第十一章 11.1随机事件的概率-教师版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时
进门测
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)事件发生频率与概率是相同的.(×)
(2)随机事件和随机试验是一回事.(×)
(3)在大量重复试验中,概率是频率的稳定值.(√)
(4)两个事件的和事件是指两个事件都得发生.(×)
(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)
(6)两互斥事件的概率和为1.(×)
作业检查
无
第2课时
阶段训练
题型一事件关系的判断
例1(1)从1,2,3,…,7这7个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
上述事件中,是对立事件的是()
A.①B.②④C.③D.①③
(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概
率是3
10,那么概率是7
10的事件是()
A.至多有一张移动卡B.恰有一张移动卡
C.都不是移动卡D.至少有一张移动卡
答案(1)C(2)A(3)A
解析(1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.
(2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设
掷一枚硬币3次,事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=7
8,P (B )
=1
8
,满足P (A )+P (B )=1,但A ,B 不是对立事件. (3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.
思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生.
②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. (2)判别互斥、对立事件的方法
判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.
从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:
①至少有1个白球与至少有1个黄球; ②至少有1个黄球与都是黄球; ③恰有1个白球与恰有1个黄球; ④恰有1个白球与都是黄球. 其中互斥而不对立的事件共有( ) A .0组 B .1组 C .2组 D .3组 答案 B
解析 ①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄
球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.
题型二随机事件的频率与概率
例2某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度的平均保费的估计值.
解(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50
200=0.55,故P(A)的估计值为0.55.
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小
于4的频率为30+30
200=0.3,故P (B )的估计值为0.3.
(3)由所给数据得
调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .
因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系
频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法
利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.
某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理
成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为200
1 000
=0.2.
(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.
所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+200
1 000=0.3.
(3)与(1)同理,可得:
顾客同时购买甲和乙的概率可以估计为200
1 000
=0.2,
顾客同时购买甲和丙的概率可以估计为100+200+300
1 000=0.6,
顾客同时购买甲和丁的概率可以估计为100
1 000
=0.1.
所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.