生物实验室材料 方法大全pE194ts
生物材料常规取材的流程和方法
生物材料常规取材的流程和方法说实话生物材料常规取材这事儿,我一开始也是瞎摸索。
我就想啊,这应该挺简单的吧,结果啊,一上手就发现没那么容易。
首先呢,我觉得工具得准备好。
就好像你做饭得先把厨具准备齐一样。
你得有合适的剪刀啊,镊子啊之类的。
我刚开始就没太注意剪刀的锋利程度,结果剪生物材料的时候,那叫一个费劲,还把材料弄得乱七八糟的。
这就相当于你拿个钝刀切菜,切得又慢又难看。
然后就是取材的位置。
这个可太关键了。
我试过取植物的叶子,在一株植物上,不能随便乱摘。
有的时候你以为都一样,结果取错了地方,效果完全不一样。
比如说我做一个关于植物光合作用部分取材的实验,我一开始不懂,随便揪了片叶子。
后来才知道,得取那些充分接受光照、健康生长的叶子才行。
我那次的数据啊,就完全不对,就像是你本来要测一群好学生的成绩,结果找了些不爱学习的来测。
要是取动物材料,那更要小心了。
我之前取小鼠的组织,吓都吓死了。
那个小鼠在手里动啊动的,我都不敢下手。
而且在取组织的时候,得找准具体的部位才行。
我还犯过错呢,把周围一些不相关的组织也给取下来了,完全影响后面的实验。
这就好比你要拿牛肉做菜,结果你把牛筋什么的都混在一起拿了,那肯定不行啊。
还有就是消毒的事儿。
我一开始老忘记。
可是你想,生物材料要是有细菌什么的污染进去,就跟你吃的食物里进了虫子一样,整个实验就坏掉了。
我现在就养成习惯了,在取材之前,所有工具都消好毒。
再说说取材后的保存。
这个我也琢磨了好久。
有的生物材料得马上放到特定的溶液里,就像鱼离不开水一样。
我有时候没来得及,结果材料就干了或者变质了。
我觉得我还没有完全精通生物材料常规取材呢,像有时候在棘手的生物材料,到底是分层取还是整体取,我还在研究。
但是这些我已经经历过的事,希望能给你些帮助,让你少走弯路。
我到现在还在不断尝试新的方法,可能以后还会有更多的感触。
比如说关于取材的大小,多大才合适,不同材料之间没个定数似的,这就得不断尝试。
生物学实验基本技术与方法生物学实验室常用仪器和试剂简介学时生物学实验室常用试剂配制方法
无色透明的动植物组织、细胞及细胞器必须经染色剂染色,才 能在显微镜下观察清楚。
常用染色剂:酸性染色剂和碱性染色剂。染料的划分依据在于 染料分子电离后的主要有色分子是阳离子还是阴离子,并非由染 料溶液的pH值决定。若染料分子电离后,有色离子为阳离子即为 碱性染料;若有色离子为阴离子即为酸性染料;而中性染料则是 由碱性染料和酸性染料混合后配制成的复合染料。
用斐林试剂鉴定可溶性还原糖时,溶液的颜色变化过程 为:浅蓝色→棕色→砖红色(沉淀)
定性鉴定物质的试剂
➢ 斐林试剂--鉴定葡萄糖的试剂 甲液:质量浓度为0.1g/mL的NaOH溶液
乙液:质量浓度为0.05g/mL的CuSO4 溶液 注意:1、甲乙液分别保存;现用现配: 甲乙液混合后若放置
时间过久,,则OH-会和空气中的CO2 反应, 导致OH-浓度降低, 当PH <14 时,[Cu(OH)4]2-络阴离子会逐渐分解为Cu(OH)2蓝色沉 淀,不利于醛与Cu2+的接触,影响实验的显色反应。
生物实验室常用试剂的配制
叶覃 江苏师范大学 生物学国家级实验教学示范中心
一 检验酸碱性的试剂
二 定验酸碱性的试剂
➢ 酚酞试剂:0.1g酚酞,溶解在100ml 60-90%的乙醇
溶液里,棕色试剂瓶密封保存。 注意:碱性酚酞试剂呈红色。
➢ 溴甲酚紫指示剂:将0.1g溴甲酚溶于9.25ml的 0.02M
2019-9-21
定性鉴定物质的试剂
➢ 苏丹黑染液--鉴定脂肪的试剂
注意: 实验时需用少许50%的酒精洗去装片上的浮色, 适当加热
可促进反应。
2019-9-21
定性鉴定物质的试剂
➢ 碘液--鉴定淀粉的试剂
原理:淀粉为白色粉末状, 由10%-30% 直链淀粉和70% 90% 的支链淀粉组成。直链淀粉由分子内的氢键使链卷曲 成螺旋状, 加人碘液, 碘分子嵌人到螺旋结构的空隙中, 碘分 子与淀粉之间借助范得华力联系在一起,形成一种络合物,这 种络合物能够比较均匀吸收除蓝光以外的其它可见光( 波长 范围为4 0 0一7 50 n m ), 而使淀粉溶液呈现蓝色。
生物基pe生产工艺流程
生物基pe生产工艺流程生物基PE生产工艺流程那可真是个超有趣的事儿呢!生物基PE,就是生物基聚乙烯啦。
这生产过程啊,得从原料说起。
那原料可都是来自生物质呢,比如说植物啦。
这些植物就像是一个个小小的宝藏,里面蕴含着制造生物基PE的秘密。
生物质原料要经过好多处理步骤。
最开始得把这些植物原料收集起来,就像我们去田野里采花采草(当然实际可没这么简单啦),不过是大规模的那种收集。
收集来之后,要进行预处理,这一步就像是给这些原料洗个澡,把它们身上的脏东西去掉,同时把它们变成更适合加工的状态。
比如说把植物里的一些杂质去除掉,只留下那些对制造生物基PE有用的部分。
接下来就到了很关键的一步,把预处理后的生物质转化为可用于聚合的单体。
这就好比是把一堆小零件组装成一个大零件的前奏。
这个转化过程需要一些特殊的反应条件和催化剂呢。
催化剂就像是一个超级小助手,它能让反应更快更顺利地进行。
在这个转化过程中,会发生一系列复杂的化学反应,不过咱们就简单理解成把生物质里的成分变成了制造PE的基础单元就好啦。
然后就是聚合反应啦。
这就像是一场盛大的聚会,那些之前转化得到的单体都聚在一起,手拉手形成了长长的聚合物链,这就是生物基PE的雏形啦。
这个聚合反应也不是随随便便就能进行的,要控制好温度、压力还有反应时间等好多因素。
温度就像是这场聚会的气氛,不能太热也不能太冷,合适的温度才能让单体们开开心心地聚合在一起。
压力呢,就像是聚会场地的大小,合适的压力能让单体们有足够的空间来聚合,又不会太松散或者太拥挤。
反应时间也很重要,时间太短,单体们还没聚好,时间太长,又可能会出现一些不好的情况。
聚合反应结束后,得到的生物基PE还不是最终我们看到的样子呢。
它还要经过一些后处理工序。
比如说要进行分离和提纯,把那些没有反应完全的东西去掉,只留下纯净的生物基PE。
这就像是从一堆宝贝里挑出最完美的那部分。
然后还要进行加工成型,根据不同的用途,把生物基PE制成薄膜呀、管材呀之类的东西。
微生物实验室常见20种培养基配方大全
微生物实验室培养基配方大全一、糖发酵管成分:牛肉膏 5g蛋白胨 10g氯化钠 3g磷酸氢二钠2g0.2%滇麝香草酚蓝溶液 12mL蒸馏水 1000mLPH 7.4制法1. 葡萄糖发酵管按上述成分配好后,按0.5%加入葡萄糖,分装于有一个倒置小管的小试管内,121℃高压灭菌15min。
2. 其他各种糖发酵管可按上述成分配好后,分装每瓶1000 mL,121℃高压灭菌15min。
另将各种糖类分别配好10%溶液,同时高压灭菌。
将5mL糖溶液加入于100 mL培养基内,以无菌操作分装小试管。
蔗糖不纯,加热后会自行水解者,应采用过滤法除菌。
从琼脂斜面上挑取小量培养物接种,于36℃±1℃培养,一般观察2~3d。
迟缓反应需观察14~30d。
二、乳糖胆盐发酵管成分:蛋白胨 20g猪胆盐(或牛、羊胆盐)5g乳糖 10g0.04%滇甲酚紫水溶液 25mL蒸馏水 1000mL制法:将蛋白胨,胆盐及乳糖溶于水中,校正pH,加入指示剂,分装每管10 mL,并放入一个小倒管,115℃高压灭菌15min。
双料乳糖胆盐发酵管除蒸馏水外,其他成分加倍。
三、5%乳糖发酵管成分:蛋白胨 0.2g氯化钠 0.5g乳糖 5g2%溴麝香草酚蓝水溶液 1.2mL蒸馏水 100mLpH 7.4制法:除乳糖以外的各成分:溶解于50mL蒸馏水内,校正pH。
将乳糖溶解于另外50mL蒸馏水内,分别灭菌121 ℃ 15min,将两液混合,以无菌操作分装于灭菌小试管内。
在此培养基内,大部分乳糖迟缓发酵的细菌可于ld内发酵。
四、缓冲葡萄糖蛋白胨水(MR和VP试验用)成分:磷酸氢二钾 5g多胨 7g葡萄糖 5g蒸馏水 1000mL制法:溶化后校正pH,分装试管,每管1mL ,121℃高压灭菌15min。
甲基红(MR)试验:自琼脂斜面挑取少量培养物接种本培养基中,于36±1℃培养2~5d,哈夫尼亚菌则应在22~25℃培养。
滴加甲基红试剂一滴,立即观察结果。
生物实验方法知识点汇总
生物实验方法知识点汇总
本文旨在总结生物实验方法的基本知识点。
以下是几个重要的
知识点:
1. 实验设计
- 需要明确实验的目的和假设,并设计合适的控制组和实验组。
- 可以采用随机分组、反复实验等方法来确保实验结果的可靠性。
2. 样本处理
- 样本的预处理是生物实验中重要的一步。
例如,可以使用洗
涤剂、生物杀菌剂等方法来清洁和处理样品。
- 在处理样本时,应遵循对比实验和重复测试的原则,以减少
实验误差。
3. 仪器设备
- 生物实验中常用的仪器设备包括显微镜、离心机、PCR仪等。
- 在使用仪器设备前,需要熟悉其操作方法和注意事项,并做
好实验前的准备工作。
4. 数据分析
- 生物实验得到的数据需要进行统计分析,以得出结论。
- 常用的数据分析方法包括 t 检验、方差分析、回归分析等。
5. 实验安全
- 在进行生物实验时,应严格遵守实验室安全规范。
- 使用有害物质时,需要戴好防护手套、口罩等个人防护设备。
以上是生物实验方法的一些基本知识点。
深入研究这些知识,
能够帮助您更好地进行生物实验并取得准确的结果。
分子生物学实验常用试剂、缓冲液的配制方法
实验常用试剂、缓冲液的配制方法1、1M Tris-HCl□组份浓度1 M Tris-HCl(pH7.4,7.6,8.0)□配制量1L□配置方法1. 称量121.1gTris置于1L烧杯中。
2. 加入约800mL的去离子水,充分搅拌溶解。
3. 按下表量加入浓盐酸调节所需要的pH值。
pH值浓HCl7.4 约70mL7.6 约60mL8.0 约42mL4. 将溶解定容至1L。
5. 高温高压灭菌后,室温保存。
注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的pH 值随温度的变化差很大,温度每升高1℃,溶液的pH值大约降低0.03个单位。
2、1.5 M Tris-HCl□组份浓度1.5 M Tris-HCl(pH8.8)□配制量1L□配置方法1.称取181.7gTris置于1L烧杯中。
2. 加入约800mL的去离子水,充分搅拌溶解。
3. 用浓盐酸调pH值至8.8。
4. 将溶液定容至1L。
5. 高温高压灭菌后,室温保存。
注意:应使溶液冷却至室温后再调定pH值,因为Tris溶液的pH值随温度的变化差异很大,温度每升高1℃,溶液的pH值大约降低0.03个单位。
3、10×TE Buffer□组份浓度100 mM Tris-HCl,10 mM EDTA (pH 7.4,7.6,8.0)□配制量1L□配置方法1. 量取下列溶液,置于1L烧杯中。
1 M Tris-HCl Buffer(pH7.4,7.6,8.0)100mL500 mM EDTA(pH8.0)20mL2. 向烧杯中加入约800mL的去离子水,均匀混合。
3. 将溶液定至1L后,高温高压灭菌。
4. 室温保存。
4、3 M 醋酸钠□组份浓度3 M 醋酸钠(pH5.2)□配制量100mL□配置方法1. 称取40.8gNaOAc•3H2O置于100~200mL烧杯中,加入约40mL的去离子水搅拌溶解。
2. 加入冰乙酸调节pH值至5.2。
3. 加入去离子水将溶液定容至100mL。
生物学实验室常用试剂的配制方法
一.常用贮液与溶液1mol/L亚精胺(Spermidine): 溶解2.55g亚精胺于足量的水中,使终体积为10ml。
分装成小份贮存于-20℃。
1mol/L精胺(Spermine):溶解3.48g精胺于足量的水中,使终体积为10ml。
分装成小份贮存于-20℃。
10mol/L乙酸胺(ammonium acetate):将77.1g乙酸胺溶解于水中,加水定容至1L后,用0.22um孔径的滤膜过滤除菌。
10mg/ml牛血清蛋白(BSA):加100mg的牛血清蛋白(组分V或分子生物学试剂级,无DNA酶)于9.5ml水中(为减少变性,须将蛋白加入水中,而不是将水加入蛋白),盖好盖后,轻轻摇动,直至牛血清蛋白完全溶解为止。
不要涡旋混合。
加水定容到10ml,然后分装成小份贮存于-20℃。
1mol/L二硫苏糖醇(DTT):在二硫苏糖醇5g的原装瓶中加32.4ml水,分成小份贮存于-20℃。
或转移100mg的二硫苏糖醇至微量离心管,加0.65ml的水配制成1mol/L二硫苏糖醇溶液。
8mol/L乙酸钾(potassium acetate):溶解78.5g乙酸钾于足量的水中,加水定容到100ml。
1mol/L氯化钾(KCl):溶解7.46g氯化钾于足量的水中,加水定容到100ml。
3mol/L乙酸钠(sodium acetate):溶解40.8g的三水乙酸钠于约90ml水中,用冰乙酸调溶液的pH至5.2,再加水定容到100ml。
0.5mol/L EDTA:配制等摩尔的Na2EDTA和NaOH溶液(0.5mol/L),混合后形成EDTA 的三钠盐。
或称取186.1g的Na2EDTA·2H2O和20g的NaOH,并溶于水中,定容至1L。
1mol/L HEPES:将23.8gHEPES溶于约90ml的水中,用NaOH调pH(6.8-8.2),然后用水定容至100ml。
1mol/L HCl:加8.6ml的浓盐酸至91.4ml的水中。
☆分子生物学常用试剂的配制
☆分子生物学常用试剂的配制分子生物学常用试剂的配制 (3)1.LB(Luria-Bertani)培养液、平板的配制 (3) 2.琼脂糖凝胶的配制 (3)3.P1、P2、P3的配制P1 的配制 (3) 4.常用缓冲液 (3)TE (3)STE(亦称TEN) (3)STET (4)TNT (4)Tris-乙酸(TAE) (4)Tris-磷酸(TPE) (4)Tris-硼酸(TBE) (4)碱性缓冲液 (4)Tris-甘氨酸 (4)30%丙烯酰胺 (4)10mol/L 乙酸铵: (4)1mol/LCaCl2 (5)2.5mol/LCaCl2 (5)1mol/L 二硫苏糖醇(DTT): (5)0.5mol/LEDTA(pH8.0): (5)溴化乙锭(10mg/ml): (5)1mol/LMgCl2: (5)酚:氯仿 (5)磷酸缓冲盐溶液(PBS) (5)乙酸钾溶液(用于碱裂解) (5)3mol/L 乙酸钠(pH5.2 和7.0) (5)1mol/LTris (5)Tris 缓冲盐溶液(TBS) (5)10mg/mlBSA(小牛血清白蛋白)溶液 (6)10%十二烷基硫酸钠(SDS) (6)实验室常用贮存液的配制参数 (7)1.30%丙烯酰胺溶液 (7)2.40%丙烯酰胺 (7)3.放线菌素D溶液 (7)4.0.1mol/L腺苷三磷酸(ATP)溶液 (7) 5.10mol/L乙酸酰溶液 (8)6.10%过硫酸铵溶液 (8)7.BCIP溶液 (8)8.2×BES缓冲盐溶液 (8)9.1mol/L CaCl2溶液 (8)10.2.5mol/L CaCl2溶液 (8)11.1mol/L二硫苏糖醇(DTT)溶液 (8) 12.脱氧核苷三磷酸(dNTP)溶液 (8) 13.0.5mol/l EDTA(pH8.0)溶液 (9)14.溴化乙锭(10mg/ml溶液) (9)15.2×HEPES缓冲盐溶液 (9)16.IPTG溶液 (9)17.1mol/L乙酸镁溶液 (9)18.1mol/L MgCl2溶液 (9)19.β-巯基乙醇(BME)溶液 (9)20.NBT溶液 (9)21.酚/氯仿溶液 (9)22.10mmol/L苯甲基磺酰氟(PMSF)溶液 (10) 23.磷酸盐缓冲溶液(PBS)溶液 (10)24.1mol/L乙酸钾(pH7.5)溶液 (10) 25.乙酸钾溶液(用于碱裂解) (10)26.3mol/L乙酸钠(pH5.2和pH7.0)溶液 (10)28.10%十二烷基硫酸钠(SDS)溶液 (10)29.20×SSC溶液 (11)30.20×SSPE溶液 (11)31.100%三氯乙酸溶液 (11)32.1mol/L Tris溶液 (11)33.Tris缓冲盐溶液(TBS)(25mmol/l Tris) (11)34.X-gal溶液 (11)分子生物学常用试剂的配制1.LB(Luria-Bertani)培养液、平板的配制配制每升LB培养液,应在950ml去离子水中加入:细菌培养用酵母提取物(bacto-yeastextract)5g细菌培养用胰化蛋白胨(bacto-tryptone)10gNaCl 10g摇动容器直至溶质完全溶解,用5mol/LNaOH(约0.2ml)调节pH 值至7.0,加入去离子水至总体积为1L,在15 1bf/in2(1.034×105Pa)高压下蒸汽灭菌20min。
生物学实验室常用试剂配方5
实验室常用培养基的配制方法Ampicillin (100 mg/ml)IPTG(24 mg/ml)X-Gal(20 mg/ml)LB培养基■组份浓度 100 mg/ml Ampicillin■配制量 50 ml■配制方法 1. 称量5 g Ampicillin置于50 ml离心管中。
2. 加入40 ml灭菌水,充分混合溶解后,定容至50 ml。
3. 用0.22 μm滤器过滤除菌。
4. 小份分装(1 ml/份)后,-20℃保存。
■组份浓度 24 mg/ml IPTG■配制量 50 ml■配制方法 1. 称量1.2 g IPTG置于50 ml离心管中。
2. 加入40 ml灭菌水,充分混合溶解后,定容至50 ml。
3. 用0.22 μm滤器过滤除菌。
4. 小份分装(1 ml/份)后,-20℃保存。
■组份浓度 20 mg/ml X-Gal■配制量 50 ml■配制方法 1. 称量1 g X-Gal置于50 ml离心管中。
2. 加入40 ml DMF(二甲基甲酰胺),充分混合溶解后,定容至50 ml。
3. 小份分装(1 ml/份)后,-20℃避光保存。
■组份浓度 1%(W/V)Tryptone,0.5%(W/V)Yeast Extract,1%(W/V)NaCl■配制量 1 L■配制方法 1. 称量下列试剂,置于1 L烧杯中。
Tryptone 10 gYeast Extract 5 gNaCl 10 g2. 加入约800 ml的去离子水,充分搅拌溶解。
3. 滴加5 N NaOH(约0.2 ml),调节pH值至7.0。
4. 加去离子水将培养基定容至1 L。
5. 高温高压灭菌后,4℃保存。
TB培养基0.5%(W/V)Yeast Extract1%(W/V)NaCl0.1 mg/ml Ampicillin■配制量 1 L■配制方法 1. 称取下列试剂,置于1 L烧杯中。
Tryptone 10 gYeast Extract 5 gNaCl 10 g2. 加入约800 ml的去离子水,充分搅拌溶解。
高中生物学实验材料与方法
高中生物学实验材料与方法为了提高高中生物学实验的质量和可重复性,确保实验结果的准确性,合理的选择和使用适当的实验材料与方法是至关重要的。
在进行高中生物学实验时,以下是一些常用的实验材料与方法。
一、实验材料1. 细胞培养物料:- 培养皿:用于培养细胞的容器,可以选择培养皿或培养瓶。
- 培养基:提供细胞生长所需的营养物质,如DMEM、RPMI-1640等。
- 无菌离心管和离心机:用于收集和离心细胞。
2. 实验动物:- 鼠类或小鸟:常用于实验室的小型动物模型。
- 实验动物的饲养箱:提供合适的生活环境和食物。
3. 检测试剂:- DNA提取试剂盒:用于从细胞或组织中提取DNA。
- PCR试剂盒:用于聚合酶链式反应(PCR)扩增DNA片段。
- 蛋白质测定试剂盒:用于检测蛋白质浓度。
- 染色剂:如乙酰胆碱酯酶抑制剂(AChE抑制剂)。
4. 实验器材:- 显微镜:用于观察细胞、组织及其结构。
- 离心机:用于离心细胞、组织的离心管。
- 温控恒温器:可控制实验环境的温度和湿度。
- 实验室基本设备:如移液器、电子天平等。
二、实验方法1. 细胞培养方法:- 细胞培养:将组织切割成小碎片,加入培养基中,并放置在恒温器中培养。
- 培养基的更换:定期更换培养基,以确保细胞的健康生长。
- 细胞传代:当细胞达到一定的密度时,可以进行细胞传代。
2. DNA提取方法:- 细胞或组织样品的收集:收集样品并加入适当的缓冲液。
- 细胞破碎:采用物理或化学方法破碎细胞,释放DNA。
- DNA沉淀:使用盐酸和异丙醇沉淀DNA。
- 洗涤和溶解:用酒精洗涤沉淀的DNA,最后用缓冲液溶解。
3. PCR方法:- PCR反应液的制备:根据实验需要,配制PCR反应液。
- DNA模板的制备:将DNA样品加入PCR反应管中。
- PCR扩增程序:设置PCR反应温度和循环次数。
- 扩增产物的分析:使用凝胶电泳分析扩增产物。
4. 蛋白质测定方法:- 样品制备:将样品加入适当的缓冲液中并破碎细胞。
高中生物实验材料和用具总结※
高中生物实验材料和用具总结※
在高中生物教学中,实验是非常重要的环节。
实验可以让学生更深入地理解生物知识,培养实践能力和动手能力。
为了完成好这些实验,选择合适的实验材料和用具是必不可少的。
以下是一些常用的高中生物实验材料和用具的总结。
1. 显微镜:显微镜是常用的生物实验用具之一,主要分为光学显微镜和电子显微镜。
光学显微镜可以将样品放在载物片上,通过透射光观察样品。
电子显微镜通过电子束照射
样品,观察样品的电子图像。
2. 酵母菌:酵母菌是单细胞真菌,在生物学实验中应用广泛。
酵母菌可以进行酵素
反应实验,例如酵母发酵实验。
3. 玻璃器皿:玻璃器皿是生物实验中必不可少的实验材料。
例如,烧杯,量瓶,试管,培养皿等。
4. 遗传材料:DNA和RNA是遗传材料的主要组成部分。
在生物实验中,可以用DNA或RNA进行克隆,PCR扩增等操作。
5. 实验动物:实验动物是有机体学的重要研究对象。
例如,小鼠,果蝇,斑马鱼等,这些动物可以作为遗传变异的模型。
6. 细胞培养耗材:细胞培养耗材主要用于细胞培养实验,如培养皿、培养瓶、细胞
分离器、细胞培养基等。
7. 染色剂:在生物实验中,染色剂被广泛应用。
染色剂可以用于染色体的染色,核
酸的染色,蛋白质的染色等。
8. 实验仪器:实验仪器可以用于生物检测和生物实验。
例如PCR仪,电泳仪,荧光显微镜等。
生物制药技术实验中的材料准备方法
生物制药技术实验中的材料准备方法生物制药技术的发展对于医药行业的进步和人类健康的改善起到了至关重要的作用。
在生物制药技术的研究和实验过程中,准备好适当的材料是实验成功的关键之一。
本文将介绍生物制药技术实验中常用的材料准备方法。
1. 培养基的制备培养基是生物制药实验中最基本的材料之一。
通常情况下,培养基由营养物质、生长因子、氨基酸、维生素等多种组分构成。
制备培养基的方法如下:(1) 按照配方准备需要的化学品和溶液。
如:葡萄糖、硫酸镁(7H2O)、磷酸根、硫酸铵等。
(2) 精确称量需要的化学品,并按照所需浓度溶解。
(3) 使用适当体积的溶液将配方中的化学品混合,确保其均匀混合。
(4) 通过过滤消毒等步骤,确保培养基无菌。
2. 细胞培养的材料准备细胞培养是生物制药技术中常用的一种实验方法。
在进行细胞培养前,需要准备以下材料:(1) 细胞培养基:根据所需的细胞类型和培养目的,选择适当的培养基。
可以使用已购买的商用培养基,也可以自行调配培养基。
(2) 细胞:根据实验需要选择合适的细胞系并进行扩培。
细胞可以通过购买或者实验室中的细胞库中获得。
(3) 无菌实验室:细胞培养需要在无菌操作条件下进行。
因此,需要准备一个无菌的实验室,并在实验操作时采取无菌操作。
3. 重组DNA的材料准备方法重组DNA技术是生物制药中常用的一种技术手段,用于改造和生产重组蛋白等。
在进行重组DNA实验前,需要准备以下材料:(1) DNA片段:根据实验需要,选择适当的DNA片段,可以通过基因克隆等方法获得。
(2) 扩增酶:选择适当的扩增酶,如聚合酶链反应(PCR)所需的DNA聚合酶。
(3) 反应缓冲液:根据不同的扩增酶选择适当的反应缓冲液,如PCR反应常用的Taq DNA聚合酶缓冲液。
(4) 热循环仪:PCR反应需要使用热循环仪进行温度梯度变化,以便进行DNA 的扩增。
4. 蛋白质纯化的材料准备方法蛋白质纯化是生物制药技术中非常重要的步骤,用于从复杂的混合物中纯化目标蛋白。
生物实验相关试剂、技术、方法
生物尝试相关试剂、技术、方法360gaokao.一、常用仪器、试剂或药品的用途1、NaOH:用于吸收CO2或改变溶液的pH2、Ca(OH)2:鉴定CO23、CaCl2:提高细菌细胞壁的通透性4、HCl:解离〔15%〕或改变溶液的pH5、NaHCO3:提供CO2、作为酸碱缓冲剂6、酸碱缓冲剂〔Na2CO3/NaHCO3,Na2HPO4/NaH2PO4〕:用于调节溶液pH7、NaCl:配制生理盐水〔0.9%〕或用于提取DNA〔0.14M或2M)8、琼脂:激素或其他物质的载体或培养基,用于激素的转移或培养基9、酒精:用于消毒(75%)、提纯DNA〔95%〕、叶片脱色、配制解离液〔95%的冷酒精〕及洗去浮色〔50%〕10、蔗糖:配制蔗糖溶液,测定植物细胞液浓度或不雅察质壁别离和复原11、二苯胺:用于DNA的鉴定〔沸水浴,蓝色〕12、甲基绿:检测DNA,呈绿色13、吡罗红:检测RNA,呈红色4〕/班氏试剂:鉴定可溶性复原性糖〔沸水浴,砖红色沉淀〕16、双缩脲试剂:用于蛋白质的鉴定〔紫色〕17、苏丹Ⅲ染液(橘黄色〕和苏丹Ⅳ染液(红色〕:用于脂肪鉴定18、碘液:用于鉴定淀粉〔变蓝色〕19、龙胆紫溶液或醋酸洋红:碱性染料,用于染色体染色时,前者呈深蓝色,后者呈红色20、改进苯酚品红染液:检测染色体,红色21、健那绿B:检测线粒体,专一性让线粒体染色呈蓝绿色22、重铬酸钾溶液:检测酒精,呈灰绿色23、溴麝香酚蓝水溶液:检测CO2,由蓝变绿再变黄24、吲哚酚试剂:用于维生素C的鉴定25、伊红美蓝:鉴定有无大肠杆菌的存在26、亚甲基蓝:用于活体染色或检测污水中的耗氧性细菌〔细菌的氧化可使之褪色〕27、pH试纸:查验物质的酸碱性,如乳酸28、卡诺氏固定液:用于细胞有丝分裂根尖的固定29、解离液〔5%盐酸和95%酒精按1:1的比例配成〕:有丝分裂中根尖的别离与固定30、层析液:用于叶绿素的别离,主要类型:①由20份石油醚〔在60~90℃下分馏出来的〕、2份丙酮和1份苯混合而成;②95%的酒精;③93号汽油;④9份体积分数为95%的酒精和1份苯混合;⑤汽油或四氯化碳加少许无水硫酸钠。
生物实验室常用实验方法
生物实验室常用实验方法1、总RNA的提取(Trizol法提取)2、PCR3、琼脂糖核酸电泳4、胶回收纯化DNA5、大肠杆菌质粒DNA的提取(碱裂解法)6、感受态细胞的制备7、重组子的筛选和鉴定8、转染细胞总RNA的提取(Trizol法提取)在收集到生物材料之后,最好能即刻进行RNA制备工作。
若需暂时储存,则应以液氮将生物材料急速冷冻后,储存于-80℃冷冻柜。
在制备RNA时,将储存于冷冻柜的材料取出,立即以加入液氮研磨的方式打破细胞,不可以先行解冻,以避免RNase的作用。
1.提取组织RNA时,每50~100mg组织用1ml Trizol试剂对组织进行裂解;提取细胞RNA时,先离心沉淀细胞,每5-10 ╳106个细胞加1ml Trizol后,反复用枪吹打或剧烈振荡以裂解细胞;2.将上述组织或细胞的Trizol裂解液转入EP管中,在室温15~30C下放置5分钟;3.在上述EP管中,按照每1ml TRIZOL加0.2ml氯仿的量加入氯仿,盖上EP管盖子,在手中用力震荡15秒,在室温下(15℃~30℃)放置2~3分钟后,12000g(2℃~8℃)离心15分钟;4.取上层水相置于新EP管中,按照每1ml TRIZOL加0.5ml异丙醇的量加入异丙醇,在室温下(15℃~30℃)放置10分钟,12000g(2℃~8℃)离心10分钟;5.弃上清,按照每1ml TRIZOL加1ml 75%乙醇进行洗涤,涡旋混合,7500g(2℃~8℃)离心5分钟,弃上清;6.让沉淀的RNA在室温下自然干燥;7.用Rnase-free water 溶解RNA沉淀。
PCR实验室常用DNA聚合酶有三种:TaKaRa Taq TM,TaKaRa E X Taq TM和Pyrobest TM DNA Polymerase。
TaKaRa Taq TM是一般的DNA聚合酶,保真性较差,但价钱便宜,一般用于基因表达的检测等。
TaKaRa E X Taq TM是具有Proof reading活性的耐热性DNA聚合酶,具有一定的保真性,而且其扩增得到的PCR产物3’端附有一个“A”碱基,如果希望直接将产物克隆到T-vector可以用此酶。
生物学实验必备方法大全
生物学实验必备方法大全
生物学实验伴随着我们科研生涯的整个阶段,对于科研狗来说一个简单实用,清晰明了易重复的Protocol的重要性无异于拿到了通往胜利之门的通关密钥!公众号小编-大雄在过年期间夜以继日的整理,给大家带来了一本实验必杀技-常见生物学实验 protocol !
我们来看看整个手册分为三部分,基本涵盖了常见的细胞学,分子生物学和动物学实验。
这里不仅有详细的方法步骤,例如
而且有的实验还有配图
获取方式:加小编大雄的微信后,将此文转发到医学研究相关科研群或者朋友圈,截图后给小编,即可免费获取文档。
此外,我们近期将连续发放【免费】大礼包,请大家持续关注。
卡序生物公众号
科研服务扫码加小编微信
最后给大家介绍一个实验视频的网站:,这里的实验介绍的非常的全面,点开后会有意想不到的惊喜。
生物学常用试剂配制
常用试剂储存注意事项:储存于阴凉、通风的地方;远离火种、热源。
避免光照。
室温不超过30℃,相对湿度不超过80%。
包装必须密封,切勿受潮。
应与易(可)燃物、还原剂、碱类、醇类、食用化学品分开存放,切忌混储,储区应备有合适的材料收容泄漏物。
操作注意事项:尽量在通风橱操作,加强通风,避免粉尘扩散。
远离易燃、可燃物,避免与还原剂、碱类、醇类接触,防止包装及容器损坏。
0.5M EDTA(PH 8.0)组分浓度: 0.5 mol/L EDTA(MW:372.24)配制量: 500ml配制方法:1.称取93g Na2EDTA·2H2O置于500ml蓝盖瓶中。
2.加入400ml的去离子水,置于磁力搅拌器上充分搅拌。
3.用NaOH调节调节pH值至8.0(约需加入20g固体NaOH),当pH 接近8.0时,EDTA 方可完全溶解,加入去离子水定容至1L。
4.高温高压灭菌后,室温保存半年。
5M NaCl组份浓度:5mol/L NaCl (MW:58.5)配制量:1L配制方法:1.准确称取氯化钠292.5g,置于1L的蓝盖瓶中。
2.用去离子水溶解并稀释至1L。
3.高温高压灭菌后,常温保存。
2.5M CaCl2组份浓度:2.5mol/L CaCl2 (MW:110.98)配制量:50ml配制方法:1.准确称取氯化钙g于50ml的conical tube中。
2.用去离子水溶解并稀释至500ml,用0.22μm滤膜过滤除菌滤膜过滤除菌到进口的conical tube。
3.贮存于4℃。
50% 甘油组分浓度:50%(V/V) glycerol配制量:100ml配制方法:1. 量取下列试剂,置于250ml蓝盖瓶中:100% glycerol 50ml2.加入50ml去离子水,充分搅拌溶解。
3.高温高压灭菌,4℃保存。
4.使用时,到超净台分装。
Amp-氨苄青霉素(钠盐)放置:置于4°C冰箱配方及配法:配成200mg/ml的1000*溶液储存(40g溶于200ml蒸馏水中),溶解后在超净台用注射器过滤灭菌分装,置于-20°C冰箱第二层,以1*的终浓度(200ug/ml)加入培养基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. Materials and Methods2.1. Enzymes and ChemicalsAmersham-Pharmacia, Braunschweig ECL random primer and labelling kit, Hybond-N+,Hyperfilm ECL, SureClone ligation kit, Restrictionenzymes, 35S-Methionine in vivo labelling grade,Megaprimer DNA labelling systems, (α-32P)dCTP. Roche, Mannheim Agarose, PCR-nucleotide mix, Expand longtemplate PCR-kit, restriction enzymes, Taq-DNApolymerase, T4-DNA ligase, T4-DNA polymerase,protease-inhibitor set.Carl Roth, Karlsruhe Ampicillin, BSA, Chloramphenicol, EDTA, Aceticacid, Ethanol, Ethidiumbromid, Fructose, Glucose,Glycerin, HCl, IPTG, MgCl2, Sodium acetate, NaCl,nButanol, Phenol, Phenol-Chloroform, Proteinase K,Sucrose, SDS, Tris-HCl, X-Gal, rotiphorese Gel30(30% acrylamid, 0.8% bisacrylamid solutions).Difco Laboratories, Augsburg Agar-Agar, Trypton broth, Yeast extract.Merck, Darmstadt KH2PO4, K2HPO4.Millipore, Eschborn Nitrocellulose (0,025 µm) .New England-Biolabs, Schwalbach/Ts. Restriction enzymes, Shrimp alkali phosphatase. Qiagen, Hilden Plasmid Midi kit (50), Plasmid Maxi kit (10),QIAEx gel extraction kit, QIAquick PCRpurification kit, QIAGEN Genomic-tip 100/G and500/G, Rneasy Mini kit, Ni-NTA superflow (25),His Antibody (100).Promega, pGEM-T vector systems.Sartorius, Göttingen Sterilfilter (0.2 µm).Sigma-Aldrich, Steinheim ATP, MnSO4, Papain, Pepsin, PMSF, amino acids. Serva,Heidelberg Succinat, Dextransulfat, Dimethylsulfoxid,Lysozyme, RNase, Triton X-100, Tween20. Winthorp, Dublin, Ireland Kanamycin.2.2. Strains and growth conditions2.2.1. StrainsTable 1: Bacterial strainsBacteria Geno-/Phenotype & ReferenceBacillus amyloliquefaciensGBA12 ALKO2718; ∆nprE, ∆aprE;Vehmaanperrä, et al.,(1991)butsipS::pEAS* a; This studyGBA13 GBA12,sipT::pEAT*; This studyGBA14 GBA12,butbut sipV::pEAV*; This studyGBA15 GBA12,sipW::pEAW*; This studybutGBA16 GBA12,15841Bacillus amyloliquefaciens ATCCBacillus amyloliquefaciens ATCC 23350 = DSM 7TBacillus amyloliquefaciens ATCC23842Bacillus amyloliquefaciens IAM 1523 DSM No. 1061Bacillus amyloliquefaciens IFO 3034 DSM No. 1062Bacillus amyloliquefaciens IFO 3037 DSM No. 1063Bacillus amyloliquefaciens KA 63 DSM No. 1060Bacillus amyloliquefaciens OUT 8419 DSM No. 1064Bacillus amyloliquefaciens OUT 8420 DSM No. 1065Bacillus amyloliquefaciens OUT 8421 DSM No. 1066Bacillus amyloliquefaciens OUT 8426 DSM No. 1067Bacillus amyloliquefaciens N strain collection of Ag BAG, IPKBacillus amyloliquefaciens P strain collection of Ag BAG, IPKBacillus amyloliquefaciens SB I strain collection of Ag BAG, IPKBacillus amyloliquefaciens T strain collection of Ag BAG, IPKBacillus amyloliquefaciens ZFL 14/4strain collection of Ag BAG, IPKBacillus amyloliquefaciens ZF 178 strain collection of Ag BAG, IPKBacillus brevis 475 Q strain collection of Ag BAG, IPKBacillus circulans GB2 strain collection of Ag BAG, IPKBacillus lentus 3601 FZB strain collection of Ag BAG, IPKBacillus licheniformis 41p strain collection of Ag BAG, IPKBacillus macerans B30 strain collection of Ag BAG, IPKBacillus megaterium PV361strain collection of Ag BAG, IPKBacillus polymyxa ATCC 842Bacillus sphaericus ATCC 14577Bacillus stearothermophilus DSM No. 22 T = ATCC 12980Bacillus subtilis GSB26 arol906 metB6 sacA321str6 amyE.Derivative of QB1133; Steinmetz, et al., (1976) Bacillus subtilis 168ATCC 6051Bacillus thuringiensis 2046 strain collection of Ag BAG, IPKEscherichia coli DH5αF’, φ80d/lac Z∆M15, rec A1, end A1, gyr A96, thi-1,hsd R17(r K-, m K+), sup E44, rel A1, deo R, ∆(lac ZYA-arg F) U169; Hanahan (1983)Escherichia coli XL1-Blue rec A1, end A1, gyr A96, thi-1, hsd R17, sup E44, rel A1,lac, [F pro AB, lac I q Z∆M15, Tn10(tet R)]; Stratagene Escherichia coli M15[pREP4]Nal s, Str s, Rif s, Thi-, Lac-, Ara+, Gal+, Mtl-, F-, RecA+,Uvr+, Lon+; QIAGENEscherichia coli IT41W3110, Lep-9ts; Tc r; Inada, et al., (1989) Thermoactinomyces vulgaris 94-2A Klingenberg, et al., (1979)2.2.2. Nutrient mediaAll the media listed here were sterilized for 20 min at 1atm/121°C. If it is not indicated otherwise, all the media were prepared with deionized water and the solid medium was prepared with the same ingredients as liquid medium, but with addition of agar–agar (1.5 %).2.2.2.1.DM3 - Agar- for regeneration of protoplast of BacillusNa-Succinate (2 M) 15 %Saccharose (2 M) 5 %K2HPO4 / KH2PO4 10 %Casamino acids 0.25 %Yeast extract 0.25 %Glucose 1 %Needed amino acids (2 mg/ml) 2.5 %Agar solution (2%) + soluble starch (2%) 50 %2.2.2.2. LBSP medium- for preperation of Bacillus cells for electrotransformationLBSP-Liquid medium: Trypton 1 %Yeast extract 0.5 %NaCl 0.5 %Saccharose 250 mMK2HPO4 / KH2PO4 50 mM=7,2pH-LBSPG-Liquid medium: LBSP-Liquid medium + 10% (v/v) glycerolmM SHMG: Sucrose 250Hepes 1 mMMgC12 1 mMGlycerol 10% (v/v)- pH = 7.02.2.2.3. M9 minimal medium- For cultivation of E. coliM9 1x saltNa2HPO4.7H2O 1.28 %%KH2PO40.3%NaCl 0.05%NH4Cl 0.1=7.4pH-after autoclaving the following sterile solutions were added:MgSO4 (1M) 0.1 %%%) 2(20GlucoseCaCl2 (0.1 M) 1 %M9 medium 1: like standard M9 with addition of:all amino acids 2.5 mg/mlµg/mlThiamine 1Thymidineµg/ml2M9 medium 2: similar to M9-1 but MgSO4.7H2O was replaced by MgCl2 , and the amino acids solution contained all amino acids (2.5 mg/ml each) except methionine and cysteine.2.2.2.4. PbS medium- For preparation of protoplasts of BacillusMgCl2 (1 M) 0.1 %Glucose 0.1 %Saccharose (2 M) 5 %8 x Pbm 30 %8x PbmAntibiotic medium 3 3.7 %pH = 7.0SMMPA%BSA 0.3Sucrose (2.0 M) 5.0 %8x%Pbm 25%2xSMM 50 2x SMMSucrose (2.0 M) 50 %Sodium maleate (0.2 M, pH=6.5) 20 %MgCl2 (1 M) 2 %2 M Sodium succinate solutionacid 23.6%SuccinicNaOH 16 %pH = 7.32.2.2.4. SOB mediumTrypton 2 %Yeast extract 0.5 %NaCl 10 mMKCl 2.5 mMmMMgCl210mMMgSO410- pH = 6.8 – 7.0SOC medium l ike SOB-liquid medium but with addition of Glucose (0.2 %)2.2.2.5. Schaeffer’s sporulation medium (SSM)- For sporulation test of BacillusBacto-nutrient%broth 0.8%10%) 1KCl(w/vMgSO4.7H2O (w/v 1.2 %) 1 %NaOHM) 0.05%(1The following sterile solutions were added after autoclaving:Ca(NO3)4 (1 M) 0.1 %MnCl2 (0.01 M) 0.1 %FeSO4 (1 mM) 0.1 %2.2.2.6. Spi medium- For preparation of B. subtilis competent cellsSpi I medium:2 x SS 50 %Glucose 0.5 %Casamino acids 0.02 %Yeast extract 0.1 %Spi II medium:Spi I +MgCl2 (0.1 M) 2.5 %CaCl2 (0.05 M) 1 %Spi III medium:Spi II +EGTA (0.1 M) 2%2x SS solution:KH2PO4 1.2 %K2HPO4 2.8 %NH4SO4 0.4 %Sodium citrate 0.2 %MgSO4 0.04 %2.2.2.7. Spizizen’s minimal medium (MSM)(Anagnostopoulos & Spizizen, 1961)- For cultivation of Bacillus% Agar-Agar 1,75 MSM-Agar:%solution 10MSM-nutrientMSM-nutrient solution: K2HPO4 3 %KH2PO4 1 %NH4Cl 0,5%NH4NO3 0,1 %Na2SO4 0,1 %MgSO4 x 7 H2O 0,01 %MnSO4 x 4 H2O 0,001 %FeSO4 x 7 H2O 0,001 %CaCl2 0,0005 %pH=7.2-2.2.2.8. TBY mediumTrypton 1 %Yeast extract 0.5 %NaCl 0.5 %- pH = 7.2Antibiotics were added as supplements at the final concentration listed below. In case of agar medium, the antibiotics were added after the medium had been cooled down to 50o C: Ampicillin 50 µg/ml for selection of E. coliChloramphenicol 5 – 10 µg/ml for selection of E. coli and BacillusErythromycin 3 µg/ml for selection of Bacillus and 50 µg/ml for E. coli Kanamycin 25 µg/ml for selection of E. coli200-700 µg/ml in DM3-agar for selection of Bacillus7 µg/ml in all other media for selection of BacillusFor blue-white selection of Lac-positive colonies, the respective agar media were supplemented with 40 µg/ml X-Gal and 40 µg/ml IPTG.2.2.3. Swarming plate assayThe swarming experiments were done according to Blackman et al., (1998). Swarming motility of wild type and mutants strains was measured using TBY or MSM soft agar (0.3%) plates. Samples (1 µl) from overnight (30o C) liquid cultures were spotted onto swarm plates and incubated at 37o C (TBY agar for 18-22 h, MSM agar for 44-48 h) or 25o C (nutrient agar for 44-48 h, minimal agar for 68-72 h). The extent of swarming motility was measured as percentage of the diameter of growth colonies relative to the wild type strain control.2.2.4. Na3N induced cell autolysis assayAzide induced cell autolysis experiment was carried out as described by Blackman et al., (1998). Cultures of wild type and mutant strains of B. amyloliquefaciens were grown to the mid-exponential phase (OD600 0.5-0.6) in TBY medium. After addition of 0.05 M sodium azide, lysis of cells was followed spectrophotometrically while continuing incubation at 37o C and 200 rpm.2.2.5. Sporulation testThe frequency of sporulation was estimated by the heat resistance test according to Nicholsen & Setlow (1990). Cultures of wild type and mutant strains of B. amyloliquefaciens were grown in the Schaeffer’s sporulation medium (SSM). The samples were taken from the cultures after 12, 24, 36 h and diluted serially 10-fold in 10 mM potassium phosphate buffer (pH 7.4) containing 50 mM KCl and 1mM MgSO4. 0.2 ml aliquots of the dilutions were plated on TBY agar plates before and after heat treatment at 80o C for 10 min. The spore frequency was determined according to the proportion of the population which survived the heat treatment by counting colonies the next day.2.2.6. Phase contrast and electron microscopyMicroscopical pictures of bacterial cultures were made with phase contrast microscope Nikon T120.The electron microscopy picture were prepared using Zeiss CEM 920A transmission electron microscope. For primary fixation and embedding, Bacillus amyliquefeciens cells were kept in 50 mM cacodylate buffer (pH 7.2), containing 0.5% (v/v) glutaraldehyde and 2.0% (v/v) formaldehyde for 1 h at room temperature. After washing samples were kept for the secondary fixation 1 h in a solution of 1% (w/v) OsO4 in 50 mM cacodylate buffer. Prior to dehydration the cells were washed and transferred into 1,5% agar. The dehydration of 1mm3 agar blocks was done stepwise by increasing the concentration of ethanol. The steps were performed as follows: 30% (v/v), 50% (v/v), 60% (v/v), 75% (v/v) and 90% (v/v) ethanol for 60 min each, 100% (v/v) ethanol two times for 1 h. After 1 h dehydration with propylene oxide the samples were infiltrated subsequently with Spurr (Plano GmbH, Marburg, Germany) as follows: 33% (v/v), 50% (v/v) and 66% (v/v) Spurr resin in propylene oxide for 2 h each and then 100% (v/v) Spurr overnight. Samples were transferred into embedding molds, kept there for 6 h in fresh resin and polymerised at 70 °C for 24 h. Thin sections with a thickness of approximately 70 nm were cut with a diamond knife and contrasted with a saturated methanolic solution of uranyl acetate and lead citrate prior to examination in a Zeiss CEM 920A transmission electron microscope at 80 kV.2.3. Molecular biological methods2.3.1. VectorspDG148Vector pDG148 possess the replicon of pBR322 and the β-lactamase gene amp R for the replication and ampicilline selection in E. coli (Stragier, et al., 1988). Moreover as a shuttle-vector, pDG148 possess the replicon from pUB110 for multiplication in B. subtilis (McKenzie, et al., 1987) and also the phl R and kan R genes of pUB110 which permit a selection by phleomycin and/or kanamycin. The presence of the P spac-promoter with associated Lac-operator and the lac I encoding Lac-repressors from E. coli under control of the penicillinase promoter P pen of B. licheniformis allowed the IPTG-induction expression of a promoterless genes. The multiple cloning site (MCS) Hind III-Sal I-Sph I allowed to clone interested genes into the vector under the control of the P spac-promoter (Figure 3).Figure 3. Physical map of Shuttle-Vector pDG148.pE194tsThe thermo-sensitive vector pE194ts was used for construction of integrational gene disruption mutants in Bacillus species that lack natural transformation competence. The pE194ts (originally Staphylococcus) replicon is unable to sustain autonomous replication in Bacillus at temperature above 37o C (Youngman, 1990). The pE194ts plasmid contains the eryts could be easily Pst I site to form a shuttle-plasmid which can work both in E. coli and in Bacillus .Figure 4. Physical map of the temperature-sensitive vector pE194ts .erypGEM-TThe pGEM-T vector system (Promega) was used for the cloning of PCR products. The vector was provided with added 3’ terminal thymidine to both ends of the Eco RV-digested pGEM-5Zf. These single 3’-T overhangs at the insertion site allowed the efficient ligation of PCR products as several thermostable polymerases often add a single deoxyadenosine to the 5’-end of the amplified products.The pGEM-T vector contains T7 and SP6 promoters flangking a multiple cloning region within the α-peptide coding region of the enzyme β-galactosidase. This allows recombinant clones to be directly identified by blue-white screening on indicator plates (with IPTG/X-Gal addition). The presence of the amp R gene coding for β-lactamase permits a selection by ampicilline.Figure 5. Physical map of pGEM-T vector for cloning of PCR products .pHB201The Bacillus /E.coli shuttle pHB201 plasmid (Bron et al., 1998) carries the replication function of pUC19 (for E. coli ) and pTA1060 (for B. subtilis ) (Figure 6). The lac Z α gene was provided with promoter P59 of Lactobacillus . The extended polylinker site in lacZ α allows the a blue-white selection of recombinant clones on X-gal containing agar plates in E. coli .I (38) I (74)II (21)I (15)XI (104) I (83)I (63)I (113)I (95)II (47)I (76)I (56)I (27)RV (52)The polykinker site in the lacZ α was derived from pBluescript II. The T1 and T2 transcription termiators prevent read-through transcription from the lacZ α region.Figure 6. Physical map of shuttle vector pHB201.pQE16The pQE16 belongs to the QIAexpress pQE vector family of QIAGEN which are designed for overexpression of recombinant proteins in E.coli . The pQE plasmids were derived from plasmids pDS56/RBSII and pDS781/RBSII-DHFRS. The pQE plasmids possess phage promoter T5, two lac operator sequences at the T5 promoter, the ColE1 origin of replication, the β-lactamase gene for ampicillin resistance and the 6xHis-tag coding sequences.Figure 7. Physical map of vector pQE16.H I (1534)I (1571)R I (1552)RV (1560)d III (1564)I (1550)I (1542)I (1540)I (1540)I (1585)d III (761)I (1434)II (562)Apa LI (1967)2.3.2. Recombinant plasmidsTable 2. Recombinant palsmidsPlasmids Description and referencesEm r::pUC18, Ap r with core-DNA of sipS*(Ba) genepEAS* pE194,Em r::pUC18, Ap r with core-DNA of sipT*(Ba) genepEAT* pE194,Em r::pUC18, Ap r with core-DNA of sipV*(Ba) genepEAV* pE194,Em r::pUC18, Ap r with core-DNA of sipW*(Ba) genepEAW* pE194,POpacSh pDG148 with expression cassettes P spac-ompA- sipS(Ba)His-tagPOpacTh pDG148 with expression cassettes P spac-ompA- sipT(Ba)His-tagPOpacVh pDG148 with expression cassettes P spac-ompA- sipV(Ba)His-tag POpacWh pDG148 with expression cassettes P spac-ompA- sipW(Ba)His-tagPOpacBh pDG148 with expression cassette P spac-ompA- lepB(Ec)His-tag. pOpacBTh pDG148 with expression cassette P spac-ompA- lepB-sipT fusion His-tag. pOpacTBh pDG148 with expression cassette P spac-ompA- sipT-lepB fusion His-tag.Gm r , sipS(Bj) in antisenese orientationpTK99 pJQ501,Gm r, sipS(Bj) in sense orientationpTK100 pJQ501,withsipS(Ba) genepQS pQEsipT(Ba) genewithpQT pQEsipV(Ba) genepQV pQEwithsipW(Ba) genewithpQW pQEwithlepB(Ec) genepQB pQEwithchbB genepQC1 pQEsipT-lepB fusion genewithpQBT pQElepB-sipT fusion genepQTB pQEwithchbB genewithpHBC1 pHB201E. coli ompA genewithpGEMO pGEM-T2.3.3. PCR-primer and ProtocolPCR technique was used in several parts of this work for gene isolation, or construction of gene fusions e.t.c. The PCR was carried out using Taq polymerase or Expand long template PCR-Kit (Roche). If it is not indicated otherwise, all the PCR was performed following the suppliers’ instructions.Table 3. Oligonucleotide primers used for PCR.Name 5’ → 3’ Sequence a DescriptionA CAYGGNTAYATAHTTKGARCCNGTcloning of chbB B GTNWSNMGNGCNTAYATGGGNGCcloning of chbB C CTACCATCCGGCGGACCTGCAGCCGGcloning of chbB D TTGTCCAGATCCTCCGTTTGCAGACGCcloning of chbB E ACTTGGCACTACACCGCACCTCATGCGcloning of chbB F ACTTGGCACTACACCGCACCTCATGCGcloning of chbB G CGTATGTCCGGTTACGGCAACCTTCACcloning of chbB H AAAATTCTTGTATTGCCTGTTCATTCGcloning of chbB I CACCACGATTAACGCAAAGGAGCTACCcloning of chbB K CCATATGATCTCACCTCCCTTAAGAGGcloning of chbB L CAAAGAAGGGAGGATGACGTAGAGATGconstruction of pQEC1 M CATAGATCTTTTTGTGAGGTTTACATCconstruction of pQEC1 CH1 CAYTTYGGNGCNGGNAAYATNGGcloning of sipU CH2 CAYGGNWSNGCNCCNGAYATNGCNGGcloning of sipU CH5 ATGATHGCNGCNYTNATHTTYACNATcloning of sipU CH6 TTYTAYAARCCNTTYYTNATHGARGGcloning of sipU CH7 TCYTCNSWNGGCATNCCCATNCCRTTcloning of sipU CH8 TTNGCYTGNCKCATYTCNCCRAANGGcloning of sipU HV11 TTRTCNCCCATNACRAARTAcloning of sipU U1 TTGAAYGCNAARACNATHACNYTNAARAAcloning of sipU V1 TTGAARAARMGNTTYTGGTTYYTNGCcloning of sipV V2 GTNTTYATNGTYTAYAARGTNGARGGcloning of sipV V3 TCNGCRTCNSWNATNACNCCNACNATcloning of sipV V4 GCCAAAACAACGATAAGCACGCCcloning of sipV V5 GGATTCATGCTGATTCCTTCGACcloning of sipV V6 ACTTGGCACTACACCGCACCTCATGCGcloning of sipV V7 ATTTCGTGATTGGCGACAACCGCcloning of sipV V8 GAGAATTCCGGAGGGGGACAGGAATCTTGconstruction of pOpacVh V9 GCAGATCTC TTGGCGTATGATTCACTGATconstruction of pOpacVh W1 GGNWSNATGGARCCNGARTTYAAYACNGGcloning of sipW W2 TCNGCNGCNGCRTTRTTRTCNCCYTTNGTcloning of sipW W7 TTGTGTAAAAGTGATGACATCGCCcloning of sipW W8 GTGATCCCGATTATTCTGTGTGTTcloning of sipW W9 GGCGATGTCATCACTTTTACACAAcloning of sipW W10 AACACACAGAATAATCGGGATCAC cloning of sipWW11 GAGAATTCAAAAGAAAGCGGGGAAGAA construction of pOpacWhW12 CGAGATCTTGTGGACATGGTCCCGTTTC construction of pOpacWh Lep1 CAGCAATTGACCCTTAGGAGTTGGCAT construction of pOpacBh Lep2 GATGGATCTATGGATGCCGCCAATG construction of pOpacBh Lep3 CGAGAAATGGCGCACAATCAATACGATAGC forsipT-lepB fusionLep4 GCGCTGTTAATCCGTTCGTTTATTTATGAA forsipT-lepB fusionS1 CGGAATTCGCTAATGGGAGGAAATCAC construction of pOpacShS2 TACAGATCTTTTCGTCTTGCGAATTTC construction of pOpacShT1 CAGAATTCGTCTAGGAGGAACCACGTT construction of pOpacThT2 GCGAGATCTTTTTGTCTGACGCATATC construction of pOpacThT3 AATAAACGAACGGATTAACAGCGCAAGTGC forsipT-lepB fusionT4 GTATTGATTGTGCGCCATTTCCTGTTTGAA forsipT-lepB fusionOmp1 GCAAAGCTTATTTTGGATGATAACGAGGCG forOmpA amplification Omp2 GCGAATTCCTACCAGACGAGAACTTAAGCC forOmpA amplificationUni1 GTTTTCCCATGCACGAC universal sequencingprimer for pUC18Uni2 GTAAAACGACGGCCAGT universal sequencingprimer for pUC18a The IUPAC-code was used; N denotes an inosine residue.2.3.4. Rapid amplification of genomic DNA ends (RAGE)The RAGE protocol for highly specific amplification of unknown genomic DNA adjacent to a short stretch of known sequence (Mizobuchi & Frohman, 1993; Hoang & Hofemeister, 1995) was used to clone sipV, sipW and chbB genes of B. amyloliquefaciens. 5 µg of pUC18 plasmid and 5 µg of genomic DNA of B. amyloliquefaciens strain ALKO2718 were individually digested by a single restriction enzyme. After dephosphorylation, the prepared plasmid and digested genomic DNA were ligated overnight. A nested PCR, with two rounds of PCR, was performed using pairs of primers Uni1, Uni2 of pUC18 vector and the two primers located on the known region of the gene, using the ligation mixtures as templates. The PCR was performed in a volume of 50 µl using either the Taq polymerase or the Expand long template PCR-Kit (Roche). The reaction conditions were 94o C for 5 min, 30 times (94o C for 30 sec; 55o C for 30 sec; 72o C for 3 min) and 72o C for 8 min.Figure 8. Diagram representation of the RAGE protocol . pUC18 vector and genomic DNA were digested using the same restriction enzyme and ligated. Two rounds of PCR amplification were performed using pairs of nested primer, which were located either on the pUC18 plasmid (Uni1 and Uni2) or on the know sequence of the interested gene (P1 and P2).2.3.5. Agarose DNA gel electrophoresisDNA samples were always separated by gel electrophoresis with agarose gels. Depending on the size of the DNA fragments, the agarose concentration differed from 0.8 % to 1.5 %. The gels were prepared by adding agarose to 1x TAE buffer and boiling for 20 min. Ethidiumbromid was added to the gel solution to a final concentration of 0.5 µg/ml. DNA samples were mixed with 1/10 volume of sample buffer. The electrophoreses were run in 1x TAE-buffer with the currency around 50-80 mA. DNA fragments were visualised under UV-light (λ=254nm).Genomic DNAPolycloning siteKnown sequenceUni1Uni2P1P2Interested FragmentTAE-Buffer:MTris-acetate0.04EDTA 0.001 M- pH = 8.0Sample buffer "Helsinki":%Glycerol 50mMTris-HCl 10SDS 0.05 %Bromophenol blue 0.2 %- pH = 8.0TE-Puffer:Tris-HCl 10mMEDTA 1 mM- pH = 8.02.3.6. Isolation of chromosomal DNAThe mini preparations of chromosomal DNA were carried out following a standard procedure (Harwood, et al., 1990). 5 ml overnight culture (TBY medium containing appropriate antibiotics) was grown in a 20 ml flask at 37o C in a waterbath shaker (200 rev/min). The culture was diluted 50-fold in 5 ml fresh medium and continued growth at 37o C for 2 to 3 h, until the OD650 was 0.8. Cells were harvested by centrifugation for 10 min at 9000 g (4o C). The cell pellet was resuspended in 1.5 ml precooled (0o C) buffer 1 and re-collected by centrifugation. The cell pellet was again resuspended in 0.7 ml lysis buffer, containing 8 mg/ml of lysozyme, and mixed by vortexing. After incubation for 10 min at 0o C and 10 min at 37o C, 25 µl Sarkosyl 30% and 5 µl proteinase K (10 mg/ml) were added. The cell suspension was mixed by vortexing and incubated for 30 min at 70o C. After vortexing for 1 min at maximum speed, the lysate was subjected to 3 times phenol extraction by adding 700 µl phenol, vortexing gently for 1 min and centrifugation to separate phases in a microfuge for15 min at full speed. The upper (water) phase was transferred with a 1-ml micropipet tip intoa fresh microtube. After addition of 5µl of RNase (10 mg/ml) and incubation for 15 min at 37o C, the lysate was extracted one time by phenol:chloroform (1:1) and one time by 600 µl chloroform:isoamyl alcohol (24:1). The upper phase was collected. The DNA was precipitated by adding 2.5 volume ice-cold ethanol and 1/10 volume sodium acetate (3M, pH 4.8), after keeping at –20o C for 20 min and centrifugation (14000 rpm) for 30 min at 4o C. The pellet was washed two times with 70 % ethanol and dried by leaving the tubes open for 15 min. The DNA was dissolved in 100 µl of TE.mMTris-HCl 10NaCl 150 mMmMEDTA 10- pH = 8.0Lysis Buffer:mMTris-HCl 20NaCl 50 mMmMEDTA10mg/mlLysozym 8- pH = 8.0QIAGEN genomic-tips 100/G and 500/G were used to isolate large amounts of chromosomal DNA following the supplier’s instruction.2.3.7. Isolation of plasmid DNAQiagen Plasmid Midi and Maxi Kits were used to prepare plasmid DNA for sequencing and to prepare more than 10 µg DNA. In case plasmids isolation from Bacillus 8 mg/ml lysozyme was added to buffer P1 and the incubation step was prolonged up to 30 min at RT after buffer P2 was added.The minipreparation of Plasmid-DNA of E. coli and Bacillus was done following the method described by Birnboim & Doly (1979). 5 ml cultures in TBY or NBY were incubated overnight at 37°C. Depending on the copy number of the plasmids 1-5 ml cell cultures were collected by centrifugation for 5 min at 6000 rpm RT. The cell pellets were resuspended in 200 µl buffer P1 and incubated at 37°C for 10 min. For Bacillus cells, buffer P1 was supplied with 8 mg/ml lysozyme and the incubation was extended up to 30 min. 200 µl buffer P2 were added and the probes were incubated on ice for 10 min, then for another 10 min after adding 200 µl buffer P3. The lysates were subjected to two times phenol-chloroform (1:1) extraction by adding 500 µl phenol-chloroform, vortexing and centrifugation at 14000 rpm for 15 min. The upper phase was collected and transferred to a new tube. Two volumes of ice-cold ethanol were added to precipitate the DNA. The DNA-pellet was recovered by centrifugation at 14000 rpm 4o C for 30 min. The pellet was washes with ice-cold 70% ethanol, dried by vacuum centrifugation and dissolved in 50 µl TE.Buffer P1:Tris-HCl 50mMmMEDTA 10µg/mlA 100RNase- pH = 8.0NaOH 0.2 NSDS 1 %Buffer P3:Macetate 3Sodium- pH = 5.52.3.8. Extraction of DNA from agarose gelsDNA fragments were isolated from agarose gels after electrophoretic separation using QIAquick or QIAEX II gel extraction kit following the supplier’s instructions. The latter was used when the DNA fragment was larger than 5 kb.2.3.9. Restriction digestion and ligation of DNAThe DNAs were cleaved with various restriction enzymes following the supplier’s instructions. Ligation was performed with T4 DNA ligase (Sambrook, et al., 1989).2.3.10. Methylation of restriction siteTransformation of plasmid DNA into B. amyloliquefaciens spec. which harboured the restriction endonuclease enzyme Bam HI, required the methylation of the Bam HI restriction site to protect the DNA from Bam HI digestion. The Bam HI methylase catalyzes the transfer of a methyl group from S-adenosylmethionine to the nucleotide N4 (cytosine) of the recognition sequence of Bam HI (GGATCC). 5-10 units of the Bam HI methylase were used to methylate 1 µg DNA in 1x Bam HI methylase buffer containing 80 µM S-adenosylmethionine. Incubation was carried for 1 h at 37o C, followed by 15 min at 65o C for enzyme inactivation.2.3.11. Filling of DNA endsThe “sticky ends” of DNA fragments, which were not suitable for ligation to other DNA molecules, were “filled” using T4 DNA-polymerase. T4 DNA-polymerase has 3’-5’ exonuclease activity besides of 5’-3’ DNA-dependent polymerase activities. The DNAs were incubated with T4 DNA-polymerase in a solution containing 1 mM dNTPs and 1x T4-polymerase-buffer for 30 min at 12°C and then for 30 min at 37°C. The enzyme was inactivated by incubation for 20 min at 70°C.2.3.12. Dephosphorylation of linearized plasmid DNAThe vectors were linearized by restriction endonuclease and afterwards always dephosphorylated by Shrimp alkaline phosphatase in order to prevent religation of the linearized vector. One unit of shrimp alkaline phosphatase was used for dephosphorylation of 1 µg linearized vector in dephosphorylation buffer (50 mM TrisHCl, 0.1 mM EDTA pH 8.5) at 37o C for 60 min. The shrimp alkaline phosphatase was inactivated by heating at 65°C for 15 min.2.3.13. Southernblot hybridization procedures DNA transfer and fixationFor hybridization the chromosomal or plasmid DNA were digested by restriction enzymes and separated by electrophoresis on agarose gels (0.8%). After electrophoresis, the agarose gel was placed in 0.25N HCl for 15min. The gel was rinsed two times with distilled water, then placed in denaturation buffer for 30 min at room temprature with shaking. The gel was again rinsed with distilled water and placed in neutralization buffer for 30 min with shaking. The DNA was transferred onto a nylon membrane Hybond N + using a Vacuum-Blotter machine (Pharmacia). The Hybond N + membrane was irrigated for 5 min in H 2O and subsequently for 10 min in transfer buffer. In the vacuum plate, the gel was placed on top of the membrane and was then overlayed with transfer buffer. The transfer was carried out for 90 min. After transfer, the membrane was washed for 5 min in 2x SSC, air-dried and fixed for 2 h at 80°C. The dried blot was stored at RT or used immediately for a hybridization. Denaturation buffer:NaOH 0,5 MNaCl 1,5 MNeutralization buffer:Tris-HCl 0,5 MNaCl 1,5 M- pH = 7,520x SSC:NaCl 3,0 MSodium citrate 0,3 M Transfer solution: 10x SSCDNA hybridizationDNA hybridizations were done using either the ECL system (Amersham-Pharmacia) or the Megaprimer DNA labelling system for 32P radioactive labelling. Hybridization was carried out according to the supplier’s protocols.。