得到点A102的坐标与A4n+2的点的坐标规律相同是解题的关键.8.(2,1).【分析】根据已知点的坐标即可建立恰当的平面直角坐标系,进一步求得要求点的坐标.【详解】解:如图所示建立平面直角坐标系,则教学楼的位置是(2,1).故答案为:(2,1).【点睛】此题考查了平面内点的位置的确定,能够根据已知点确定平面直角坐标系.9.(4,﹣1)【分析】直接利用已知点坐标得出原点位置,再建立平面直角坐标系得出答案.【详解】解:如图所示:“马”位于点(4,﹣1).故答案为:(4,﹣1).【点睛】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键. 10.(3,2)【分析】根据“车”的位置,向下3个单位,再向左2个单位,可得坐标原点,根据“炮”在平面直角坐标系中的位置,可得答案.【详解】解:由题意可建立如图所示坐标系:则棋子“炮”的位置应记为(3,2),故答案是:(3,2).【点睛】本题考查了坐标确定位置,利用“车”的位置建立平面直角坐标系是解题关键. 11.()3,1-【分析】根据A 、B 两点坐标找到原点坐标即可解答;【详解】解:由(12)A ,,(21)B ,,可得平面直角坐标系如下图:∠C 点坐标(3,-1),【点睛】本题考查了平面直角坐标系,掌握坐标的定义是解题关键.12.4537##8137【分析】建立平面直角坐标系,得出点A 、B 、C 、D 的坐标,利用待定系数法分别求出直线AD ,直线OC 的解析式,联立解方程组可得点E 的坐标,即可求解.【详解】解:建立平面直角坐标系如图:∠∠ABO =90°,OB =3,AB =4,△ABO ∠∠CDO ,∠OD =OB =3,CD =AB =4,∠点A (-4,-3) ,B (0,-3) ,C (3,-4) ,D (3,0),设直线AD 的解析式为y =kx +b ,∠4330k b k b -+=-⎧⎨+=⎩,解得3797k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∠直线AD 的解析式为3977y x =-, 设直线OC 的解析式为y =mx ,把C(3,-4)代入,∠3m=-4,解得m=-43,∠直线OC的解析式为y=-43 x,联立397743y xy x⎧=-⎪⎪⎨⎪=-⎪⎩,解得27373637xy⎧=⎪⎪⎨⎪=-⎪⎩,∠2736 ()3737E-,,∠4537 OE=,故答案为:45 37.【点睛】本题考查全等三角形的性质,坐标与图形性质,待定系数法求函数的解析式,建立平面直角坐标系是解题的关键.13.±5【分析】先根据点P在x轴正半轴确定出点P的坐标,然后利用k表示出P'的坐标,继而表示出线段PP′的长,再根据线段PP′的长为线段OP长的5倍得到关于k的方程,解方程即可求得答案.【详解】解:设P(m,0)(m>0),由题意:P′(m,mk),∠PP′=5OP,∠|mk|=5m,∠m>0,∠|k|=5,∠k=±5.故答案为:±5.【点睛】本题考查了新定义下的阅读理解能力,涉及了点的坐标,绝对值的性质,两点间的距离等知识,正确理解新定义是解题的关键.14.能;可疑飞机在图中的位置见解析.【分析】根据A、B的纵坐标相等,可得AB平行于x轴,且线段AB为4个单位长度,在AB的下方两个单位画x轴,在距A点处1个单位画x轴的垂线,可得平面直角坐标系,根据点的坐标,可得可疑飞机C点的位置.【详解】解:能.如下图,可疑飞机在第三象限的C点处,在点A的正北方向距A点2个单位.【点睛】本题考查了坐标确定位置,利用平行于AB且在AB的下方一个单位画x轴,在距A点处1个单位画化x轴的垂线是解题关键.15.(1)学校在小明家北偏东45°方向2km处,博物馆在小明家南偏东50°方向4 km处(2)图中到小明家距离相同的是学校和公园和影院(3)见解析【分析】(1)由图可知,学校在小明家北偏东45°方向2km处,博物馆在小明家南偏东50方向4km处;(2)观察图形,根据OA,OE,OD的长度及图中各角度,即可得出结论.(3)作北偏西60°角,取OE = 2即可.(1)解:学校在小明家北偏东45°方向2km处,博物馆在小明家南偏东50°方向4 km处;(2)图中到小明家距离相同的是学校和公园和影院;(3)如图,点F即为小强家.【点睛】本题考查了方向角,解题的关键是熟练掌握运用方位角及确定位置需要两个元素.16.坐标系见解析;田径场的坐标为(1,5),图书馆的坐标为(-1,3),第一教学楼的坐标为(-3,-2).【分析】根据题意建立直角坐标系,然后读出坐标即可.【详解】解:根据题意建立直角坐标系如下:则田径场的坐标为(1,5),图书馆的坐标为(-1,3),第一教学楼的坐标为(-3,-2).【点睛】题目主要考查直角坐标系的应用,理解题意建立合适的直角坐标系是解题关键.。

2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx

2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx

新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版)一、选择题1、如图1所示,为了得到点B需将点A向右平移( )A、3个单位长度B、4个单位长度C、5个单位长度D、6个单位长度2、如图1所示,将点A向下平移5个单位长度后,将重合于图中的( )A、点CB、点FC、点DD、点E3、如图1所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到;将点B先向下平移5个单位长度,再向右平移3个单位长度,得到;则与相距( )A、4个单位长度B、5个单位长度C、6个单位长度D、7个单位长度4、如图1所示,点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A、(6,5)B、(4,5)C、(6,3)D、(4,3)5、点P(8,3)向上平移6个单位长度,下列说法正确的是()A、点P的横坐标加6,纵坐标不变B、点P的纵坐标加6,横坐标不变C、点P的横坐标减6,纵坐标不变D、点P的纵坐标减6,横坐标不变6、把点A(0,0)先向右平移1个单位长度,再向下平移2个单位长度后,得到的点B位于()A、第一象限B、第二象限C、第三象限D、第四象限7、将点A(a ,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为()A、(1,4)B、(4,1)C、(2,1)D、(1,2)8、在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A、(-2,6)B、(-2,0)C、(1,3)D、(-5,3)9、将某图形的横坐标都减去2,纵坐标不变,则该图形()A、向右平移2个单位B、向左平移2个单位C、向上平移2个单位D、向下平移2个单位10、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A、(﹣9,﹣5)B、(﹣9,1)C、(1,﹣5)D、(1,1)11、已知三角形ABC平移后得到三角形A1B1C1,且A(-2,3),B(-4,-1),C1(m ,n),C(m+5,n+3),则A1,B1两点的坐标为()A、(3,6),(1,2)B、(-7,0),(-9,-4)C、(1,8),(-1,4)D、(-7,-2),(0,-9)12、如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动:即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,0)B、(5,0)C、(0,5)D、(5,5)13、已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为()A、(0,0)B、(1,1)C、(2,2)D、(5,5)14、已知平面内两点M、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是()A、不能确定B、发生变化C、不发生变化D、需分情况说明15、已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A、(-3,5),(-6,3)B、(5,-3),(3,-6)C、(-6,3),(-3,5)D、(3,-6),(5,-3)二、填空题16、将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q,则点Q的坐标为________.17、三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,且使A与A′重合,则B、C两点对应点的坐标分别为________,________.18、如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b ,1)则a+b =________.19、在平面直角坐标系中,若点M(1,3)与点N(x ,3)之间的距离是5,则x的值是________.20、如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.三、解答题21、如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?22、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的新四边形的面积是多少?23、与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:________,________,________;(2)说明由经过怎样的平移得到:________;(3)若点(,)是内部一点,则平移后内的对应点的坐标为________;(4)求的面积.答案解析部分一、选择题1、【答案】B【考点】坐标与图形变化-平移【解析】【解答】结合图形可以得知A向右平移4个单位长度可得到点B.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.2、【答案】D【考点】坐标与图形变化-平移【解析】【解答】将点A向下平移5个单位长度后,将重合于图中的点E.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.3、【答案】A【考点】坐标与图形变化-平移【解析】解答:根据平移的特点可以知道,点A、B经过相同的平移得到分别得到点与,所以点与间的距离与点A、B之间的距离相等,均为4个单位长度.分析:先左右平移还是先上下平移坐标系内的点不影响平移后点的位置.4、【答案】D【考点】坐标与图形变化-平移【解析】【解答】点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′的坐标为(4,3).【分析】按要求在坐标系内平移点G,即可得知点G′的坐标.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】向上平移6个单位长度,即纵坐标加6,横坐标不变.【分析】坐标系中的点上下平移时:横坐标不变,向正方向平移几个单位长度,纵坐标就加几,向负方向平移几个单位长度,纵坐标就减几.6、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由平移规律得点B为(1,-2),又横坐标为正,纵坐标为负是第四象限内的点的特征,所以选择D【分析】坐标系中的点的平移规律为:左右移横变,上下移纵变;正方向移加,负方向移减.7、【答案】C【考点】解一元一次方程,坐标与图形变化-平移【解析】【解答】由平移规律可知,由点A平移后得到的点B坐标为(a+2,1),又∵点B为(4,b),∴a+2=4,b=1,∴a=-2,b=1.【分析】根据平移规律得到点B的坐标,再与所给的点B的坐标对比得到关于a与b 的一元一次方程,解该方程即可.8、【答案】C【考点】坐标与图形变化-平移【解析】【解答】将点P(-2,3)向右平移3个单位得到点Q,即点Q 的横坐标加3,纵坐标不变,则点Q的坐标是(1,3),故选C.【分析】根据坐标系内点的坐标的平移规律解题.9、【答案】B【考点】坐标与图形变化-平移【解析】【解答】由平移规律可知横坐标左减右加,故选B.【分析】图形和图形上任何一点发生平移变换时,其坐标变化是一致的,所以可以应用相同的平移规律.10、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由于点A(﹣1,5)的对应点为C(4,8),即点A向右平移5个单位,再向上平移3个单位得到点C,因此点B(﹣4,﹣2)向右平移5个单位,再向上平移3个单位得到点D,那么点D的坐标为(1,1).【分析】先根据点A和对应点C的坐标得到平移的规律为向右平移5个单位,再向上平移3个单位,然后根据此规律把点B进行平移,再写出平移后的对应点D的坐标.11、【答案】B【考点】坐标与图形变化-平移【解析】【解答】∵C1(m ,n),C(m+5,n+3),又∵三角形ABC 平移后得到三角形A1B1C1,∴根据平移规律可知三角形ABC平移向左平移5个单位长度,再向下平移3个单位长度后得到三角形A1B1C1又∵点A为(-2,3),点B为(-4,-1),∴A1,B1两点的坐标为(-7,0),(-9,-4).【分析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减.12、【答案】B【考点】坐标与图形变化-平移【解析】【解答】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).【分析】本题只能根据所给规律逐次计算,特别要注意跳蚤每秒跳动一个单位.13、【答案】A【考点】坐标与图形变化-平移【解析】【解答】将点A(-4,-6)先向右平移4个单位长度,再向上平移6个单位长度,即横坐标加4,纵坐标加6,所以A′的坐标为(0,0).【分析】本题根据平移规律:横坐标左加右减,纵坐标上加下减,来解题.14、【答案】C【考点】坐标与图形变化-平移【解析】【解答】因为平移方式相同,所以平移前后两点之间的相对位置不发生变化.【分析】平移的方式相同,两个点及两个图像的相对位置都不发生变化,但是两个点与图形的位置发生来变化.15、【答案】B【考点】坐标与图形变化-平移【解析】【解答】因为使点A到点(1,-2) ,所以△ABC是先向右平移4个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别加4,纵坐标分别减4,即点B,C平移后对应点的坐标分别为(5,-3),(3,-6).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.二、填空题16、【答案】(-5,1)【考点】坐标与图形变化-平移【解析】【解答】将点P(-3,4)向下平移3个单位,向左平移2个单位,即点P的纵坐标减3,横坐标减2,所以得到点Q的坐标为(-5,1).【分析】本题根据平移规律:横坐标左减右加,纵坐标下减上加.17、【答案】(-3,-6);(-4,-1)【考点】坐标与图形变化-平移【解析】【解答】根据题意可知使点A到点A′,所以△ABC是先向左平移2个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别减2,纵坐标分别减4,即点B、C平移后对应点的坐标分别为(-3,-6),(-4,-1).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.18、【答案】1或2【考点】坐标与图形变化-平移【解析】【解答】①当点A平移到点C时,可以判断线段AB向右平移1个单位,由点B就平移到点D可以判断线段AB向下平移1个单位,那么可知a=0,b=2,即a+b=2;②当点A平移到点D时,可以判断线段AB没有向下平移,由点B就平移到点C可以判断线段AB向右平移1个单位,那么可知a=0,b=1,即a+b=1;综上所述a+b=1或2.【分析】本题分两种情况:点A平移到点C或点D.19、【答案】-4或6【考点】坐标与图形变化-平移【解析】【解答】当点N在点M左边时,那么点M向左平移5个单位得到点N(-4,3);当点N在点M右边时,那么点M向右平移5个单位得到点N(6,3);综上所述x的值为-4或6.【分析】分点N在点M左边或右边.20、【答案】(5,4)【考点】坐标与图形变化-平移【解析】【解答】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以蝴蝶先向右飞7个单位,再向上平移2个单位,所以右图案中右翅尖的坐标是(5,4).【分析】本题先根据左翅尖的平移确定平移方式,再求出右翅尖平移后对应点的坐标.三、解答题21、【答案】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【考点】坐标与图形变化-平移【解析】【解答】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【分析】先左右平移还是先上下平移不影响平移后图形与点的位置.23、【答案】(1)解:可将这个四边形切割成三个三角形和一个长方形,S=×3×6+×9×2+×2×8+9×6=9+9+8+54=80.(2)横坐标增加2,纵坐标不变,则四边形向右平移2个单位长度,形状和大小都不变,其面积仍是80.【考点】三角形的面积,平移的性质,坐标与图形变化-平移【解析】【分析】本题(2)中,实际是将图形进行了平移,根据平移的性质:平移只改变图形的位置,不改变图形的形状与大小,所以新得到的图形面积仍为80.25、【答案】(1)解:(-3,1);(-2,-2);(-1,-1)(2)先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位。

人教版数学七年级下册7 2 2 用坐标表示平移 同步练习(含解析)

人教版数学七年级下册7 2 2 用坐标表示平移  同步练习(含解析)

第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。

(人教版数学)初中7年级下册-同步练习-7.2.2 用坐标表示平移-七年级数学人教版(下册)(解析版

(人教版数学)初中7年级下册-同步练习-7.2.2 用坐标表示平移-七年级数学人教版(下册)(解析版
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
1.如图所示,将点A向右平移几个单位长度可得到点B
A.3个单位长度B.4个单位长度
C.5个单位长度D.6个单位长度
【答案】B
长度,故选B.
2.如图所示,将点A向下平移5个单位长度后,将重合于图中的
A.点CB.点F
C.点DD.点E
【答案】D
16.三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.
(1)写出三角形EFG的三个顶点坐标;
(2)求三角形EFG的面积.
(1)如 图所示:
点E(4,1),点F(0,–2),点G(5,–3);
(2)S三角形EFG=4×5– ×4×3– ×1×5– ×1×4= .
9.已知三角形ABC,A(–3,2), B(1,1),C(–1,–2),现将三角形ABC平移,使点A到点(1,–2)的位置上,则点B,C的坐标分别为______,________.
【答案】(5,–3);(3,–6)
点C横坐标为:–1+4=3; 纵坐标为:–2+(–4)=–6;
∴ B点的坐标为(5,–3),C点的坐标为(3,–6).
(2)分别过A、C两点作x轴的平行线,过B、D两点作y轴的平行线,围成矩形,利用“割补法”求四边形ABCD的面积.如图,用矩形EFGH围住四边形ABCD,则
S四边形ABCD=S矩形EFGH–S三角形ABE–S三角形 BCF–S三角形CDG–S三角形ADH
=3×4– ×1×2– ×1×2– ×2×2– ×1×3=6.5.
6.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2.2 用坐标表示平移
1.(2014·厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个
单位,得到线段O1A1,则点O1的坐标是__________,A1的坐标是__________.
2.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐
标为__________.
3.在平面直角坐标系中,△ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,
则得到的新三角形与原三角形相比向__________平移了__________个单位长度.
4.已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,
0),则△ABC是向__________平移__________个单位得到△A′B′C′.
5.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB平移后
得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为__________.
6.(2014·呼和浩特)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,
7),则点B(-4,-1)的对应点D的坐标为( )
A.(1,2)
B.(2,9)
C.(5,3)
D.(-9,-4)
7.(2013·泰安改编)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知
在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )
A.(1.4,-1)
B.(1.5,2)
C.(-1.6,-1)
D.(2.4,1)
8.如图所示,在△ABC中,任意一点M(x0,y0)经平移后对应点为M1(x0-3,y0-5),将△ABC作
同样平移,得到△A1B1C1,求△A1B1C1的三个顶点的坐标.
9.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).
(1)说明三角形ABC 平移到三角形A 1B 1C 1的过程,并求出点A 1,B 1,C 1的坐标;
(2)由三角形ABC 平移到三角形A 2B 2C 2又是怎样平移的?并求出点A 2,B 2,C 2的坐标.
10.在坐标平面内描出点A(2,0),B(4,0),C(-1,0),D(-3,0).
(1)分别求出线段AB 中点,线段AC 中点及线段CD 中点的坐标,则线段AB 中点的坐标与点A,B 的坐标之间有什么关系?对线段AC 中点和点A,C 及线段CD 中点和点C,D 成立吗?
(2)已知点M(a,0),N(b,0),请写出线段MN 的中点P 的坐标.
参考答案
1.(3,0) (4,3)
2.(2,7)
3.下 2
4.左 2
5.(-5,4)
6.A
7.C
8.由M(x 0,y 0)平移后变为M 1(x 0-3,y 0-5)得到A 1(0-3,5-5),B 1(-1-3,2-5),C 1(5-3,1-5),即A 1(-3,0),B 1(-4,-3),C 1(2,-4).
9.(1)三角形ABC 向下平移7个单位得到三角形A 1B 1C 1.A 1(-3,-3),B 1(-4,-6),C 1(-1,-5).
(2)三角形ABC 向右平移6个单位,再向下平移3个单位得三角形A 2B 2C 2.A 2(3,1),B 2(2,-2),C 2(5,-1).
10.(1)线段AB 中点的坐标为(242
+,0),即(3,0);对AC 中点和点A,C 及线段CD 中点和点C,D 都成立. (2)线段MN 的中点P 的坐标为(2
a b +,0)。

相关文档
最新文档