第六章6.3冰蓄冷技术
冰蓄冷原理.ppt
按照蓄冷进行的原理分类
在介质吸热或放热过程中,必然会引起介 质的温度或物态发生变化。蓄冷就是利用 工质状态变化过程中所具有的显热、潜热 效应或化学反应中的反应热来进行冷量的 储存。实现蓄冷的原理主要有显热蓄冷、 浴热蓄冷和热化学蓄冷。
按照蓄冷持续时间进行分类
主要有昼夜蓄冷和季节性蓄冷两种类型。 昼夜蓄冷是将电动制冷机组在夜间低谷期 运行制取的冷量,以显热或浴热的形式格 冷量储存起来并用于次日白天高峰期的冷 量需求。季节性蓄冷是在冬季将形成的冷 量(以冰或冷水的形式)储存在特定的容器或 地下蓄水层中,在夏季再将其释放出来供 应用户的冷负荷需求。
发展背景
1952年东日会馆大楼是日本第一个采用水蓄 冷的中央空调系统。60年代以后,水蓄冷中 央空调系统在日本得到了大量应用。1996年, 日本NHK广播中心建成9000m3水蓄冷槽空调 系统。
80年代中期,人们发现冰蓄冷较水蓄冷有许 多优点,因此,许多设备厂也参与冰蓄冷设 备的生产,促进了冰蓄冷的迅速发展。
水蓄冷
水的密度与其温度密切相关,在水温大于 4℃时,温度升高密度减小,而在0~4℃范围内, 温度升高密度增大,3.98℃时水的密度最大。 自然分层蓄冷就是依靠密度大的水自然会 聚集在蓄冷罐的下部,形成高密度水层的趋 势进行的,在分层蓄冷中使温度为4~6℃的冷 水聚集在蓄冷罐的下部,而10~18℃的热水自 然地聚集在蓄冷罐的上部,来实现冷热水的 自然分层。
水蓄冷
为了提高蓄冷槽的蓄冷效果,防止负荷回 来的热水与储存冷水间的混合,蓄冷槽的 结构形式可以采用多种方法,如多蓄水罐 方法(Multiple Tank)、迷宫法(Labyrinth and Baffle)、隔膜法(Membrane or Diaphragm)、 自然分层方法(NaturalStrati—fication)。在这 些方法中,自然分层水蓄冷技术应用得较 为普遍。
冰蓄冷空调系统
1.冰蓄冷空调系统的定义:冰蓄冷空调系统,就是利用蓄能设备在空调系统不需要冷量的时间内将冷量储存起来,在空调系统需要的时间再将这部分能量释放出来的空调系统。
按冷源分类:①冷媒液〔盐水等〕循环,②制冷剂直接膨胀式按制冰形态分类:①静态型,在换热器上结冰与融冰;最常用的为浸水盘管式外制冰内融方式;②动态型,将生成的冰连续或间断地剥离;最常用的是在假设干平行板内通以冷媒,在板面上喷水并使其结冰,待冰层到达适当厚度,再加热板面,使冰片剥离,提高了蒸发温度和制冷机性能系数。
按冷水输送方式分类:①二次侧冷水输送方式为冰蓄冷槽与二次侧热媒相通,②一次侧与二次侧相通的盐水输送方式按装置组成分类:①现场安装型,适用于大型建筑物;②机组型,将制冷机与冰蓄冷槽等组合成机组,由工厂生产,适用于中小型建筑物。
冰蓄冷空调自控系统的基本功能冰蓄冷空调由于自身的特点而对自控系统有一定的依赖,而这种依赖就决定了自控系统的基本功能。
就一般情况而言,冰蓄冷空调对自控系统有如下四个方面的基本要求:1、工况切换和设备起停控制。
冰蓄冷空调是在同一管道系统上通过对水泵和阀门等设备的不同组合而得到不同的工况的,而不同的工况组合又表达出不同的运行策略。
因此,选择冰蓄冷空调只是为降低运行费用在设备上提供了可能,而真正实现降低运行费用还需将系统中所有设备有机地结合起来,并使操作者方便快捷地在各工况之间切换。
就具体的工程而言,不同的工况对参与运行的水泵以及阀门的开启和关闭都有不同的规定,与此同时,对各设备的启动顺序和设备启动的时间间隔都有具体的要求。
这就要求自控系统能为工况的切换提供方便、安全的操作手段。
理想情况下,操作者希望通过鼠标在屏幕上的点击或通过菜单的选择就能切换工况。
但是自控系统在提供操作方便的同时又要能够防止人员的误操作,所以建议把工况切换和系统启动分为两步操作,即切换工况只是为系统启动做好了工况的选择,而并不是在切换工况后直接启动系统。
冰蓄冷技术
冰蓄冷技术周明一、冰蓄冷空调技术及其发展背景蓄冰空调系统即是在电力负荷很低的夜间用电低谷期,采用电制冷机制冷,将冷量以冰的形式贮存起来。
在电力负荷较高的白天也就是用电高峰期,把储存的冷量释放出来,以满足建筑物空调负荷的需要。
同时在空调负荷较小的春秋季减少电制冷机的开启,尽量融冰释冷,提供空调负荷。
蓄冰空调系统是“转移用电负荷”或“平衡用电负荷”的有效方法。
电力工业是国民经济的基础产业,目前我国的发电装机容量已居世界第二位,但仍不能满足电力消费量;同时电力消费出现夏季冬季差值持续加大的现象,而同一天的上午和晚上电力消费量亦较其他时段达到高峰。
过去国家实行供电侧调节,主要靠新建电厂和建设蓄能电站,但仍满足不了每年用电量以5~7%增长的需要,同时电力系统峰谷差也急剧增加,电网负荷率明显下降,极大影响了发电的成本和电网的安全运行。
由于电能本身不易储存,因此近年来国家从电用户方面考虑并制定了一系列的移峰填谷和节约用电政策加强对用电需求侧的管理(DSM),由于高峰用电量中空调用电一般占了30%以上,建筑物用电的40~60%左右,采用蓄冰空调后可大大缓解由于空调用电负荷在用电峰谷时段的不均衡而造成的电网不均衡。
因此现在全国有许多城市的电力部门都适时推出了分时电价结构和许多相关的优惠政策,以鼓励人们使用蓄冰空调。
冰蓄冷空调技术是实现电网削峰填谷主要方法之一,目前该项技术在世界上属于成熟的技术,正被世界各国广泛的应用于各个领域。
根据权威机构99年的资料显示,蓄冰工程已有1.5万个在全球各地正常运行,仅我国台湾省到2000年末就有近500个蓄冰空调系统正在运行。
国内目前也有150个蓄冰空调系统工程在运行或建设之中,发展势头十分迅猛。
国家电力公司也在有关文件中提出积极推广蓄冰空调技术,转移高峰电力,提高电网经济运行和资源综合利用水平,以达到节能和环境保护的目的。
二、冰蓄冷空调系统主要特点冰蓄冷空调系统相对于常规空调系统具有以下一些特点:1. 冷水机组高效率运行,系统运行灵活,冷量一比一的配置对负荷变化的适应性很强。
冰蓄冷知识点总结
冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。
当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。
2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。
在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。
二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。
2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。
3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。
4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。
5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。
三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。
2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。
3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。
4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。
四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。
2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。
3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。
4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。
冰蓄冷技术
冰蓄冷技术目录技术发展史一,产品原理二,适用范围三,使用效益四,突出特点五,高灵桶式蓄冰系统优点突出在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。
北方实行热力站集中供热方式后,在节约能源的同时也保护了环境。
南方地区冬天烧火取暖的时间很短或基本不烧火取暖,但夏天却要用空调降温。
目前,不管是南方和北方的住宅、宾馆、酒店、商店、办公楼等几乎所有的建筑物,都安装了分体式空调或中央空调,特别在南方地区尤其是在海南,一年四季使用空调降温的时间都很长,空调降温需要消耗大量的能源。
区域供冷站的供冷方式与北方冬季时的集中供热方式十分类似。
这种供冷方式实际上就是以区域冷站作为冷源和能量中心,通过区域空调管网向周边建筑提供调温用的冷水,满足会议厅、展厅、酒店、大学、医院、商场、写字楼、住宅楼等不同用户的用冷需求,而且,还可以利用制冷时产生的热量,向建筑物供应热水。
很明显,与集中供热一样,集中供冷方式将会大大提高能源的利用率。
实际应用证明,区域供冷的能源效远低于预期,输送能耗增加,不同于区域供热,输送泵的功耗转化为热添加到传输介质中,但对于供冷,对输冷介质的传热是一种副作用。
广州一个集中个供冷失败的案例能很好的说明问题。
冰蓄冷在制冷过程中同样也需要能源,这种供冷方式实现能源的节约与电厂发电、电网供电和供冷的集中方式有密切的联系。
技术发展史这项技术是上世纪初在美国研制并开始应用,但开始并不普及。
直到八十年代世界性的能源危机,冰蓄冷的节能优势才被世人所瞩目,而得到广泛的推广使用。
日本能源贫乏,冰蓄冷的市场颇好。
目前该项技术已经成为很多发达国家解决电网供电压力不平衡的重要强制手段。
我国从九十年代开始引进国外冰蓄冷技术,全国现有几百家单位在使用,而目前拥有核心自主知识产权冰蓄冷技术的只有高灵能源科技有限公司,其自主研发的ICEBANK蓄冰技术系统打破了国外技术垄断,是唯一达到国际先进水平的冰蓄冷民族品牌。
冰蓄冷的原理
冰蓄冷的原理一、引言冰蓄冷技术是一种通过利用冰的融化吸收热量来实现空调制冷的技术。
这种技术在工业、商业和家庭等领域得到广泛应用,具有节能环保、运行稳定等优点。
本文将详细介绍冰蓄冷的原理。
二、冰蓄冷的基本原理1.相变潜热物质在相变时会吸收或释放大量的热量,这种热量称为相变潜热。
水从液态转变为固态时,需要吸收相当于其自身质量乘以80%的热量,而从固态转变为液态时,则需要释放同样数量的热量。
2.传导换热传导是物质之间由高温向低温传递能量的过程。
在冰蓄冷系统中,通过传导将室内空气中的热量传递到储存了大量冰块的蓄冰槽内,使得室内温度得到降低。
3.循环系统循环系统是指将制冷剂通过压缩、膨胀、液化和汽化等过程循环使用,从而实现制冷的过程。
在冰蓄冷系统中,循环系统是将制冷剂通过蒸发器、压缩机、冷凝器和节流阀等部件进行循环使用。
三、冰蓄冷的工作原理1.储存阶段在储存阶段,制冷剂通过压缩机被压缩成高温高压气体,然后通过冷凝器散发热量,变成高温高压液体。
接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。
这时,蓄冰槽内的水开始结成大块的冰块,并吸收室内空气中的热量。
2.放电阶段在放电阶段,当室内温度达到预设值时,控制系统会切断制冷剂的供应,并启动水泵将储存在蓄冰槽中的大块冰块带入蒸发器。
此时,室内空气通过风机被吹过蒸发器并与储存在其中的大块冰块接触。
由于相变潜热的作用,冰块在融化的过程中吸收了室内空气中的热量,从而使得室内温度得到降低。
3.再生阶段在再生阶段,当储存在蓄冰槽中的大块冰块全部融化后,控制系统会启动制冷机组进行再生。
制冷剂被压缩成高温高压气体,并通过冷凝器散发热量变成高温高压液体。
接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。
同时,储存在蓄冰槽中的水开始结成大块的冰块,并吸收室内空气中的热量。
四、结语通过以上介绍,我们可以看出,冰蓄冷技术是一种通过利用相变潜热和传导换热来实现空调制冷的技术。
冰蓄冷空调系统原理及其技术
冰蓄冷空调系统原理及其技术
一、冰蓄冷空调系统原理
冰蓄冷空调系统属于利用化学反应,在冰蓄冷机组中形成的蓄冷湿冷
却塔,经冰蓄冷循环贮存介质,利用冰蓄冷机组将热能转换为冷能,冷能
之间转换到室外,以及室内“冷热机组”中,将冷能转换为热能,达到空
调系统调节温度和湿度的作用。
1、冰蓄冷机组:冰蓄冷机组由蒸发器、冷凝器、压缩机、再蒸发器、再凝结器和冰水泵组成,形成冷凝蒸发循环。
蒸发器、冷凝器和再蒸发器
由压差驱动器控制,冰水泵能够把自己的热量储存在冰水中,而且能够把
蓄冷介质的温度低于环境的温度。
2、冰水泵:冰水泵负责将蒸发器冷凝到冰池中的热量用压缩机和热
交换器蒸发,将冷凝器的热量用压缩机和热交换器冷凝,然后将冰池中的
冷凝器的冷凝热量带回室内,以实现调温和调湿的作用。
3、蒸发器、冷凝器、压缩机、再蒸发器和再凝结器:这些都是冰蓄
冷机的重要组成部分,用于将空气加热或冷却。
蒸发器的作用是将冷冻液
冷凝,将热量从空气中蒸发;冷凝器的作用是将冷冻液蒸发,将热量从空
气中冷凝;压缩机的作用是将冷冻液压缩,然后释放出热量。
冰蓄冷空调系统课件
冰蓄冷空调系统在医院建筑中的应用场景及案例分析
医院建筑
应用场景
案例分析
综合性医院、专科医院、妇幼保健院 等。
医院建筑中需要保持恒温环境,同时 又要考虑医疗设备的冷却和特殊病人 的空调需求。冰蓄冷空调系统能够提 供稳定的温度环境,同时还可以利用 储存的冷量进行医疗设备的冷却,满 足特殊病人的空调需求。
冰蓄冷空调系统在工厂中的应用场景及案例分析
工厂
应用场景
案例分析
化工厂、制药厂、食品厂等。
工厂中需要提供稳定的室内温度和湿 度,同时又要考虑到生产设备的冷却 和特殊工艺的需求。冰蓄冷空调系统 能够提供稳定的温度和湿度环境,同 时还可以利用储存的冷量进行生产设 备的冷却和特殊工艺的处理。
某制药厂采用了冰蓄冷空调系统通过 在夜间电力低谷期制冰储存冷量白天 在电力峰荷时段利用储存的冷量进行 制冷此外该系统还能够进行生产设备 的冷却和特殊工艺的处理从而保证了 药品生产的质量和稳定性有效地降低 了电力负荷和空调运行成本。
利用制冷剂和吸收剂的特性,通过加热和冷却实现制冷效果。常用吸收剂有氨 和水。
蓄冰装置的运行
冰盘管式蓄冰
将制冷剂在盘管内流动,通过盘管外 化冰水的热量实现蓄冰。
冰晶式蓄冰
利用蓄冷介质(如盐水)在一定温度 下结晶的特性,将蓄冷介质冻结在蓄 冰装置中。
输冷管道的运行
输冷管道材质
通常采用钢管或塑料管,需根据使用场合和压力等级选择。
商业建筑
大型商场、购物中心、办公大楼等。
应用场景
这些建筑通常具有大空间、高人流量、持续空调需求的特点。冰蓄冷空调系统在这些场所 中能够有效地进行冷量储存,在电力峰荷时段进行制冷,从而降低电力负荷,同时也能减 少空调运行成本。
冰蓄冷空调技术(精)
冰蓄冷空调系统应用实例
项目简介: 该建筑位于长沙市是以办公为主体功能,建筑内有办公 室、洗手间、展廊和展厅、休息廊等。该楼共六层 , 占地面积约为1200㎡。 设计依据: 1、该建筑一至六层平面图。 2、国家规范 a.暖通空调设计手册;b.采暖通风与空气调节设计规范。 c.蓄冷空调工程实用新技术。 3、设计任务书。
75%
50%
25%
机房运行费用分析
设计负荷 率 峰时
100%
75%
50%
25%
合计
17820
1ቤተ መጻሕፍቲ ባይዱ176
7306
936
44238
谷时
8010
8170
3284
421
19885
全年机房运行总费用为64123元
项目机房初投资估价
序号 1 2 3 名称 规格 LWWS1500B 数量 单位 1 1 1 台 项 套 单价/元 227710 合计 227710
几种典型的蓄冰装置
BAC金属蛇形盘管
几种典型的蓄冰装置
BAC盘管组及冰槽
几种典型的蓄冰装置
FAFCO塑料U形盘管
几种典型的蓄冰装置
CALMAC塑料圆形盘管
几种典型的蓄冰装置
法国CIAT冰球和立式冰球罐
几种典型的蓄冰装置
美国REACTION和开利公司冰板
冰蓄冷系统运行方式
全蓄冰系统
负荷 百分 比 25% 50%
75%
100%
50
25
50
25
68%
100%
机房运行费用分析
运行费用公式: 运行费用=负荷×天数×每天运行时间×电价×能耗比 ×开停比
《冰蓄冷空调系统》课件
冰蓄冷空调系统可以降 低空调系统的运行成本 ,提高能源利用效率, 减少对环境的影响。
制冷机组:提供冷源,包括压缩机、冷凝器、蒸发器和膨胀阀等 蓄冷装置:储存冷量,包括蓄冰槽、蓄冰罐等 输送系统:输送冷量,包括水泵、管道等 控制系统:控制整个系统的运行,包括温度传感器、控制器等
直接蒸发式冰蓄冷空调系统 间接蒸发式冰蓄冷空调系统 直接膨胀式冰蓄冷空调系统 间接膨胀式冰蓄冷空调系统
蓄冷设备:蓄冷设备的性能和效率会影响能 效
蓄冷系统设计:蓄冷系统的设计会影响能效
运行环境:运行环境的温度、湿度等会影响 能效
优化设计:选择 合适的蓄冷材料 和蓄冷方式,提 高蓄冷效率
控制策略:采用 智能控制策略, 根据环境温度和 负荷变化调整蓄 冷量和释放量
节能技术:采用 高效节能技术, 如变频技术、热 泵技术等,降低 能耗
环保效益:减少碳排放,降低环境 污染
提高数据中心的运行效率 降低数据中心的能耗
减少数据中ห้องสมุดไป่ตู้的碳排放
提高数据中心的稳定性和可 靠性
节能环保:冰蓄冷空调 系统在体育场馆中的应 用可以降低能耗,减少 碳排放,符合绿色建筑 的理念。
温度控制:冰蓄冷空调 系统可以精确控制体育 场馆内的温度,为运动 员和观众提供舒适的环 境。
PART SIX
节能环保:冰蓄冷空调系统具有节能环保的特点,符合可持续发展理念 技术进步:随着科技的发展,冰蓄冷空调系统的技术不断进步,性能不断提高 应用领域扩大:冰蓄冷空调系统在商业、工业、住宅等领域的应用逐渐扩大 智能化:冰蓄冷空调系统逐渐向智能化方向发展,可以实现远程监控和自动调节
技术成熟度:冰蓄冷 空调系统技术尚处于 发展阶段,需要进一 步研究和改进
成本问题:冰蓄冷空调 系统的建设和运行成本 较高,需要降低成本以 提高市场竞争力
冰蓄冷技术及节能作用
S y s t e m) , 此 形式 是不完 全冻 结式 , 在蓄 水槽 内充 满
着水。由于水和冰的充分接触, 可以在较短的时间内
产生大量 的低温冷 冻水 。 释冷量 的大小取 决于回水温
度的高低以及回水流量的大小。 低温冷冻水的出水温 度与要求融冰时间长短有关 , 一般来讲 , 融冰时间愈 长, 出水温度愈低 ; 融冰时间愈短 , 出水温度愈高。
_ _ _ 一
剂 没 有充 满球 体 , 留有 一 定 的空 气 , 外 壳使 用 的 是
图 2 内 融冰
H D P E聚乙烯材料。
2)外融 冰 如 图 3所示 ,融 冰过程 中温度较 高的冷 冻水 回 水 与冰 直接接触 , 冰 由外 向内融化 , 所以, 也 称为外融
冰 系 统 ( e x t e r n a l Me l t I c e o n C o i l S t o r a g e
境保 护 . 2 0 0 9 .
增加了余热回收系统运行的可靠性。
5 结 束 语
『 3 1 王 晓 露 .无 油 螺 杆 空 气 压 缩 机 热 回 收 系 统
空 压机 运 行 产 生 的热 量 , 如 果 不释 放 掉 , 可 引 起 电机 高温 及排气 高温 , 不但 影 响空压 机 的使 用寿
图 4 冰 球
…
O N SER V ATI ON
再 2 9 1
节 能 技 术 和 产
品
热 量排放 , 不 但浪 费 了能源 , 更会 造成 热 污染 。 本 文
介绍了几种典型的空压机余热回收系统 , 包括喷油 螺杆空压机、 无油螺杆空压机 、 离心式空压机 , 并单
独 分析 了水 冷式 空压机 , 使得 各 种 空压机 都 有适 合
冰蓄冷技术
冰蓄冷基础知识现代城市的用电状况是,一方面电力负荷急剧增长;另一方面电量增长却相对滞后,电网负荷率不断下降。
一般在白天出现用电高峰,供电能力不足,为满足高峰用电不得不新建电厂,而在夜间的用电低谷时段却又有电送不出、电厂在低负荷下低效率运转。
人们采用各种办法来缓解这一矛盾,例如建抽水蓄能电站等。
由于空调系统用电负荷一般均在白天用电高峰阶段,在电力谷荷段用量甚少,因此空调系统用电量极大加剧了电网的峰谷负荷差。
而在中央空调中,制冷系统的用电量通常占整个空调系统用电量的40 %~50 %[4 ] ,如果能把制冷系统的部分甚至全部用电量转移至夜间电力低谷时段,则对平衡电网负荷,提高电网负荷利用效率将产生十分积极的作用。
因此,“蓄冷空调”就成为电力部门和空调制冷界共同关注的目标,双方遂携手共同推进其应用。
所谓蓄冷(Thermal Storage) ,即是在晚间电力谷荷阶段,利用电动制冷机制冷,把冷量按显热或潜热的形式蓄存在某种介质中,到白天用电高峰期,把储存的冷量释放出来,以满足建筑物空调或生产工艺的需要。
这样,制冷系统的大部分耗电发生在夜间用电低峰期,而在白天高峰期只有部分或辅助设备在运行,从而实现电网负荷的移峰填谷。
蓄冷系统种类较多,按蓄存冷量的方式可分为显热蓄冷和潜热蓄冷;按蓄冷介质分类,可以有水蓄冷、冰蓄冷和共晶盐蓄冷。
冰蓄冷是将水制成冰储存冷量,它是潜热蓄冷的一种方式。
由于水的比热容为4118kJ /kg ,设水蓄冷的供回水平均温差为10 ℃,和水蓄冷相比,蓄冰槽的容积只有水蓄冷的2/ 3~1/ 5。
因此,可大大地减少蓄冰槽的体积,也正是这种特点,极大地促进了冰蓄冷技术的推广和应用。
一、冰蓄冷系统原理和构成冰蓄冷空调系统主要由冷水主机、蓄冰装置、板式换热器、自动控制系统以及泵阀组成。
运常规空调系统相比冰蓄冷系统需要增加的特殊装置有:蓄冰设备,乙二醇管路和水泵,板式换热器(绝大多数系统选用,乙二醇和水管路分隔并换热)。
冰蓄冷技术的工作原理
冰蓄冷技术的工作原理
冰蓄冷技术是一种利用冰的物理特性进行室内温度调节的技术。
它工作的原理如下:
1. 制冷阶段:工业空调系统会在夜间或低用电峰期利用外部环境的温度低于室内温度的特点,通过制冷机组制造冰块,并将冰块存放在蓄冰池中。
这个过程需要消耗电能,但它可以利用低电价和空余电力时段,降低能源成本。
2. 放冷阶段:白天或高用电峰期,当空调系统需要降温时,它会利用蓄冰池中的冰块来降低室内温度。
通过水泵将蓄冰池中的冰块与空调系统中的冷却水连接起来,实现冷却。
这个过程不需要消耗电能,因为它是利用冰的融化吸热作用来降低室内温度。
这种冰蓄冷技术的好处是,它利用了夜间或空余电力时段来制造冰块,降低了能源成本,并且在白天或高用电峰期,它可以利用蓄冰池中的冰块来降低室内温度,使空调系统的运行更加高效。
同时,这种技术还可以减少对环境的影响,因为利用低电价和空余电力时段来制冰,不仅减少了能源利用的浪费,还可以减少能源消耗对环境的影响。
冰蓄冷技术
冰蓄冷技术近年来,随着社会需求日益增加,人们越来越重视能源节约和环境保护问题。
冰蓄冷技术已经成为重要的可持续发展理念之一。
冰蓄冷技术也被称为“冰蓄冷机”,是一种省电、环保和可持续发展的节能技术。
它可以按照社会的要求,通过冰蓄冷机的技术在夏季的冷热天气中进行存储冷热,从而实现冷热的蓄存和节能的目的。
冰蓄冷技术原理很简单。
在夜晚空气温度较低的条件下,通过冰蓄冷机将空气中的低温热量进行蓄存,由此形成一种蓄冷器,以保持冷暖的状态。
随后在高温日子,可以从蓄冷器里取出低温热量,它的优势在于能够维护室内的低温环境,从而节约能源和环境。
冰蓄冷技术主要是通过以下两个方法来实现冷热储存:一是通过采用低温储存系统,将外部的低温热量储存在室内的蓄冷器中,实现建筑物内外温度的梯度分布,实现节能效果;二是采用太阳能设备,利用太阳能蓄冷技术,将太阳能转换热能,储存在室内的太阳能蓄冷器中,实现建筑物内外温度的梯度分布,实现节能效果。
冰蓄冷技术对于节能环保有着重要的意义。
它的原理可以改善建筑物的冷热分布,改善室内空气的循环,减少空调使用,降低能源消耗,从而节约能源、保护环境,是一种非常有效的节能节能技术。
在冰蓄冷技术的应用中,要考虑到不同地区的环境条件,在不同的环境条件下,使用不同的冰蓄冷技术,才能真正发挥冰蓄冷技术的最大优势,实现节能的目的。
目前,冰蓄冷技术已经发展成熟,在经济建筑、低碳建筑、新能源建筑中应用广泛。
冰蓄冷技术可以有效提高建筑物的节能效果,同时也可以改善室内空气的质量,进一步保护环境。
总之,冰蓄冷技术不仅可以有效节能,而且还可以确保空气的清新、有利于环境的绿色发展。
它是一项新型的、技术含量高的、可持续发展的节能技术,有望在我国的建筑行业和工业发展中发挥重要作用。
冰蓄冷技术
冰蓄冷技术
冰蓄冷技术是一种在室外应用先用过夜时间从室外空气中获得的冷量,并储存起来,
然后在白天拿出储存的冷量来使空调系统运转及空调系统的新鲜空气的冷却制冷剂的一种
优化方法。
这一技术综合利用夜间的低温和冷却剂的潜热,为白天冷却系统提供可靠的节
能制冷和冷却服务。
它能够在有限的设备下实现高效制冷,并具有节能、低成本、无噪音
等优势。
冰蓄冷技术在工业冷冻设备和空调设备中都具有广泛的应用,主要包括保护市政地热,该技术利用低热值冷却剂,在晚上将室外低差温空气经由管道和换热器传输到系统中,储
存及分配冰晶能量,从而实现日间顶冷;在冰箱节能空调设备中,该技术通过电控系统实
时监测室外环境特点,从而实现冰蓄冷能量储存和分配,使节能设备运行效果最佳;在用
户端设备中,主要集成以低温技术和节能技术实现整机的节能升级、整体用能改善,也可
以实现温度智能调节管理等功能。
冰蓄冷技术是一种循环利用冷量的新型节能制冷技术,经过多年发展,造就技术先进,性能稳定,技术先进,效果稳定,安全可靠等优点,在各类节能空调设备中的地位也正在
日益增强。
据不完全统计,冰蓄冷技术在工业冷冻用冷设备中,其节能率可达10%以上,100%;在居家用冷设备中,能耗降低可达50%以上,安全可靠性良好,逐渐替代传统冷藏
技术,取得节能效果,带来用户得实惠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美国Calmac公司的圆形盘管
• 盘管为聚乙烯材料,盘管组装在架构上, 整体放置在蓄冰槽内。蓄冰桶采用外径为 16mm(也有13mm)的聚乙烯管绕成螺旋 形盘管热交换器。盘管冰层厚度为12mm, 盘管换热表面积12ft2/RTH(0.317m2/KWH)。
美国Fafco公司的U行盘管
• FAFCO蓄冰槽由外径为6.35mm的耐高低温 石腊脂塑料管制成平行流换热盘管垂直放 入保温槽内构成,平均冰层厚度为10mm, 盘管换热表面积为 13ft2/RTH(0.345m2/KWH)。盘管管径小, 易堵塞。载冷剂必须经过过滤,或者过滤 器没有很好的清洗,管道就会堵塞。
法国CIAT公司的Cristopia冰球
• Cristopia冰球外壳由高密度聚合烯烃材料制成, 内注CIAT公司专利的具高凝固---融化潜热的PCM相 变蓄能溶液。冰球有多种类型,从-33℃~+27℃的 温度覆盖范围能够满足各种不同的需求,形成全系 列的产品组合空调用蓄冰球型号为AC-00型,冰球 直径98mm,相变温度为0℃,蓄冷量为6RTh/m3,冰 球重量560g,每立方米冰球的个数为1222个。冰球 为光滑的球形,每个冰球作为一个独立的蓄冰单元, 可承受20bar的压力。一个蓄冰系统有几十万甚至 上百万个这样的独立单元,任一独立单元的损坏都 不会对整个系统的性能产生影响,从而系统运行可 靠,维护量最低;冰球为高密度聚烯烃外壳,不存 在任何腐蚀。截至到目前为止冰球已经过至少数万 次无损试验且试验仍在继续,其测试寿命已超过50 年。
2、名义蓄冷量与净可利用蓄冷量
名义蓄冷量是指由蓄冷设备生产厂商所定义的蓄冷 设备的理论蓄冷量(一般比净可用蓄冷量大)。 净可利用蓄冷量是指在一给定的蓄冷和释冷循环 过程中,蓄冷设备在等于或小于可用供冷温度时所 能提供的最大实际蓄冷量。 净可利用蓄冷量占名义蓄冷量的百分比例值是衡 量蓄冷设备的一个重要指标,此比例值越大,则蓄 冷设备的使用率越高,当然此数值受蓄冷系统很多 因素的影响,如蓄冷系统的配置,设备的进出口温 度等。对于冰蓄冷系统此数值可近似为融冰率.
冰片滑落式蓄冰装置
• 以美国Mueller公司为代表的该系统的基本组成是以 制冰机作为制冷设备,以保温的槽体作为蓄冷设备, 制冰机安装在蓄冰槽的上方,在若干块平行板内通 入制冷剂作为蒸发器。循环水泵不断将蓄冰槽中的 水抽出至蒸发器的上方喷洒而下,而冰冷的板状蒸 发器表面,结成一层薄冰,待冰达到一定厚度(一 般在3-6. 5mm 之间)时,制冰设备中的四通阀切换, 压缩机的排气直接进入蒸发器而加热板面,使冰脱 落。“结冰”,“取冰”反复进行,蓄冰槽的蓄冰 率为40-50%。不适合于大、中型系统。因为“结 冰”,“取冰”反复进行,四通换向阀连续工作, 因为加工工艺等原因,导致设备的可靠性、稳定性 不高,使用寿命不长。
蓄冷系统常见工作流程及特点 并联流程
主机与蓄冰槽并联示意图
主机与蓄冷槽并联流程图
串联流程
主机在蓄冷槽上游串联连接示意图
主机在蓄冷槽上游串联流程图
主机在蓄冷槽下游串联连接示意图
主机在蓄冰槽下游串联连接流程图
评价蓄冰系统的几个指标
1、制冷系统的蒸发温度 蓄冷空调系统特别是冰蓄冷式空调系统在蓄冷过程 中,一般会造成制冷机组的蒸发温度的降低。理论 上说蒸发温度每降低 l℃,制冷机组的平均耗电率增 加 3%。因此在配置系统,选择蓄冷设备时应尽可 能地提高制冷机组的蒸发温度。对于冰蓄冷系统, 影响制冷机组的蒸发温度的主要因素是结冰厚度, 制冰厚度越薄,蓄冷时所需制冷机组的蒸发温度较 高,耗电量较少;但是制冰厚度太薄,则蓄冰设备 盘管换热面积增加,槽体体积加大,因此一般应考 虑经济厚度来控制制冷系统的蒸发温度。
(1)机组制冰模式
制冷机组制冰工作模式示意图
制冷机组制冰工作模式示意图
制冰同时制冷工作模式示意图
单制冷机供冷模式 、单融冰供冷模式
单制冷机供冷工作模式示意图
单融冰供冷工作模式示意图
制冷机与融冰同时供冷
•
在此工作模式下制冷机和蓄冰装 置同时运行满足供冷需求。按部分蓄 冷运行策略,在较热季节都需要采用 这种工作模式,才能满足供冷要求。 该工作模式又分成了两种情况,即机 组优先和融冰优先。
美国Cryogel公司的冰球
• 美国Cryogel的冰球表面存在多处凹涡,当 结冰体积膨胀时凹处外凸成平滑园球型, 使用时自然堆垒方式安装于一园桶型密闭 式压力钢桶槽内,以避免结冰后体积膨胀, 比重降低而漂浮,以防止二次冷媒形成短 路。因为Cryogel冰球表面有凹涡,在蓄冰 膨胀时,应力在凹涡处比较集中,可靠性 和稳定性不高。
4、冷特性与释冷特性
• 通常蓄冷系统的蓄冷温度取决于蓄冷速率 和这一时间蓄冷槽体的状态特性,对于外 融冰式系统是指内管壁的结冰量。对于蓄 冷时间短的蓄冰系统,一般需要较高的蓄 冷速率,即指较低的(平均)蓄冷温度蓄 冷;反之,蓄冷速率慢,蓄冷温度较高。 一般情况下蓄冷设备生产厂商都可以提供 各种蓄冷速率下最低蓄冷温度值。
应用蓄冷空调技术的前景
1. 商业建筑、宾馆、饭店、银行、办公大楼、 学校的中央集中式空调系统。 2. 家用空调。家用空调用电特点是用电集中, 数量大,持续时间长常常是持续至深夜。 3. 体育馆、影剧院。这些场所冷负荷量大, 持续时间短且无规律性,适宜于采用蓄冷 空调系统。
冰蓄冷空调与常规空调的异同
1. 机组优先 回流的热乙二醇溶液,先经制冷机预冷, 而后流经蓄冰装置而被融冰冷却至设定温度。 所示为该种工作模式示意图。 • 2.融冰优先 • 从空调负荷端流回的热乙二醇溶液先经蓄冰 装置冷却到某一中间温度,而后经制冷机冷 却至设定温度。所示为该工作模式示意图。
制冷机与融冰同时供冷工作模式示意图
④分时蓄冷
⑤应急冷源
蓄冷系统工作模式
• 蓄冷系统工作模式是指系统在充冷还是供 冷,供冷时蓄冷装置及制冷机组是各自单 独工作还是共同工作。蓄冷系统需在规定 的几种方式下运行,以满足供冷负荷的要 求常用的工作模式有如下几种:(1)机组 制冰模式 • (2)制冰同时供冷模式 (3)单制冷机供 冷模式 (4)单融冰供冷模式 (5)制冷机 与融冰同时供冷
蕊心冰球
• 蕊心冰球为台湾产品(国内杭佳公司也 生产),蕊心褶囊由高弹性高强度聚乙烯制 成,褶皱利于冻结和融冰时内部水体积变 化而产生的膨胀和收缩,同时两侧设有中 空金属蕊心。一方面增强热交换,另一方 面起配重作用,在槽体内结冰后不会浮起。 但金属和塑料的导热系数,膨胀系数不同, 金属蕊心易脱落,可靠性和稳定性较差。 有不少工程因此失败 。
一、常规空调系统的组成 1. 常现空调系统的组成
2. 蓄冷空调系统的组成
与常规空调系统相比蓄冷空调系统优点
(1)节省电费。(2)节省电力设备费用与 用电困扰。 (3)蓄冷空调效率高,具有节 能效果。 (4)节省冷水设备费用。 (5) 节省空调箱等设备费用。 (6)除湿效果良 好。 (7)断电时利用一般功率发电机仍可 保持室内空调运行。 (8)可快速达到冷却 效果 。(9)节省空调及电力设备的保养成 本。 (10)降低噪音及冷水流量与循环风 量减少,即水泵与空调机组运转振动及噪 音降低。 (11)使用寿命长。
• 对于蓄冷设备如容器式、优态盐式,在蓄冷过程的 初期会产生过冷现象,过冷现象仅发生在蓄冷设备 已完成释冷,内无一点余冰时,其结果是降低了蓄 冷开始阶段的换热速率。过冷现象可以通过添加起 成核作用的试剂来削减其过冷度值。据国外资料介 绍,某种专利成核剂可限制过冷度在-3℃~-2℃之 间。对于蓄冰式系统,在释冷循环过程中,若释冷 温度保持不变,则释冷量会逐渐减少;或当释冷速 率保持恒定时,释冷温度会逐渐上升。这对于完全 冻结式,容器式蓄冷设备表现特别明显,这是由于 盘管外和冰球内的冰在大部分是隔着一层水进行热 交换融冰,同时换热面积是在动态变化;而对于制 冰滑落式,冷媒盘管式蓄冷设备,温水与冰直接接 触融冰,释冷温度相对保持稳定。
3、制冰率与融冰率
目前制冰率(IPF)有两种定义,一是指对于冰 蓄冷式系统中,当完成一个蓄冷循环时,蓄冰容器 内水量中冰所占的比例.另一个是指蓄冰槽内制冰 容积与蓄冰槽容积之比。 而融冰率是指在完成一个融冰释冷循环后,蓄冰 容器内融化的冰占总结冰量的百分比。 制冰率与融冰率这两个概念是冰蓄冷式系统中评 价蓄冰设备的两个非常重要数值 融冰率与系统的 配置有关,对于串联式制冷机组下游的系统,蓄冷 设备的融冰率较高;反之,则较低。而并联系统的 融冰率界于两者之间。
1. 盘管外蓄冰系统
①盘管外融冰
②盘管内融冰
(2)封装冰蓄冷系统
(3)冰片滑落式动态蓄冷系统 (4)冰晶式蓄冷系统
图3-4 冰片滑落式动态蓄冷系统
图3-5 冰晶式蓄冷系统示意图
STL冰蓄冷中央空调系统的示意流程图
冷冻机
楼房
蓄冷罐 板式换热器
乙二醇泵
冷媒泵
冰蓄冷系统工作原理(举例)
•
建筑物空调的负荷分布是很不均匀的。 以办公楼、写字楼为例,其24小时冷负荷荷 需求曲线如图所示,图中纵坐标轴为该大楼 的冷负荷需求,很明显在白天8:00~18:00为 空调开机时间,其它时间为空调关机时间。 采用常规空调时,制冷机的选择必须满足峰 值负荷的要求即Qx=1000kw,而采用蓄冷系 统则可充分利用夜间时间,由原来10h工作时 间延长到24h,制冷机组装机容量也相应降到 QX=300 kw。
图A 夜间制冷蓄冷过程
图B 白天融冰放冷过程
几种典型的蓄冰装置的比较
• 1、盘管式蓄冰装置 盘管式蓄冰装置是由沉浸在水槽中的盘 管构成换热表面的一种蓄冷设备。因为盘 管的管道阻力较大,宜采用串联系统,特 别适合低温送风系统。
美国BAC公司的蛇形盘管
盘管为钢制连续卷焊而成,盘管组装在钢架上,装 配后进行整体外表面热电镀。盘管外径为 1.05"( 26.67m),结冰厚度控制在0.9"(23mm)左右。 如采用内融冰方式,冰与冰之间仍有极小的间隙, 以便在融冰过程中,结在盘管周置的冰存在少量的 活动空间,使得钢管与冰始终存在有直接接触的部 位,因此导热较好,在整个融冰过程中蓄冰槽的出 口二次冷媒温度始终可保持在3°C左右,并使冰几 乎全部被融化来供冷。因盘管采用焊接工艺,一组 盘管有多个焊点。降低了系统的可靠性和稳定性。 宜采用串联系统。