数据分析的基本思想
Meta分析的基本思想及顺序

M e t a分析的思想及步骤Meta分析的前身源于Fisher1920年“合并P值”的思想,1955年由Beecher首次提出初步的概念,1976年心理学家Glass进一步按照其思想发展为“合并统计量”,称之为Meta分析。
1979年英国临床流行病学家ArchieCochrane提出系统评价(systematicreview,SR)的概念,并发表了激素治疗早产孕妇降低新生儿死亡率随机对照试验的系统评价,对循证医学的发展起了举足轻重的作用。
Meta分析国内翻译为“荟萃分析”,定义是“Thestatisticalanalysisoflargecollectionofanalysisresultsfromindividual studiesforthepurposeofintegratingthefindings.”亦即“对具备特定条件的、同课题的诸多研究结果进行综合的一类统计方法。
”Meta从字源来说据考证有“Metalogic:abranchofanalyticphilosophythatdealswiththecriticalexaminationofthebasic conceptsoflogic”;“Metamathematics:thephilosophyofmathematics,especially,thelogicalsyntaxofmathematics.”其中最简洁并且一语中的的是Metascience::atheoryorscienceofscience,atheoryconcernedwiththeinvestigation?analysis?ordescriptionoftheoryitsel f.”意为一种科学中的科学或理论,一种对原理本身进行调查、分析和描述的原理。
Meta分析有广义和狭义两种概念:前者指的是一个科学的临床研究活动,指全面收集所有相关研究并逐个进行严格评价和分析,再用定量合成的方法对资料进行统计学处理得出综合结论的整个过程;后者仅仅是一种单纯的定量合成的统计学方法。
数据分析思维方法 推测法

数据分析思维方法推测法
性
数据分析思维方法推测法是一种以推测为基础的思维方法,它可以帮助我们从数据中提取有用的信息,从而更好地理解数据。
推测法的基本思想是,通过对数据的分析,从中提取出有用的信息,从而推断出可能的结果。
它可以帮助我们更好地理解数据,从而更好地分析数据。
推测法的基本步骤是:首先,要收集有关数据的信息,包括数据的类型、数据的范围、数据的分布等;其次,要分析数据,从中提取出有用的信息,从而推断出可能的结果;最后,要根据推断出的结果,进行相应的处理,以达到预期的目的。
推测法的优点是,它可以帮助我们从数据中提取有用的信息,从而更好地理解数据,从而更好地分析数据。
它还可以帮助我们更好地预测未来的发展趋势,从而更好地制定有效的策略。
然而,推测法也有一定的局限性,因为它只能从数据中提取出有用的信息,而不能提供客观的分析结果。
此外,推测法也受到数据的局限性的影响,因为数据的质量和准确性会影响推测法的结果。
总之,数据分析思维方法推测法是一种有效的思维方法,它可以帮助我们从数据中提取有用的信息,从而更好地理解数据,从而更好地分析数据。
但是,它也有一定的局限性,因此,在使用推测法时,要注意数据的质量和准确性,以确保推测法的结果是准确的。
数据分析知识:数据分析中的假设检验流程

数据分析知识:数据分析中的假设检验流程在数据分析领域里,假设检验是一种用来判断样本统计量是否代表整体总体的方法。
其基本思想是首先确定一个假设,然后使用统计方法对这个假设进行检验,从而得出结论。
假设检验流程主要包括以下五个步骤:第一步:确定零假设和备择假设。
在进行假设检验时,需要先明确零假设和备择假设。
零假设是指认为不存在差异或者认为差异是由随机因素造成的假设,通常使用"H0"表示;备择假设则是指认为存在差异或者认为差异不是由随机因素造成的假设,通常使用"Ha"表示。
需要注意的是,备择假设并不一定是"完全相反"的假设,而是对零假设的补充或者修正。
第二步:确定显著性水平。
显著性水平指的是能够接受零假设的程度,通常使用"α"表示。
常见的显著性水平有0.05和0.01两种。
当显著性水平为0.05时,意味着我们只接受在5%的概率范围内出现假阳性(Type I Error)的结论;同理,当显著性水平为0.01时,只接受在1%的概率范围内出现假阳性的结论。
第三步:计算检验统计量。
检验统计量是用来度量样本数据与零假设之间偏差的统计量,通常使用"t"或"z"符号表示。
具体计算公式根据检验类型的不同而异。
常见的检验类型有单样本t检验、独立样本t检验、配对样本t检验、方差分析等。
第四步:计算P值。
P值,也称为"显著性水平",指的是当零假设为真的情况下,获得当前检验统计量或更极端的结果的概率。
通常情况下,P值越小,代表得到类似结果的概率越小,说明样本结果更具有显著性。
如果P值小于显著性水平α,则拒绝零假设;反之,则无法拒绝零假设。
第五步:解释结果。
在判断零假设和备择假设之间的关系时,需要将P值与显著性水平进行比较,如果P值小于显著性水平,则获得拒绝零假设的结论,否则获得接受零假设的结论。
多元统计分析的基本思想与方法

多元统计分析的基本思想与方法多元统计分析是一种应用数学和统计学的方法,用于研究多个变量之间的关系和模式。
它包括多个统计技术和方法,旨在从多个变量的角度解释数据,并揭示隐藏在数据背后的结构和规律。
本文将介绍多元统计分析的基本思想和常用方法,以及其在实际应用中的意义和局限性。
一、多元统计分析的基本思想多元统计分析的基本思想是将多个变量放在同一分析框架中,通过建立统计模型和运用统计方法来探索变量之间的关系。
它关注的是多个变量之间的相互作用和共同影响,以及这些变量对于所研究问题的解释力度。
其核心思想是综合多个变量的信息,从整体上理解数据的结构和规律。
二、多元统计分析的基本方法1. 方差分析(ANOVA)方差分析是一种多元统计分析方法,用于比较多个组别或处理之间的均值差异是否显著。
它的基本原理是通过分解总变异为组内变异和组间变异,从而确定组别之间是否存在显著差异。
方差分析可以用于研究不同处理对观测变量的影响,并进行比较和推断。
2. 主成分分析(PCA)主成分分析是一种用于降维和数据压缩的多元统计方法。
它通过将原始变量线性组合,构造出一组新的无关变量,即主成分,用于解释数据的方差。
主成分分析可以减少变量维度,提取主要信息,并可用于数据可视化和模型构建。
3. 因子分析因子分析是一种用于探索变量之间潜在关系的多元统计方法。
它通过将一组相关变量归纳为相对独立的因子,揭示潜在的结构和维度。
因子分析可以帮助研究者理解变量之间的共性和差异,从而提取共同特征并简化数据分析。
4. 聚类分析聚类分析是一种用于将个体或变量划分为相似群体的多元统计方法。
它通过测量个体或变量之间的相似性,将其聚集成若干组别。
聚类分析可以帮助识别数据中的模式和群体结构,发现隐藏的规律,并为进一步研究和决策提供指导。
5. 判别分析判别分析是一种用于区分不同群体或类别的多元统计方法。
它通过构建分类函数,将个体划分到预定义的群体中。
判别分析常用于预测和识别问题,可以帮助识别关键影响因素和预测未来结果。
空间数据统计分析的思想起源与应用演化

空间数据统计分析的思想起源与应用演化一、内容概括空间数据统计分析是一门研究空间数据收集、处理、分析和解释的学科,其思想起源于20世纪初的空间概念和地理信息系统(GIS)技术的发展。
随着科学技术的进步和社会对空间信息的需求不断增加,空间数据统计分析逐渐成为地理学、环境科学、城市规划、交通管理等领域的重要研究方法。
本文将从空间数据统计分析的思想起源、发展历程以及在各领域的应用演化等方面进行探讨,以期为相关领域的研究者提供一个全面而深入的理论框架和实践指导。
1. 空间数据统计分析的定义和意义空间数据统计分析是一种基于地理信息系统(GIS)和空间统计学原理,对地理空间数据进行收集、整理、处理、分析和解释的过程。
它旨在揭示地理空间数据中的规律性、趋势性和关联性,为决策者提供科学依据和有效的解决方案。
随着信息技术的飞速发展和全球经济一体化进程的加速,空间数据统计分析在各个领域得到了广泛应用,如城市规划、环境保护、资源管理、市场调查等。
本文将从思想起源和应用演化两个方面,探讨空间数据统计分析的发展历程及其在现实问题中的应用价值。
2. 国内外研究现状和发展趋势空间数据的获取和处理是空间数据统计分析的基础,目前国内外学者已经开发了许多用于获取和处理空间数据的软件和工具,如ArcGIS、ENVI、QGIS等。
这些软件和工具为空间数据统计分析提供了便利的条件。
空间数据的可视化与表达是空间数据统计分析的重要手段,目前国内外学者已经提出了许多有效的可视化方法,如地图制图、空间网络分析、地理建模等。
这些方法有助于用户更好地理解和分析空间数据。
空间数据的统计分析方法是空间数据统计分析的核心内容,目前国内外学者已经研究了许多适用于空间数据的统计分析方法,如聚类分析、主成分分析、空间自相关分析等。
这些方法有助于揭示空间数据中的结构和规律。
空间效应检验是评估空间数据统计分析结果可靠性的重要手段。
目前国内外学者已经提出了许多有效的空间效应检验方法,如双重差分法、空间滞后模型、面板数据分析等。
什么是数据分析观念呢

什么是数据分析观念呢?是这样定义的:认识到统计对决策的作用,能从统计的角度思考与数据有关的问题;通过收集数据、描述数据、分析数据的过程,作出合理的决策;能对数据的来源、收集和描述数据的方法、由数据得到的结论进行合理的质疑。
从上面可以看到,收集数据,要通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面说明只要有足够的数据就可能从中发现规律。
在标准解读中,提出了四个方面的价值。
第一,它们是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生发展的重要方面;第二,核心概念往往是一类课程内容的核心或聚焦点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键;第三,核心概念本质上体现的是数学的基本思想;第四,这些核心概念都是数学课程的目标点,也应该成为数学课堂教学的目标,并通过教师的教学予以落实。
那么我又是怎样在实际的教学工作中培养学生的数据分析观念呢? 本人结合自己的教学实践,对此仅谈几点肤浅的认识一、注重学生统计观念的培养作为统计教学,最重要的目标就是培养学生的统计观念,我特别注重学生对于统计过程的经历。
学习中学生并没有完整的经历统计的全过程,对于描述数据的方法也是不完整和不完善的,可以说学生本节课学习是完整认识统计过程的开始。
所以我在教学统计时就有意识地创设一个完整的现实的情景,引导学生在活动中不断地感受收集数据、整理数据、描述数据、分析数据的方法,使得他们在知识的拓展中不断地经历与完善,从而加深他们对统计数据的认识与理解。
在分析数据的过程中,培养学生对统计数据的“钟爱”,因为用统计的数据说话才更有说服力,才能合理的解决问题二、注重学生能力的培养平时上课时着眼点不仅仅局限于知识、方法,在培养学生统计观念的同时,注重了学习能力的拓展与提高。
课始,我常以问题驱动的方式,进行教学。
数据分析教学大纲

《数据分析》课程教学大纲课程代码:090141122课程英文名称:Data analysis课程总学时:32 讲课:32 实验:0 上机:0适用专业:信息与计算科学大纲编写(修订)时间:2017.11一、大纲使用说明(一)课程的地位及教学目标本课程是信息与计算科学专业的一门专业必修课,通过本课程的学习,可以使学生获得分析和处理数据的理论与方法,能够从大量数据中揭示其隐含的内在规律、发掘有用的信息、进行科学的推断与决策。
本课程为学生学习新知识和后续开设的《大数据算法》、《数据挖掘》等课程打下良好的基础。
(二)知识、能力及技能方面的基本要求1 知识方面的基本要求通过本科程的学习,使学生掌握:1)要求学生了解数据分析的基本内容及应用领域,学会如何对已获取的数据进行加工处理,如何对实际问题进行定量分析,以及如何解释分析的结果;2)掌握几种常用数据分析方法的统计思想及基本步骤,且能够利用统计软件,较熟练地解决实际问题中的数据分析问题。
2 能力方面的基本要求通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力和自学能力,培养学生综合运用所学知识去分析解决实际问题的意识和能力。
3 技能方面的基本要求通过本课程的学习,使学生1)对于已获得的数据,能够通过相应的统计软件描述数据的分布及其数字特征;2)能够建立线性回归模型分析和预测;3)能比较不同数据之间的差异,并且能够进行分类、判别;4)能利用主成分方法处理高维数据;5)能够建立模型对数据进行分析和预测。
(三)实施说明1 本大纲主要依据信息与计算科学专业2017-2020版教学计划、信息与计算科学专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定并根据我校实际情况进行编写的。
2 课时分配仅供参考。
3 建议本课程采用课堂讲授、讨论相结合的方法和采用多媒体等现代化手段开展教学,通过习题课和讨论等方式强化重点,通过分散难点,使学生循序渐进的掌握难点。
(四)对先修课的要求本课的先修课程:概率论与数理统计。
数据分析师必须掌握的6种方法论和8种思路

数据分析师必须掌握的6种方法论和8种思路估计很多人都听过数据分析,但是真正做起来却不是那么一回事了。
要么胡子眉毛一把抓,要么无从下手。
这说明缺少理论知识的支持,那么本文就将盘点一下数据分析常用的方法论和思路,作为数据分析入门的基础。
数据分析的流程在介绍数据分析方法论和思路之前,我们还是先不厌其烦地看一下数据分析的流程,简单来说分为以下六个步骤:1、明确分析的目的,提出问题。
只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。
2、数据采集。
收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。
具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。
3、数据处理。
对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。
4、数据探索。
通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。
5、分析数据。
数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。
Excel是最简单的数据分析工具,专业数据分析工具有R语言、Python等。
6、得到可视化结果。
借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。
数据分析方法论数据分析的方法论很多,小编为大家介绍其中六种比较常见的理论。
1、PEST分析法PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。
宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。
对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。
因子分析的基本思想基本步骤数学模型及求解

因子分析的基本思想基本步骤数学模型及求解因子分析是一种多变量数据分析方法,旨在揭示多个变量之间的潜在结构和关系。
它的基本思想是将原始变量通过线性组合,得到一组潜在因子,从而可以简化数据分析过程。
基本思想:因子分析的基本思想是将原始变量(观测变量)表示为一组潜在因子(无法直接观测到)与测量误差的线性组合。
潜在因子代表了观测变量之间的关联性,而测量误差则表示潜在因子无法完全解释观测变量的方差。
通过因子分析,可以从大量原始变量中提取出少数几个潜在因子,从而实现数据降维和简化。
基本步骤:1.确定研究目的:明确研究目的,选择适当的分析方法。
2.数据准备:收集所需的原始数据,并进行适当的数据清洗和预处理。
3.因素提取:通过因子提取方法,从原始变量中提取出一组潜在因子。
a.主成分分析法:通过寻找能够解释最大方差的线性组合,提取因子。
b.最大似然估计法:通过最大化观测变量与预测变量之间的协方差,提取因子。
c.成分分析法:通过最大化观测变量的个别因子得分和因子负荷矩阵之间的协方差,提取因子。
4.因子旋转:为了更好地解释潜在因子,需要对其进行旋转,使得每个潜在因子更易于解释。
a.方差最大旋转法:使得每个潜在因子的方差最大。
b.斜交旋转法:允许潜在因子之间存在相关关系。
5.因子解释和命名:通过解释因子负荷矩阵,确定每个潜在因子代表的意义,并给予其合适的名称。
6.结果解释和应用:将因子分析的结果解释给研究者或决策者,并根据具体应用制定相应的决策或行动。
数学模型及求解:其中,X是原始观测变量的矩阵,L是因子负荷矩阵,F是潜在因子的矩阵,Ψ是测量误差的矩阵。
因子负荷矩阵表示观测变量与潜在因子之间的关系,测量误差表示潜在因子无法完全解释观测变量的方差。
对于因子分析模型的求解,常用的方法有主成分分析法和最大似然估计法。
主成分分析法通过寻找数据的主成分(即能够解释最大方差的线性组合),从而提取出因子。
最大似然估计法则通过最大化观测变量与预测变量之间的协方差,求解出最符合观测数据的因子。
多元方差分析的基本思想及应用

多元方差分析的基本思想及应用多元方差分析(MANOVA)是一种常用的统计分析方法,用于比较两个或多个自变量对于多个相关因变量的影响是否存在显著差异。
基于此,本文将介绍多元方差分析的基本思想,并探讨其在实际应用中的一些常见场景。
一、多元方差分析的基本思想多元方差分析的基本思想是通过比较不同的处理组或不同的条件组之间多个因变量的均值差异来判断自变量的影响是否显著。
在进行多元方差分析时,需要满足以下假设前提:1. 各观测组满足正态分布假设;2. 各观测组方差齐性假设;3. 多元线性模型的线性关系假设。
基于以上假设,多元方差分析可以得出多个因变量的均值是否存在显著差异,从而判断不同自变量对这些因变量的影响是否具有统计学意义。
二、多元方差分析的应用场景1. 教育领域的应用多元方差分析在教育领域的应用比较广泛,例如在评估不同教学方法对学生学业成绩的影响时,可以考虑将学科成绩、学术兴趣、学习策略等多个因变量作为评估指标,通过多元方差分析来比较各教学方法对这些指标的影响是否存在显著差异。
2. 医学研究中的应用在医学研究中,多元方差分析可以应用于比较不同药物治疗对多个生理指标的影响。
例如,研究者可以比较不同药物治疗组在心率、血压、血脂等多个指标上的变化情况,通过多元方差分析来判断药物治疗对这些指标是否存在显著影响。
3. 市场调研中的应用多元方差分析在市场调研中也有广泛应用。
例如,研究者可以将多个品牌产品的价格、包装设计、广告宣传等自变量与消费者的购买意愿、产品满意度等多个因变量进行比较,通过多元方差分析来判断不同自变量对这些因变量的影响是否存在显著差异。
三、多元方差分析的数据分析步骤进行多元方差分析时,通常需要按照以下步骤进行:1. 收集数据首先需要收集与研究问题相关的数据,包括自变量和因变量的观测值。
2. 建立假设根据研究问题和数据特点,建立相应的假设,包括零假设和替代假设。
3. 检验假设通过计算统计量和确定显著性水平,对假设进行检验,以判断是否存在显著差异。
统计学的基本思想及在医学应用中的误区

统计学的基本思想及在医学应用中的误区【摘要】统计学在医学中扮演着重要的角色,帮助医学研究者分析数据、得出结论并做出决策。
本文从统计学的基本思想入手,介绍了在医学中的具体应用,以及常见的误区,包括样本量不足与忽略基线差异的影响。
在医学研究中,统计学误区可能导致结论的不准确性,影响诊断与治疗方案的制定。
加强统计学知识的学习,重视统计学在医学中的应用至关重要。
只有真正理解统计学的基本原理,才能避免误区,确保医学研究结果的可靠性与科学性。
统计学不仅是医学研究的基石,也是医学进步的推动力,应该得到足够的重视与关注。
【关键词】统计学、医学、基本思想、应用、误区、样本量、基线差异、学习、重视、研究1. 引言1.1 统计学的重要性统计学是一门通过收集、整理、分析和解释数据来得出结论的学科,它在医学领域中具有极其重要的作用。
统计学可以帮助医学研究者从大量的数据中提取有意义的信息,揭示疾病的发病机制,评估治疗方法的有效性,为医疗决策提供科学依据。
1. 提高研究准确性:通过合理的统计分析方法,可以减少由于误差和偏差带来的影响,提高研究结果的准确性和可靠性。
2. 评估数据可信度:统计学可以帮助判断研究数据的真实性和可信度,减少由于误解或欺骗而导致的错误结论。
3. 优化研究设计:统计学可以指导研究者选择合适的样本量、研究方法和数据分析策略,使研究设计更加科学合理。
4. 支持决策制定:在医学实践中,统计学可以帮助医生根据医学证据制定治疗方案、评估风险和效果,提高医疗决策的科学性和准确性。
统计学的应用使医学研究更加深入和全面,为医学进步提供了重要的支持和保障。
1.2 医学应用中的统计学意义在医学领域,统计学扮演着至关重要的角色。
统计学的应用帮助医学研究者对患者数据进行分析和解释,从而更好地了解疾病的发病机制、预后情况和治疗效果。
通过统计学的方法,医学研究者可以对疾病的发生率、死亡率和相关因素进行评估,有助于指导临床实践和决策。
Meta分析的基本思想及顺序

M e t a分析的思想及步骤Meta分析的前身源于Fisher1920年“合并P值”的思想,1955年由Beecher首次提出初步的概念,1976年心理学家Glass进一步按照其思想发展为“合并统计量”,称之为Meta分析;1979年英国临床流行病学家ArchieCochrane提出系统评价systematicreview,SR的概念,并发表了激素治疗早产孕妇降低新生儿死亡率随机对照试验的系统评价,对循证医学的发展起了举足轻重的作用;Meta分析国内翻译为“荟萃分析”,定义是“Thestatisticalanalysisoflargecollectionofanalysisresultsfromindividual studiesforthepurposeofintegratingthefindings.”亦即“对具备特定条件的、同课题的诸多研究结果进行综合的一类统计方法;”Meta从字源来说据考证有“Metalogic:abranchofanalyticphilosophythatdealswiththecriticalexaminationofthebasic conceptsoflogic”;“Metamathematics:thephilosophyofmathematics,especially,thelogicalsyntaxofmathematics.”其中最简洁并且一语中的的是Metascience::atheoryorscienceofscience,atheoryconcernedwiththeinvestigationanalysisor descriptionoftheoryitself.”意为一种科学中的科学或理论,一种对原理本身进行调查、分析和描述的原理;Meta分析有广义和狭义两种概念:前者指的是一个科学的临床研究活动,指全面收集所有相关研究并逐个进行严格评价和分析,再用定量合成的方法对资料进行统计学处理得出综合结论的整个过程;后者仅仅是一种单纯的定量合成的统计学方法;目前国内外文献中以广义的概念应用更为普遍,系统评价常和Meta分析交叉使用,当系统评价采用了定量合成的方法对资料进行统计学处理时即称为Meta-分;因此,系统评价可以采用Meta-分析quantitativesystematicreview 定量系统评价,也可以不采用Meta-分析non-quantitativesystematicreview,定性系统评价;参照Cochrane协作网系统评价工作手册CochraneReviewers’Handbook制定的统一标准; Meta分析的基本步骤如下:1明确简洁地提出需要解决的问题;2制定检索策略,全面广泛地收集随机对照试验;3确定纳入和排除标准,剔除不符合要求的文献;4资料选择和提取;5各试验的质量评估和特征描述;6统计学处理;a.异质性检验齐性检验;b.统计合并效应量加权合并,计算效应尺度及95%的置信区间并进行统计推断; c.图示单个试验的结果和合并后的结果;d.敏感性分析;e.通过“失安全数”的计算或采用“倒漏斗图”了解潜在的发表偏倚;7结果解释、作出结论及评价;8维护和更新资料;临床医生只需要知道Meta分析的基本思想,具体的统计学方法让统计学家研究,让统计学软件帮我们完成;ReviewManagerRevMan是Cochrane协作网提供给评价者准备和维护更新Cochrane系统评价而设计的软件,也可以说是专门为临床医生度身订做,用于完成Meta分析的软件,它不仅可以协助我们完成Meta分析的计算过程,还可以帮助我们了解Meta分析的架构并学习系统评价的分析方法,最后把完成的系统评价制作成易于通过电子转换的文件以标准统一的格式发送到Cochrane系统评价资料库TheCochraneDatabaseofSystematicReviews,CDSR,便于电子出版和日后更新;充分利用RevMan软件对初次从事系统评价的人员获得方法学上的指导有很大的裨益;系统评价有多种类型,如病因研究、诊断性试验的评价、预后及流行病学研究等;Cochrane系统评价目前主要限于随机对照试验;非随机对照试验的系统评价方法学还处于不太完善的阶段,需要进行更多的相关研究;诊断试验的Meta分析方法与一般的随机对照试验Meta分析不同,需要同时考虑敏感性与特异性,采用综合接受者工作特征summaryreceiveroperatingcharacteristiccurve,SROC的分析,但RevMan4.2未提供Meta分析的完整步骤,根据个人的体会,结合战友的经验总结而成,meta的精髓就是对文献的二次加工和定量合成,所以这个总结也算是对战友经验的meta分析吧;一、选题和立题一形成需要解决的临床问题:系统评价可以解决下列临床问题:1.病因学和危险因素研究;2.治疗手段的有效性研究;3.诊断方法评价;4.预后估计;5.病人费用和效益分析等;进行系统评价的最初阶段就应对要解决的问题进行精确描述,包括人群类型疾病确切分型、分期、治疗手段或暴露因素的种类、预期结果等,合理选择进行评价的指标;二指标的选择直接影响文献检索的准确性和敏感性,关系到制定检索策略;三制定纳入排除标准;二、文献检索一检索策略的制定这是关键,要求查全和查准;推荐Mesh联合freeword检索;二文献检索,获取摘要和全文国内的有维普全文VIP,CNKI,万方数据库,外文的有medline,SD,OVID等;三文献管理强烈推荐使用endnote,procite,noteexpress等文献管理软件进行检索和管理文献;查找文献全文的途径:在这里,讲一下找文献的过程,以请后来的战友们参考不包括网上有电子全文的:1.查找免费全文:1在pubmedcenter中看有无免费全文;有的时候虽然没有显示freefulltext,但是点击进去看全文链接也有提供免费全文的;我就碰到几次;2在google中搜一下;少数情况下,NCBI没有提供全文的,google有可能会找到,使用“学术搜索”;本人虽然没能在google中找到一篇所需的文献,但发现了一篇非常重要的综述,里面包含了所有我需要的文献当然不是数据,但起码提供了一个信息,所需要的文献也就这么多了,因为老外的综述也只包含了这么多的内容;这样,到底找多少文献,找什么文献,心里就更有底了;3免费医学全文杂志网站;;提供很过超过收费期的免费全文;2.图书馆查馆藏目录:包括到本校的,当然方便,使用pubmed的linkout看文献收录的数据库,就知道本校的是否有全文;其它国内高校象复旦、北大、清华等医学院的全文数据库都很全,基本上都有权限;上海的就有华东地区联目、查国内各医学院校的图书馆联目;这里给出几个:1中国高等院校医药图书馆协会的地址:,进入左侧的“现刊联目”,可以看到有“现刊联目查询”和“过刊联目查询”,当然,查询结果不可全信,里面有许多错误;本人最难找的两篇文章全部给出了错误的信息后来电话联系证实的;2再给出两个比较好的图书馆索要文献的email地址有偿服务,但可以先提供文献,后汇钱,当然做为我们,一定要讲信誉吆;一是解放军医学图书馆信息部:,电话:;3二是复旦大学医科图书馆原上医:i,联系人,周月琴,王蔚之,郑荣,电话,,需下载文献传递申请表;其他的图书馆要么要求先交开户费,比如协和500元,要么嫌麻烦,虽然网上讲过可提供有偿服务,在这里我就不一一列出了;3.请DXY战友帮忙,在馆藏文献互助站中发帖,注意格式正确,最好提供linkout的多个数据库的全文链接,此时为帮助的人着想,就是帮助自己;自己也同时帮助别人查文献,一来互相帮助,我为人人,人人为我;二则通过帮助别人可以积分,同时学会如何发帖和下载全文,我就感觉通过帮助别人收获很大,自己积分越高,获助的速度和机会也就相应增加;现在不少免费的网络空间我常用爱存,比发邮件简便很多;所以如果你求助以后,要及时去“我的论坛”中查看帖子,有的很快就把下载链接发过来了,不要一味只看邮箱;4.实在不行,给作者发email;这里给出一个查作者email的方法,先在NCBI中查出原文献作者的所有文章,注意不要只限于第一作者,display,abstract,并尽可能显示多的篇数,100,200,500;然后在网页内查找“”,一般在前的字母会与人名有些地方相似;再根据地址来确定是否是同一作者;5.查找杂志的网址,给主编发信求取全文;这里我就不讲查找的方法了,DXY中有许多帖子;我的一篇全文就是这样得到的;6.向国外大学里的朋友求助;国外大学的图书馆一般会通过馆际互借来查找非馆藏文献,且获得率非常高;我的三篇文献是通过这一途径得到的;如果还是找不到,那就……我也没辙了,还有朋友如有其他的方法,不妨来这里交流;难度不小吧,比起做实验来如何三、对文献的质量评价和数据收集一研究的质量评价对某一试验研究的质量评价主要是评价试验结果是否有效,结果是什么该结果是否适用于当地人群;下面一系列问题可以帮助研究者进行系统的质量评价:①该研究的试验设计是否明确,包括研究人群、治疗手段和结果判定方法;②试验对象是否随机分组;③病人的随访率是否理想及每组病人是否经过统计分析;④受试对象、研究人员及其它研究参与者是否在研究过程中实行“盲法”;⑤各组病人的年龄、性别、职业等是否相似;⑥除进行研究的治疗手段不同外,其它的治疗是否一致;⑦治疗作用大小;⑧治疗效果的评价是否准确;⑨试验结果是否适用于当地的人群,种族差异是否影响试验结果;⑩是否描述了所有重要的治疗结果;治疗取得的效益是否超过了治疗的危险性和费用;系统评价者应根据上述标准进行判断,不满足标准的文献应剔除或区别对待数据合并方法不同,以保证系统评价的有效性;二、数据收集研究者应设计一个适合本研究的数据收集表格;许多电子表格制作软件如Excel、Access,和数据库系统软件如FoxPro等,可以用于表格的制作;表格中应包括分组情况、每组样本数和研究效应的测量指标;根据研究目的不同,测量指标可以是率差、比数odds、相对危险度relativerisk,包括RR和OR;各研究间作用测量指标不一致,需转化为统一指标;常用的统一指标是作用大小EffectSize,ES,ES是两比较组间作用差值除以对照组或合并组的标准差;ES无单位是其优点;三、数据分析系统评价过程中,对上述数据进行定量统计合并的流行病学方法称为Meta分析Metaanalysis;Meta意思是morecomprehensive,即更加全面综合;通过Meta分析可以达到以下目的:1.提高统计检验效能;2.评价结果一致性,解决单个研究间的矛盾;3.改进对作用效应的估计;4.解决以往单个研究未明确的新问题;统计分析的指标一、异质性检验1.检验原理:meta分析的原理首先是假定各个不同研究都是来自非同一个总体H0:各个不同样本来自不同总体,存在异质性,备择假设H1,如果p>0.1,拒绝H0,接受H1,,即来自同一总体这样就要求不同研究间的统计量应该接近总体参数真实值,所以各个不同文献研究结果是比较接近,就是要符合同质性,这时候将所有文献的效应值合并可以采用固定效应模型的有些算法,如倒方差法,mantelhaenszel法,peto法等.2.分类:异质性检验,包括三个方面:临床异质性,统计学异质性和方法学异质性,作meta分析首先应当保证临床同质性,比如研究的设计类型、实验目的、干预措施等相同,否则就要进入亚组分析,或者取消合并,在满足临床同质性的前提下非常重要,不能一味追求统计学同质性,首先考虑专业和临床同质性,我们进一步观测统计学同质性;临床异质性较大时不能行meta分析,随机效应模型也不行.只能行描述性系统综述systemicreviews,SR或分成亚组消除临床异质性.解决临床异质后再考虑统计学异质性的问题.如果各个文献研究间结果不存在异质性p>0.1,选用固定效应模型fixedmodel,这时其实选用随即效应模型的结果与固定效应模型相同;如果不符合同质性要求,即异质性检验有显着性意义p<0.1,这时候固定效应模型的算法来合并效应值就是有偏倚,合并效应值会偏离真实值.所以,异质性存在时候要求采用随机模型,主要是矫正合并效应值的算法,使得结果更加接近无偏估计,即结果更为准确.此外,这里要说明的是,采用的模型不同,和合并效应值的方法不同,都会导致异质性检验P值存在变动,这个可以从算法原理上证明,不过P值变动不会很大,一般在小数点后第三位的改变.异质性检验的Q值在固定模型中采用倒方差法和Mantel-haenszel法中也会不同;随机效应模型是不需要假定各个研究来自同一个总体为前提,本来就是对总体参数的近似无偏估计,这个与固定模型不一样必须要同质为基础,所以随机模型来作异质性检验简直是“画蛇添足”,无奈之举因此,随机模型异质性检验是否有统计学意义都是可以用,而固定模型必须要求无异质性;可以证明和实践,如果无异质性存在的时候,随机模型退化为固定,即固定模型的结果于随机模型的合并效应值是相等的具体见下图:目前,国内外对meta分析存在异质性,尤其是异质性检验P值很小的时候具体范围我不清楚,是0.05~0.1吗请版主补充,学术界有着不同的争论,很多人认为这个时候做meta分析是没有意义,相当于合并了一些来自不同总体的统计结果,也有人认为,这些异质性的存在可能是由于文献发表的时间,研究的分组,研究对象的特征等因素引起,只要采用亚组分析或meta回归分析可以将异质性进行控制或解释,还是可以进行meta分析,至少运用随机效应模型可以相对无偏的估计总体.这里要强调的是,异质性检验P值较小时候,最好能对异质性来源进行分析和说明;合理进行解释,同时进行亚组分析,相当于分层分析,消除混杂因素造成的偏倚bias;3.衡量异质性的指标一个有用的定量衡量异质性的指标是I2,I2=Q–df/Qx100%,此处的Q是卡方检验的统计值,df是其自由度Higgins2003,Higgins2002;这个I2值代表了由于异质性而不是抽样误差机会导致的效应占总效应估计值的百分率;I2值大于50%时,可以认为有明显的异质性;参考二、敏感性分析:1.敏感性分析的含义:改变纳入标准特别是尚有争议的研究、排除低质量的研究、采用不同统计方法/模型分析同一资料等,观察合并指标如OR,RR的变化,如果排除某篇文献对合并RR有明显影响,即认为该文献对合并RR敏感,反之则不敏感,如果文献之间来自同一总体,即不存在异质性,那么文献的敏感性就低,因而敏感性是衡量文献质量纳入和排除文献的证据和异质性的重要指标;敏感性分析主要针对研究特征或类型如方法学质量,通过排除某些低质量的研究、或非盲法研究探讨对总效应的影响;王吉耀第二版P76中“排除某些低质量的研究,再评价,然后前后对比,探讨剔除的试验与该类研究特征或类型对总效应的影响”;王家良第一版八年制P66、154敏感性分析是从文献的质量上来归类,亚组分析主要从文献里分组病例特征分类;敏感性分析是排除低质量研究后的meta分析,或者纳入排除研究后的meta分析;亚组分析是根据纳入研究的病人特点适当的进行分层,过多的分层和过少的分层都是不好的;例如在排除某个低质量研究后,重新估计合并效应量,并与未排除前的Meta分析结果进行比较,探讨该研究对合并效应量影响程度及结果稳健性;若排除后结果未发生大的变化,说明敏感性低,结果较为稳健可信;相反,若排除后得到差别较大甚至截然相反结论,说明敏感性较高,结果的稳健性较低,在解释结果和下结论的时候应非常慎重,提示存在与干预措施效果相关的、重要的、潜在的偏倚因素,需进一步明确争议的来源;2.衡量方法和措施其实常用的就是选择不同的统计模型或进行亚组分析,并探讨可能的偏倚来源,慎重下结论;亚组分析通常是指针对研究对象的某一特征如性别、年龄或疾病的亚型等进行的分析,以探讨这些因素对总效应的影响及影响程度;而敏感性分析主要针对研究特征或类型如方法学质量,通过排除某些低质量的研究、或非盲法的研究以探讨对总效应的影响;建议可以看参考王吉耀主编,科学出版社出版的循证医学与临床实践;敏感性分析只有纳入可能低质量文献时才作,请先保证纳入文献的质量纳入文献的质量评价方法,如果是RCT,可选用JADAD评分;如果病因学研究,我认为使用敏感性分析是评价文献质量前提是符合纳入标准的较为可行的方法;敏感性分析是分析异质性的一种间接方法;有些系统评价在进行异质性检验时发现没有异质性,这时还需不需要作敏感性分析我的看法是需要,因为我觉得异质性也是可以互相抵消的,有时候作出来没有异质性,但经过敏感性分析之后,结果就会有变化;三对入选文献进行偏倚估计发表偏倚publicationbias评估包括作漏斗图,和对漏斗图的对称性作检验;可以用stata软件进行egger检验;人是活的,软件是死的,临床是相对的,统计学是绝对的;四、总结:一结果的解释Meta-分析结果除要考虑是否有统计学意义外,还应结合专业知识判断结果有无临床意义;若结果仅有统计学意义,但合并效应量小于最小的有临床意义的差值时,结果不可取;若合并效应量有临床意义,但无统计学意义时,不能定论,需进一步收集资料;不能推荐没有Meta-分析证据支持的建议;在无肯定性结论时,应注意区别两种情况,是证据不充分而不能定论,还是有证据表明确实无效;二结果的推论Meta-分析的结果的外部真实性如何在推广应用时,应结合该Meta-分析的文献纳入/排除标准,考虑其样本的代表性如何,特别应注意研究对象特征及生物学或文化变异、研究场所、干预措施及研究对象的依从性、有无辅助治疗等方面是否与自己的具体条件一致;理想的Meta-分析应纳入当前所有相关的、高质量的同质研究,无发表性偏倚,并采用合适的模型和正确统计方法;三系统评价的完善与应用系统评价完成后,还需要在实际工作中不断完善,包括:①接受临床实践的检验和临床医师的评价;②接受成本效益评价;③关注新出现的临床研究,要及时对系统评价进行重新评价;临床医师只有掌握了系统评价的方法,才能为本专业的各种临床问题提供证据,循证医学才能够顺利发展;。
数据分析课程教学中的几点体会

全面了解某 家上 市公 司的经营发展 潜力 , 我们选 择 了很 多衡 量该家上市公 司的经营发展潜力的指标 , 理论 上说我们 需 从 要把这所有的指标都加 以综合分 析 , 可是实 际上 , 我们并 不
需要那么多指标 , 只需 几个 主要 的指标就 可 以了 , 这是 为什 么 呢? 因为这些指标之 间有一定的相关关系 , 这种相关 性会
第2 3卷第 3期 20 0 8年 9月
徐州教育学院学报
Jo .fXuh uE u a o olg zo d ctnC l e i e
Vo. 3, o 3 I2 N . Sp 2 0 e ., 0 8
数 据分 析课 程 教 学 中的几 点 体 会
窦建 君
( 徐州工程学院 数学与物理科 学学院, 苏 徐州 2 10 ) 江 20 8
基本步骤是数据分析课教学 的首要 环节 。例如 , 在讲解 假设 检验基本思 想的时候 , 可以先讲小 概率 原理 , 谓小概率 原 所 理, 就是认为小 概率 事 件在 一次 试验 中是 几乎 不可 能发 生
的, 这就是说 , 如果对总体 的某种假设是 真实的 , 么不利于 那 或不能支持这一假设 的小概率 事件 A在一次试 验 中实几 乎
数据作为信息的 主要 载体 在当今信 息化社 会 中扮 演着
重要的角色 。各行各业 的各 个领域无 处不有数据 的存在 , 数
的参数有不 同的检验统计量 , 因此一个正态总体 的假设检验 又可以分为几类 , 这样就 可 以把 问题 引 申开来 , 有个 需序渐 进的过程 , 不会使学生觉得 内容散乱。再 比如在 讲解主成分
史宁中:谈数学基本思想和数学核心素养

史宁中:谈数学基本思想和数学核⼼素养⼀关于数学基本思想我们把数学基本思想归结为三个核⼼要素:抽象、推理、模型。
——史宁中1.判断数学基本思想的原则我从1994年开始关注教育,对教育作了⼀点哲学层⾯的思考。
2005年承担义务教育阶段数学课程标准修订⼯作后,我接触了多位中⼩学教师和学科教学论的专家,并逐渐意识到:应当详细地研究数学的基本思想,构建切实可⾏的⽅法把这些思想体现于数学教师的⽇常教学;应当理顺中⼩学数学的脉络,使得数学教师在教学活动中有所遵循;应当清晰地阐述数学教学内容中重要知识点的内涵与外延,对于数学教师能够有所启发。
⼤家都觉得数学思想很重要,但是说不清道不明,有的⼈把数学思想列出⼀⼤串。
在数学教学中,通常说的等量替换、数形结合、递归法、换元法等,可以称为数学思想⽅法,但不是数学基本思想。
因为在述说这些概念的时候,必然要依附于某些具体的数学内容,因此这些概念在本质上是个案⽽不是⼀般。
此外,这些概念也不是最基本的,⽐如关于等量替换,⼈们可以进⼀步追问:为什么可以在计算的过程中进⾏等量替换呢?这就意味着,作为⼀种⽅法,等量替换可以⽤其他的更为基本的原理推演出来。
可见,数学基本思想是更上位的概念。
为此,需要建⽴判断数学基本思想的原则。
我们建⽴两条原则:第⼀条原则,数学产⽣和发展所必须依赖的那些思想;第⼆条原则,学习过数学的⼈应当具有的基本思维特征。
根据这两条原则,我们把数学基本思想归结为三个核⼼要素:抽象、推理、模型。
2.数学基本思想三要素之间的关系数学基本思想三要素对于数学的作⽤以及相互之间的关系⼤体是这样的:通过抽象,⼈们把现实世界中与数学有关的东西抽象到数学内部,形成数学的研究对象,思维特征是抽象能⼒强;通过推理,⼈们从数学的研究对象出发,在⼀些假设条件下,有逻辑地得到研究对象的性质以及描述研究对象之间关系的命题和计算结果,促进数学内部的发展,思维特征是逻辑推理能⼒强;通过模型,⼈们⽤数学所创造的语⾔、符号和⽅法,描述现实世界中的故事,构建了数学与现实世界的桥梁,思维特征是表述事物规律的能⼒强。
主成分分析的基本思想和应用

主成分分析的基本思想和应用主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维方法,通过保留数据集中的主要特征分量,将高维数据映射到低维空间中,从而实现对数据集的简化。
本文将详细介绍主成分分析的基本思想和应用。
一、基本思想主成分分析的基本思想是将数据集中的多个变量通过线性变换转换为几个线性不相关的变量,这几个变量称为主成分。
在转换过程中,主成分能够最大化数据的方差,从而保留数据集中的主要信息。
通过这种方式,我们可以将高维数据降到较低维度,实现对数据集的简化。
二、数学原理主成分分析的数学原理可以概括为以下几个步骤:1.数据标准化:对数据集进行标准化处理,使得每个变量的均值为0,标准差为1。
2.计算协方差矩阵:根据标准化后的数据计算协方差矩阵,表示数据集中各个变量之间的相关性。
3.计算特征值和特征向量:对协方差矩阵进行特征分解,得到一组特征值和对应的特征向量。
4.选择主成分:根据特征值的大小,降序排列特征值,并选择前k个最大的特征值对应的特征向量作为主成分。
5.形成新的数据集:将原始数据集投影到新的空间中,使得新空间中的数据线性无关,从而实现数据降维。
三、应用主成分分析在许多领域都有广泛的应用,下面列举几个典型的例子:1. 图像处理在图像处理领域,主成分分析可以用于图像降维和图像压缩。
通过保留图像中的主要特征分量,可以将高维的图像数据降到较低维度,从而减少数据量,提高计算效率。
此外,主成分分析还可以用于图像去噪和图像增强等任务。
2. 机器学习在机器学习领域,主成分分析常用于特征提取和特征选择。
通过降维,可以减少模型训练过程中的计算复杂度,提高模型的预测性能。
此外,主成分分析还可以用于数据可视化,将高维数据映射到二维或三维空间中,便于观察数据之间的关系。
3. 金融领域在金融领域,主成分分析可以用于风险管理和资产定价。
通过分析金融市场中的多个变量,提取主要的风险因素,可以帮助投资者更好地理解和预测市场走势。
简述单因素方差分析的基本思想

简述单因素方差分析的基本思想一、单因素方差分析的基本思想方差分析就是从每个因素的方差来解释自变量之间的关系,以便得到某一类总体参数值和每个总体参数值之间的相关关系。
利用一组数据的因素分析,可以得到一系列关于总体结构特征的估计值。
二、单因素方差分析的具体方法1、随机化,对原始数据的变异性进行平均实施单因素方差分析的第一步就是将原始数据进行随机化,使其各个因素值相等。
这种方法叫做平均化。
例如,我们知道数据的平均值为14,其中两个较大的数是12和17,将其合并成12和18。
根据数学期望计算,这种数据组成的方案与原来的数据有相同的平均值。
这个例子说明在方差分析中需要进行平均化处理。
2、平均,使用数据分布的平均值平均化处理后,各个因素的方差仍然很大。
例如,如果某些数据的方差很大,但统计量的标准差很小,就会导致自变量与因变量之间呈现明显的正相关关系,这种情况叫做变量过分集中。
例如,有些数据的方差很大,但统计量的标准差很小,这时需要平均化来处理,使得总体分布比较平均。
3、单因素方差分析还需要使用单因素方差分析检验的基本假设,主要的是分离变量检验、平均变量检验、单一效应检验、配对效应检验、固定效应检验、随机效应检验、单因素方差分析效应的交互作用、两水平模型、两因素模型等基本假设,这些基本假设将统计检验划分为若干部分。
4、单因素方差分析可以对多个因素进行分析,称为多因素方差分析,它通常与两水平模型一起使用。
三、单因素方差分析的实际意义5、单因素方差分析可以对多个因素进行分析,称为多因素方差分析,它通常与两水平模型一起使用。
四、单因素方差分析的主要步骤( 1)确定因素的水平,计算平均方差。
在实际问题中,总体的数据很多,不能直接进行试验。
首先需要把原始数据转换成统计上允许的统计量。
也就是说,经过试验以后,才能获得试验结果。
然后再用统计量来表示。
所以,因变量是通过统计方法间接地表示的。
最简单的因素水平的确定方法是采用标准差,即通过因素值与标准差的对比而确定水平。
数据点积分

数据点积分
数据点积分是一种统计学方法,用于进行数据分析。
它的基本思想是对两组数据进行比较,并根据结果得出一个综合评价值。
它可以用于比较不同维度的数据,以及将多组数据进行比较。
数据点积分通常使用相关系数或卡方统计量来评估两组数据间的差异。
相关系数表示两组数据之间的线性关系,而卡方则表示两组数据之间的非线性关系。
决定两组数据间的差异时,选择合适的统计量可以使分析更准确、更可靠。
数据点积分还可以用来评估在不同发展阶段的统计模型,以及在执行特定测试时所需的报告标准。
例如,它可以用于测量不同学习策略的效果,运行不同模型的误差率,以及评估模型参数的影响程度。
使用数据点积分还可以为人们带来便利。
它可以提供有关预测结果正确率的量化参数,以及更好的决策辅助。
此外,它也可以提供对不同数据集之间的差异的可视化反馈,有助于理解数据的分布。
总而言之,数据点积分是一种经济、高效的统计分析方法,可以被用于各种数据分析应用场景中。
它不仅可以评估不同维度的数据、比较多组数据,还可以用来评估统计模型、帮助决策制定以及可视化数据,为数据分析提供了更多的信息和更多的便利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用数据说话,就是用真实的数据说真实的话!真实也可以理解为求真务实。
那么,数据分析就是不断地求真,进而持续地务实的过程!用一句话表达就是用数据说话,用真实的数据说话,说真话、说实话、说管用的话。
1.用数据说话数据本不会说话,但是面对不同的人时,就会发出不同的声音。
现在我们以《荒岛售鞋》这个老故事为引例,从数据分析的角度来解读,看看能不能开出新花?为防止大家案例疲劳,我尽量用新的表达方式把故事罗嗦一下!话说郭靖和杨康,被成吉思汗派去美丽的桃花岛进行射雕牌运动鞋的市场拓展。
郭靖和杨康一上桃花岛就惊讶地发现这里的居民全部赤脚,没有一个穿鞋的,不论男女还是老少,莫不如此。
杨康一看,倒吸了一口凉气,说:唉!完了,没啥市场!郭靖却不这么认为,马上掏出了新买的IPHONE4G给铁木真打了个长途加漫游的汇报电话。
面对桃花岛这个空白的市场,郭靖电话里这么说:“桃花岛人口众多,但信息闭塞。
现在全岛居民,全部赤脚。
在运动鞋市场上没有任何竞争对手,茫茫蓝海,市场将为我独霸!可喜,可喜啊!”这个时候,咱现场做个调查,假如你是成吉思汗,你会怎么抉择?(投资Y1人,不投资的N1人。
)这个时候杨康听不下去了,马上抢过电话,说到“大汗,别听郭靖瞎嚷嚷!市场虽然没有竞争,但并不就一定是蓝海。
在全球化竞争的大背景下,这么轻而易举的就让我们找到了蓝海,您觉得可能吗?难道阿迪、耐克、彪马、锐步这些国际巨头都是棒槌,会发现不了?我看肯定是岛上几百年不穿鞋的生活习惯,短期内无法改变,所以各路群雄,都只能望而止步!可惜,可惜啊!”听了杨康的论述,铁木真又该如何选择呢?请大家举手表态。
(愿意投资Y2人,不愿意投资的N2人。
)姜是老的辣!成吉思汗比较理性,他只说了一句:“继续调研,要用数据说话!”就把电话挂了!一个星期之后,杨康率先给BOSS汇报了。
不过他没有选择打电话,而是改发E—MAIL。
原因有三:一是全球通资费太高了,钱要省着点花;二是杨康有点小人,他担心郭靖听了他的表述后,剽窃他的思想;三是他写了一份详细的调研报告,电话里三言两语说不清。
杨康的调查报告里详细地记录了他与岛内精心选取的200位居民的谈话内容,以及他抽取居民样本时科学合理的甄别条件,最后的结论就是:岛内居民全部(100%)以捕鱼为生,脚一年四季泡在水里,根本就不需要鞋!听到这个消息,成吉思汗怎么办呢?请大家继续举手表态!(愿意投资Y3人,不愿意投资的N3人。
)成吉思汗有自己的想法。
这个时候,他没有做决策,而是继续等。
等什么呢?等郭靖的结论!又过了两天郭靖终于打来了电话。
电话里说了3句话:“这个市场可以做!原因是岛上的居民每周都要上山砍柴,并且十有八九会被划破脚!更可喜的是,这两天他用美男计泡到了岛主的女儿黄蓉,而且黄蓉答应给射雕牌运动鞋作形象代言!”故事发生到这个阶段,我请大家做最后一次表态。
(愿意投资Y4人,不愿意投资的N4人。
)好!数据在变,我们的决策也在变。
不过,成吉思汗比我们理性的多。
回答还是一句话,不过比第一次多了几个字:“继续深入调研,用详实数据论证。
”为什么呢?难道这些数据还不够详实吗?是的!因为在成吉思汗脑袋里还存在有很多疑问。
比如:1)难道竞争对手真的没来过?还是对方论证后真的不可行?2)山上不会开个伐木厂吧?如果有了伐木厂,居民就不会上山砍柴了,到时候送柴上门,鞋还有个屁用啊!3)为什么一周才上一次山?该不会主要使用的是太阳能吧?4)运动鞋的运输成本、营销成本、销售成本是多少?投资收益率有多高?5)……听完这个案例,我想问大家一个问题!从数据分析的角度看,你受到了什么启示?请注意这里说的数据分析的角度,如果你得到的启示是:铁木真领导的郭靖与杨康不是1个老男人+2个帅小伙的Gourp,而是教练型的Team。
那么,抱歉!这不是我们今天讨论的范围。
好,在座的各位谁来表达一下自己的看法呢?提示性的启示有:ü面对同一个数据,不同的人会说不同的话。
ü真实的数据并不一定能推导出正确的结论。
ü正确的决策需要有充分的数据去论证。
ü……说完了启示,咱把这页PPT总结一下。
这个案例涉及数据的搜集、分析、汇报以及用于决策的整个过程。
在这个过程里,无论那个细节出了问题,最终做出的决策都将是致命的!所以说质量是数据的生命,在数据用于决策的整个过程,都必须保证真实有效!2.用真实的数据说话所谓用真实的数据说话,就是指在说话之前,先审核数据的真实性!现实生活中,拿着错误的数据还能大言不惭的可以说比比皆是。
其中有两位杰出的代表:一个是传说中伟大的中国统计局,另一个就是动不动就要封杀这个封杀那个的CCTV。
我不是瞎说,因为有数据支撑!2010年1月20日,国家统计局公布了2009年全国房地产市场数据,全年房价平均每平方米上涨813元。
够雷人吧!雷声还没过,霹雳紧跟着又来了!2月25日国家统计局发布了《2009年国民经济和社会发展统计公报》,数据显示,70个大中城市房屋销售价格上涨1.5%。
真可是天雷滚滚!难怪网友把统计局票选成大天朝的娱乐至尊!此话一出,央视不答应了!真所谓中国统计,娱乐至尊;央视不出,谁与争锋?那我们仔细推敲一下央视的数据。
2010年2月15日,CCTV发布了虎年春晚的满意度报告,结果显示满意度为83.6%。
几乎同一天,新浪的公布的调查结果是14.55%;后来没几天,腾讯也发布了满意度数据,结果是10.48%。
数据一出,网友们骂声不断,此起彼伏,一浪高过一浪。
但是人家央视就是央视,大有敌军围困万千重,我自岿然不动的定力。
更夸张的是央视不但能装作视而不见,充耳不闻,而且还继续恬不知耻地在自己家的那几个频道里卖弄数据,自娱自乐。
到底央视的数据错在哪里?我们先审视一下央视的调查方法。
央视的调查结果,来自央视——索福瑞媒介研究有限公司。
索福瑞号称他们电视观众满意度调查的样本覆盖了全国30个城市,抽样框总人数有30,000人,央视春晚满意度的调查就是从这3万人中随机抽取了2122人进行调查。
这样看,严格意义上讲所谓83.6%的满意度只能代表3万人的看法。
当然,如果我拿这个说法与央视理论,对方肯定能拿出3万代表全国的理论证据。
具体就是先从2千推断3万,再用3万推及到30个城市,然后从30个城市推及至全国所有城市,最后再推及至全国。
这里用到了简单随机抽样、分层抽样、典型抽样,总起来还是个多阶段抽样,多么冠冕堂皇的理论依据!但是,纵然每一步都能保证90%的可靠程度,四次推及下来理论的可靠程度也只有65%。
可遗憾的是,最后一步用城市推及全国的做法在理论上还有一道坎,因为我们不知道如何用45%的城镇居民来代表55%的农村人口?说完了代表性的问题,我们再看看调查方法。
索福瑞采用的是电话调查,而且时段选择在春晚直播的那几个小时内。
据说调查是从晚上8:30开始,一直持续到春晚结束。
巨汗!8:30貌似90%的节目还没有上演,又怎么能调查到观众对整个春晚的满意度呢?央视的数据是经不住推敲的!那么,新浪和腾讯的一定对吗?不一定,这两个数据也只能代表新浪用户和腾讯用户的春晚满意度,最多能够代表一下4亿网友,要想替13亿的中国人民表达心声,也恐怕是鞭长莫及。
欣赏了统计局和CCTV送给我们的两个开年笑话之后,我们自己也应该反思,咱们日常工作中,在从数据的搜集、提取、整理到分析、发布、使用的这一连串过程中,数据有没有失真?是不是数据自始自终都很齐全、很准确,而且统计口径与分析目的保持着高度的一致呢?这个问题留到日常工作中供大家思考。
3.说真话说实话拿着错误的数据,肯定得不出正确的结论。
那么面对真实的数据,就一定能得出正确的结论吗?未必!给大家看个小笑话。
问:你只有10平米的蜗居,邻居家从90m2换到190m2,你的居住面积有没有增加?答:没有。
解:错,你们两家的平均居住面积是100m2,你的居住面积被神不知鬼不觉地增加了!这个神不知鬼不觉是谁呢?无敌的平均数!仔细想想,这个均值算错了吗?没有!那么,问题出在哪里?单一的统计量存在片面性,所以要想反映数据的真实面貌,就得使用一系列统计量。
我再杜撰一个气候的例子,说明一下在结构严重失衡的情况下,使用平均数的可怕之处。
我们的大中国啊,960万平方公里,同一时间里有的刮风,有的下雨,还有的高温酷暑。
从去年冬天到今年的春天,北方一直暴雪连天,南方则遭遇百年旱情;而最近这段时间,南方多个省市河水决堤,沿河两岸,村庄沦陷,而北方则是烈日当头,干旱焦人,酷暑难耐。
如果我们计算全年或者是全国降雨量的平均值,算出来的结果肯定是神州大地风调雨顺,国泰民安,而实际却是华夏民族饱经风霜,多灾多难!还好,统计学家不只给了我们平均数,同时还设计了许多其他的统计量,大家看看下面这个表。
衡量数据的集中趋势,基本有三个统计量,均值、中位数和众数。
均值是数值平均数,它容易受极端值的影响。
也就是说如果数据的跨度或者说是极差不大的话,用均值可以很好的反映真实情况。
但是,如果数据的差异比较大,单一使用平均数就会搞出新的笑话了。
中位数和众数属于位置平均数,中位数是把数据从小到大排序,正好处于中间位置的那个数,众数是说出现的频次最多的那个数。
数据除了有集中趋势,还有离散趋势。
反映离散趋势的统计量主要有方差、标准差、极差、变异系数等。
方差就是观测值与均值差的平方和除以自由度,自由度一般是n或n-1。
总体数据就用n,抽样数据就用n-1。
标准差就是方差的正平方根,它的意义是消除了量纲的影响。
极差是最大值与最小值的差,反映的是观测值的跨度范围。
还有一个比较重要也是比较常用的就是变异系数,它是标准差与均值的比,目的是消除数量级的影响。
此外,还有一些是描述数据分布的统计量,比如分位数,有四分位、八分位、十分位等等,二分位就是中位数,它们反映一系列数据某几个关键位置的数值。
频率分布,就是对数据分组或者是分类后,各组或各类的百分比。
偏度是用于衡量分布的不对称程度或偏斜程度,峰度是用于衡量分布的集中程度或分布曲线的尖峭程度的指标。
如果想再深入一些的话,就会用到相关系数、置信水平、统计指数等等。
相关系数是反映变量之间线性相关程度的指标,取值范围是【-1,1】,大于0为正相关,小于0为负相关,等于0表示不相关。
置信水平是指总体参数值落在样本统计值某一区内的概率。
统计指数就是将不能直接比较的一些指标通过同度量因素的作用使得能够比较,常见的物价指数、上证指数等等。
有了这些基本的统计量,我们在实际工作中只要稍微用心选择一下,就可以比较准确的描述数据的真实情况。
4.说管用的话说管用的话是指深入分析数据的实质,挖掘数据的内涵,而不是停留在数据的表层,说些大话、空话或者套话。
这就要求在数据分析时,首先明确分析的目的,其次是选择恰当的方法,最后得出有用的结论。