高斯噪声和白噪声

合集下载

图像处理之噪声---椒盐,白噪声,高斯噪声三种不同噪声的区别

图像处理之噪声---椒盐,白噪声,高斯噪声三种不同噪声的区别

图像处理之噪声---椒盐,⽩噪声,⾼斯噪声三种不同噪声的区别 ⽩噪声是指功率谱密度在整个频域内均匀分布的噪声。

所有频率具有相同能量的随机噪声称为⽩噪声。

⽩噪声或⽩杂讯,是⼀种功率频谱密度为常数的随机信号或随机过程。

换句话说,此信号在各个频段上的功率是⼀样的,由于⽩光是由各种频率(颜⾊)的单⾊光混合⽽成,因⽽此信号的这种具有平坦功率谱的性质被称作是“⽩⾊的”,此信号也因此被称作⽩噪声。

相对的,其他不具有这⼀性质的噪声信号被称为有⾊噪声。

⽽理想的⽩噪声具有⽆限带宽,因⽽其能量是⽆限⼤,这在现实世界是不可能存在的。

实际上,我们常常将有限带宽的平整讯号视为⽩噪⾳,因为这让我们在数学分析上更加⽅便。

然⽽,⽩噪声在数学处理上⽐较⽅便,因此它是系统分析的有⼒⼯具。

⼀般,只要⼀个噪声过程所具有的频谱宽度远远⼤于它所作⽤系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为⽩噪声来处理。

例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是⽩噪声。

然后介绍⼀下⾼斯噪声:顾名思义,⾼斯噪声就是n维分布都服从⾼斯分布的噪声。

然后说⼀下什么是⾼斯分布。

⾼斯分布,也称正态分布,⼜称常态分布。

对于随机变量X,其概率密度函数如图所⽰。

称其分布为⾼斯分布或正态分布,记为N(µ,σ2),其中为分布的参数,分别为⾼斯分布的期望和⽅差。

当有确定值时,p(x)也就确定了,特别当µ=0,σ2=1时,X的分布为标准正态分布。

最后说⼀下名字很有意思的椒盐噪声:椒盐噪声⼜称脉冲噪声,它随机改变⼀些像素值,是由图像传感器,传输信道,解码处理等产⽣的⿊⽩相间的亮暗点噪声。

椒盐噪声往往由图像切割引起。

高斯噪声和白噪声

高斯噪声和白噪声

(1.2.69)
Phys. Meaning: The N Gaussian variables will be statistical each other, if
物理含义: 如果N个高斯随机变量之间是互不相关的,则它们 之间也是统计独立的。
4、满足高斯分布的充分条件:
The sufficient & necessary condition for RV to obey Gaussian distribution
(1.2.67)
where M is the matrix of the joint 2-order center moment (联合二阶中心矩) of the RV, M is its determinant (行列式), of the element
M ik is the surplus factor (余因子)
• 单(多)脉冲噪声:瞬态分析法
Single (multiplex) pulse noises: instantaneous analysis
一、高斯噪声(依噪声幅度分布特性判定)
Gaussian Noise: Judged according to the magnitude distribution feature
The linear combination of Gaussian noise is still a Gaussian noise.
<2> 高斯噪声与一固定数值相加的结果只改变噪声平均值,不 改变其它特性 The results of a Gaussian noise plus a fixed value
(2)性质: 由纯正弦单色光波或宽带热辐射光束产生的光子计数, 服从泊松分布。

高斯噪声 热噪声

高斯噪声 热噪声

高斯噪声热噪声高斯噪声与热噪声是我们在日常生活中经常遇到的两种噪声类型。

它们的存在会对信号的传输和接收产生一定的影响,因此对于信号处理和通信系统的设计非常重要。

首先,让我们来了解一下高斯噪声。

高斯噪声也被称为白噪声,是一种具有高斯分布特性的噪声。

在自然界中,许多随机事件都可以用高斯分布来描述,例如,温度、光强和电压等。

高斯噪声具有平均功率为零和平均值为零的特点,其功率谱是常数。

由于高斯噪声的特性,它在通信系统中的影响主要体现在信号的幅度和相位上。

高斯噪声会使得信号的幅度和相位发生随机变化,从而降低了信号的质量和可靠性。

而热噪声是由于电子组成的物质的热运动引起的噪声。

在任何温度下,物质中的电子都会具有随机的热运动。

这种热运动导致了电子的能量和速度的随机变化,进而产生了热噪声。

热噪声的特点是它是一个宽频带噪声,即它在整个频谱范围内都有能量。

因此,热噪声是通信系统中不可避免的一个噪声源。

热噪声对于低信噪比条件下的通信系统影响较大,会限制系统的传输速率和距离。

高斯噪声和热噪声都对通信系统的性能产生了重要的影响。

在无线通信系统中,高斯噪声是由于信号在传输过程中受到多路径传播和衰减等因素的影响产生的。

而热噪声主要是由于无线电设备的电子元件在工作时产生的热噪声引起的。

在有线通信系统中,热噪声主要是由于传输线和电子元件的电阻引起的。

高斯噪声和热噪声的存在使得信号与噪声的比值(信噪比)变得较低,从而降低了系统的性能。

为了降低高斯噪声和热噪声对通信系统的影响,可以采取一些技术手段。

例如,在无线通信系统中,可以使用编码和调制技术来提高信号的抗干扰能力,减小噪声的影响。

在有线通信系统中,可以采用抗噪声设计和滤波技术来降低噪声的功率。

此外,还可以通过提高信号的功率和使用更高灵敏度的接收器来改善系统的性能。

总之,高斯噪声和热噪声是我们在通信系统中经常遇到的两种噪声类型,它们对信号的传输和接收产生了一定的影响。

了解和理解这些噪声的特性,以及采取一些适当的技术手段来降低噪声的影响,对于提高通信系统的性能至关重要。

高斯噪声,高斯白噪声,加性高斯白噪声.

高斯噪声,高斯白噪声,加性高斯白噪声.

⾼斯噪声,⾼斯⽩噪声,加性⾼斯⽩噪声. ----头⼤!White Gaussian noise (AWGN)功率谱密度函数在整个频域内是常数,即服从均匀分布。

之所以称它为“⽩”噪声,是因为它类似于光学中包括全部可见光频率在内的⽩光.所谓⽩噪声是指它的功率谱密度函数概率密度函数的⾼斯⽩噪声,是指噪声的概率密度函数满⾜正态分布统计特性,同时它的功率谱密度函数是常数的⼀类噪声。

这⾥值得注意的是,⾼斯型⽩噪声同时涉及到噪声的两个不同⽅⾯,即概率密度函数的功率谱密度函数均匀性,⼆者缺⼀不可。

正态分布性和功率谱密度函数均匀性正态分布性Additive white Gaussian noise (AWGN)/加性⾼斯⽩噪声加性⾼斯⽩噪声(AWGN)从统计上⽽⾔是随机⽆线噪声,其特点是其通信信道上的信号分布在很宽的频带范围内。

⾄于叫“⾼斯”,是因为所以有的噪声都被看作了⼀种随机过程,⽽⾼斯噪声服从⾼斯分布,“⽩”是因为其功率Additive white Gaussian noise (AWGN)is a channel model in which the only impairment(损害)to communication is a linear addition of wideband or white noisewith a constant(定常数)spectral density (expressed as watts per hertz<⽡特/赫兹>of bandwidth) and a Gaussian distribution of amplitude. The model does not account for fading, frequency selectivity, interference, nonlinearity or dispersion. However, it produces simple and tractable(可驯服的)mathematical models which areuseful for gaining insight into the underlying behavior of a system before these other phenomena are considered.Wideband Gaussian noise comes from many natural sources, such as the thermal vibrations(热⼒学震动)of atoms in conductors (referred to as thermal noise or Johnson-Nyquist noise), shot noise, black body radiation from the earth and other warm objects, and from celestial(天体)sources such as the Sun.The AWGN channel is a good model for many satellite and deep space communication links. It is not a good model for most terrestrial links because of multipath,terrain blocking, interference, etc. However, for terrestrial path modeling, AWGN is commonly used to simulate background noise of the channel under study, inaddition to multipath, terrain blocking, interference, ground clutter and self interference that modern radio systems encounter in terrestrial operation.。

高斯白噪声

高斯白噪声

高斯白噪声就是人们通常称之为“白噪音”或“白色噪音”。

它和纯粹噪声不同,即使将两者放在一起对比也很容易分辨,但其性质却与纯粹噪声完全相反。

高斯证明了即使是最微弱的信号,只要能够以足够快的速度进行复制,那么总会得到同样强度的信号。

“小心过于安静的世界”——物理学家费曼为高斯提出这一假说做了个有趣的实验:他用电子计时器在白色背景上测量所谓的无限长时间的稳定单色光脉冲,发现当光波频率低于某一特征值时,计时器读取的脉冲宽度几乎保持恒定;而当光波频率超过该特征值后,则随着光波频率增加,脉冲变窄。

由此可见,当光波频率较低时,脉冲幅度越宽,因此,当光波频率接近0时,所观察到的脉冲宽度应该趋向于零。

著名数学家哈代认为宇宙中没有一种简单有效的工具来描述空间结构,直觉告诉他,如果存在一种类似钟表指针的东西,它的运动规律必然符合高斯定律。

他曾经想象,如果把地球看作一个巨型天体,并且知道太阳系各星体绕转轴旋转的角速度,那么根据牛顿第二定律,整个宇宙便处于一种平衡状态,从任何方位看去都呈圆形。

高斯听到这里,忍俊不禁,笑问道:“你怎么知道?”哈代回答:“因为我每次坐飞机时,总感到自己正沿着一条螺线前进!”高斯闻言,深思片刻,又摇头苦笑道:“我倒宁愿相信,你真的坐在螺丝钉上呢……”哈代听罢,连忙解释道:“您别误会,我绝非开玩笑,我确实喜欢螺丝钉,因为它虽然笨拙,但永远不会停止转动。

”高斯的故事引起我极大兴趣,继续追问下去。

原来,高斯生活的年代,科技水平还十分落后,许多人甚至连手表、闹钟等基本仪器都没见过,更谈不上操纵它们了。

高斯父亲给儿子买了块怀表,希望借助它让孩子养成良好习惯,准点吃饭睡觉。

谁料,高斯戴上新表后竟再也舍不得摘下来,害怕耽搁了宝贵的时间。

久而久之,他渐渐爱上了这种奇妙的“指针”,干脆把它叫做“指南针”。

高斯在一篇文章中写道:“在我童年记忆中,这件事情留下了深刻印象。

指南针‘嘀嗒’声响起,显示小巧玲珑的玻璃珠被压紧在摆轮和齿轮边缘,但是令人惊讶的是它走得无比精确,走过半英寸之外依旧毫厘不差。

(第六组)3.7高斯白噪声和带限白噪声.

(第六组)3.7高斯白噪声和带限白噪声.
高斯白噪声在任意两个不同时刻上的取值之间, 不仅是互不相关的,而且还是 统计独立 的。
Team 6
谢谢
Team 6
Team 6
高斯白噪声和带限白噪声
本节学习重点:
1.白噪声 2.带限白噪声
(1)低通白噪声 (2)带通白噪声
3.高斯白噪声
Team 6
1.白噪声
定义:如果噪声的 功率谱密度 在所有频率上为一常数,即
Pn (
f
)

n0 2
f (W/Hz)
(3.7-1)双边功率谱密 度
2
R () n0 2 ()
0
f
0

图3-6 白噪声的功率谱密度和自相关函数
由于白噪声的带宽无限,其平均功率为无穷大, 即
Team 6
关于白噪声:
白噪声中“白”的含义与光学中的“白”相同,白光 指 实在际电中磁,辐热射噪可声见频范率围范内围所为有频0 率~1分01量2 H的z,数功值率都谱相密等。
Pn ( f
)=
ìïïïïíïïïïî
n0 2
0
f £ fH 其它
自相关函数:
R(t
)=
n0
fH
sin 2p fH t 2p fH t
= Sa(2p fH t )
Team 6
n0
Pn ( f )
2
R( )
1 / 2 fH
1/ 2 fH
f

fH
0
fH
0
图3-7 带限白噪声的功率谱密度和自相关函数
ò 自相关函数:R(t ) =
¥ -?
Pn ( f )e j2p f t df
=
n0

高斯白噪声

高斯白噪声

所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

这是考查一个信号的两个不同方面的问题。

高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。

热噪声和散粒噪声是高斯白噪声。

短波信道存在多径时延、多普勒频移和扩散、高斯白噪声干扰等复杂现象。

为了测试短波通信设备的性能,通常需要进行大量的外场实验。

相比之下,信道模拟器能够在实验室环境下进行类似的性能测试,而且测试费用少、可重复性强,可以缩短设备的研制周期。

所以自行研制信道模拟器十分必要。

信道模拟器可选用比较有代表性的Watterson 信道模型( 即高斯散射增益抽头延迟线模型) ,其中一个重要环节就是快速产生高斯白噪声序列,便于在添加多普勒扩展和高斯白噪声影响时使用。

传统的高斯白噪声发生器是在微处理器和DSP 软件系统上实现的,其仿真速度比硬件仿真器慢的多。

因此,选取FPGA 硬件平台设计高斯白噪声发生器可以实现全数字化处理,同时测试费用少、可重复性强、实时性好、速度快,能较好地满足实验需求。

本文提出了一种基于FPGA 的高斯白噪声序列的快速产生方案。

该方案根据均匀分布和高斯分布之间的映射关系,采用适合在FPGA 中实现的折线逼近法。

该方法实现简单,快速且占用的硬件资源少,而且采用VHDL 语言编写,可移植性强,并可灵活地嵌入调制解调器中使用。

1 均匀分布随机数发生 1.1 m 序列发生器伪随机噪声具有类似随机噪声的一些统计特性,且便于重复产生和处理,因此获得了广泛的应用。

m 序列就是一种常用的伪随机序列,该序列又被称作最长线性反馈移存序列。

m 序列是由线性反馈移位寄存器产生的周期最长的一种序列。

如果选用n 级线性反馈移位寄存器,则m 序列的周期为(2n-1) 。

对于m 序列来说,将n 级线性反馈移位寄存器状态看成无符号整数,则状态的取值范围为 1 ~(2n-1) ,并且在m 序列的一个周期内,移位寄存器的每种状态都会出现且只出现一次,但要注意线性反馈移位寄存器的初始状态设定为非零值,并且在给定任意非零初始状态时,m 序列的周期都不变。

高斯过程与白噪声

高斯过程与白噪声


W
图3.11示出了低通型限带白噪声的 S X ( ) 和 R X ( )的图形,注意,时间间隔 W 为 整数倍的那些随机变量,彼此是不相关的 (均值为0,相关函数值为0)。
2. 带通型
带通型限带白噪声的功率谱密度为
S S X ( ) 0 0 W 2 W 2
0
2
2
i 1
n
( xi m i )
2

2 Xi
}


i 1
n
1 2 i
exp{
( xi mi ) 2 i
} f X ( x1 ; t1 ) f X ( x 2 ; t 2 ) f X ( x n ; t n )
即两两相互独立。
性质4:平稳正态过程与确定信号之和仍为正态分布。
正态过程的不相关与相互独立等价。 性质3:
证明:若X(t)在n个不同时刻采样得到一组随机变量X1, X2,…,Xn (1)如果Xn(n=1,2,…)两两之间相互独立,则
C X (ti , t k ) E [( X i mi )( X k m k )] E [( X i mi )] E [( X k m k )] 0
当 i k 时。所以,两两互不相关。 (2)如果Xn(n=1,2,…)两两之间互不相关,则
C X ( t i , t k ) E [( X i m i )( X k m k )]
0 2 i ik ik
所以
12 C 0
2
... ...
0 其它
由维纳—辛钦定理,得到相应的自相关
函数为
R X ( ) WS 0 sin( W / 2 )

白噪声_高斯噪声_高斯白噪声的区别

白噪声_高斯噪声_高斯白噪声的区别

这几个概念的区别和联系:(转自:研学论坛)白噪声,就是说功率谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。

(条件:零均值。

)所以,“白”与“不白”是和分布没有关系的。

当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。

那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声“。

这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。

仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。

相关讨论:1、白噪声是指功率谱在整个频域内为常数的噪声,其付氏反变换是单位冲击函数的n倍(n取决于功率谱的大小),说明噪声自相关函数在t=0时不为零,其他时刻都为0,自相关性最强。

高斯噪声是一种随机噪声,其幅度的统计规律服从高斯分布。

高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数的噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指的是噪声功率谱呈高斯分布函数的形状而已。

2、有一个问题我想提出来:连续白噪声和离散白噪声序列的关系是什么?它们之间不应该是简单的采样关系。

因为连续白噪声的功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样的信号采样,采样后的序列的功率谱必然发生混叠,而且混叠过后的功率谱是什么?应该是在整个频率轴上都为无穷大。

这显然不满足离散白噪声序列的定义。

那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限的连续白噪声进行采样后得到的,这个带限的连续白噪声信号的带宽刚好满足Nyquist抽样定理。

高斯白噪声和带限白噪声

高斯白噪声和带限白噪声

高斯白噪声和带限白噪声1.白噪声(1)白噪声的定义如果噪声的功率谱密度在所有频率上均为一常数,即或式中,n0为正常数,则称该噪声为白噪声,用n(t)表示。

(2)白噪声的自相关函数白噪声的自相关函数为(3-1-3)由式(3-1-3)可知,对于所有的都有,表明白噪声仅在时才相关,在任意两个时刻的随机变量不相关。

(3)白噪声的平均功率由于白噪声的带宽无限,其平均功率为无穷大,即(4)高斯白噪声①高斯白噪声的定义高斯白噪声是取值的概率分布服从高斯分布的白噪声。

②高斯白噪声的性质高斯白噪声在任意两个不同时刻上的随机变量之间,不仅是互不相关的,而且还是统计独立的。

2.低通白噪声(1)低通白噪声的定义低通白噪声是通过理想矩形的低通滤波器或理想低通信道输出的白噪声,用n(t)表示。

(2)低通白噪声的功率谱密度假设理想低通滤波器具有模为1、截止频率为|f|≤f H的传输特性,则低通白噪声对应的功率谱密度为(3)低通白噪声的自相关函数①自相关函数表达式②自相关函数的性质由图3-2(b)可以看出,只有在上得到的随机变量才不相关。

(4)低通白噪声的功率谱密度和自相关函数的图形表示图3-2 低通白噪声的功率谱密度和自相关函数3.带通白噪声(1)带通白噪声的定义带通白噪声是指通过理想矩形的带通滤波器或理想带通信道输出的白噪声,用n(t)表示。

(2)带通白噪声的功率谱密度假设理想带通滤波器的传输特性为则输出噪声的功率谱密度为(3)带通白噪声的自相关函数(4)带通白噪声的功率谱密度和自相关函数的图形表示图3-3 带通白噪声的功率谱密度和自相关函数(5)带通白噪声的平均功率其中,B是指理想矩形的带通滤波器的带宽。

高斯脉冲噪声 和高斯白噪声 matlab

高斯脉冲噪声 和高斯白噪声 matlab

高斯脉冲噪声和高斯白噪声是数字信号处理中常见的信号模型,它们在通信领域、图像处理领域以及其他多个领域都有着重要的应用。

而在MATLAB中,我们可以利用各种工具和函数来模拟和处理这两种噪声信号。

本文将就高斯脉冲噪声和高斯白噪声的特点、模拟方法和在MATLAB中的实现进行介绍和分析。

一、高斯脉冲噪声的特点1. 高斯脉冲噪声的产生高斯脉冲噪声是一种脉冲干扰的随机信号,在通信系统中常常会遇到。

它的产生过程可以通过高斯分布来描述,即每个脉冲的幅值服从高斯分布。

2. 高斯脉冲噪声的特点高斯脉冲噪声的特点在于其具有随机性和突发性,幅度分布服从高斯分布,且脉冲出现的位置和幅值都是随机的。

这使得高斯脉冲噪声在一定程度上对系统的性能产生影响,因此需要对其进行模拟和分析。

二、高斯脉冲噪声的模拟方法在MATLAB中,可以利用randn函数生成高斯分布的随机数序列,然后可以根据需要进行幅度调制和脉冲出现的位置的控制,从而生成高斯脉冲噪声信号。

以下是MATLAB代码示例:```matlab生成高斯脉冲噪声信号N = 1000; 信号长度mu = 0; 均值sigma = 1; 标准差noise = mu + sigma * randn(1, N); 产生高斯分布随机数序列```以上代码使用了randn函数生成了长度为N的高斯分布随机数序列,并通过设置均值和标准差来控制噪声信号的特点。

三、高斯脉冲噪声的处理与分析在实际系统中,需要对高斯脉冲噪声进行处理和分析,以评估系统的性能和稳定性。

MATLAB提供了丰富的信号处理工具和函数,能够方便地进行信号的滤波、频谱分析等操作。

在处理高斯脉冲噪声时,可以利用MATLAB中的滤波函数对噪声信号进行去噪,比如利用高斯滤波器进行平滑处理。

另外,还可以通过频谱分析函数对噪声信号进行频域特性的分析,以了解其频谱分布和功率谱密度等特性。

四、高斯白噪声的特点1. 高斯白噪声的产生高斯白噪声是一种具有均匀频谱分布的随机信号,其幅度也服从高斯分布。

白噪声和色噪声

白噪声和色噪声

白噪声和色噪声高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。

热噪声和散粒噪声是高斯白噪声。

所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。

这是考查一个信号的两个不同方面的问题。

高通或低通滤波器无法轻易滤除的噪声很多,最常见的就是白噪声。

白噪声在整个频谱内每个频点的能量为常数,且基本恒定,不管对信号进行低通还是高通处理,均不能有效地滤除白噪声,因为它存在于整个频带范围内。

有趣的是人类对白噪声的了解已经非常充分,并能熟练地从中提取很多有用的信息。

白噪声甚至具有医疗功能,有些医学专家(主要是内科医生和牙医还成功地在试验中将白噪声应用于轻度麻醉。

准确地讲,白噪声是随机的,它不具有相关性,故也没有偏差,因此,白噪声可以叠加到信号和算法中,或始终存在于模/数转换器中,而不会造成长期误码。

通过恰当的处理, 白噪声还可以用来创造声音,包括人的声音和自然界的声音,甚至还能合成其它噪声。

在采用逆变换方法消除白噪声之前,可用FFT或小波滤波系统有效地提取白噪声并对结果设置门限值。

一般来说,通过随机数字发生器可以生成白噪声,但实验表明要生成理想的白噪声很难,其它噪声的合成也与此类似。

色噪声白色包含了所有的颜色,因此白噪声的特点就是包含各种噪声。

白噪声定义为在无限频率范围内功率密度为常数的信号,这就意味着还存在其它“颜色”的噪声,下面是常见的色噪声及其定义:1.粉红噪声。

在给定频率范围内(不包含直流成分,随着频率的增加,其功率密度每倍频程下降3dB(密度与频率成反比。

每倍频的功率相同,但要产生每倍频程3dB 的衰减非常困难,因此,没有纹波的粉红噪声在现实中很难找到。

2.红噪声(海洋学概念。

这是有关海洋环境的一种噪声,由于它是有选择地吸收较高的频率,因此称之为红噪声。

3.橙色噪声。

该类噪声是准静态噪声,在整个连续频谱范围内,功率谱有限且零功率窄带信号数量也有限。

白噪声高斯噪声高斯白噪声的区别

白噪声高斯噪声高斯白噪声的区别

这几个概念地区别和联系:(转自:研学论坛)白噪声,就是说功率谱为一常数;也就是说,其协方差函数在时不为,在不等于时值为零;换句话说,样本点互不相关.(条件:零均值.)所以,“白”与“不白”是和分布没有关系地.当随机地从高斯分布中获取采样值时,采样点所组成地随机过程就是“高斯白噪声”;同理,当随机地从均匀分布中获取采样值时,采样点所组成地随机过程就是“均匀白噪声”.那么,是否有“非白地高斯”噪声呢?答案是肯定地,这就是”高斯色噪声“.这种噪声其分布是高斯地,但是它地频谱不是一个常数,或者说,对高斯信号采样地时候不是随机采样地,而是按照某种规律来采样地.仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中地主要噪声来源是热噪声,而热噪声是典型地高斯白噪声,高斯噪声下地理想系统都是线性系统.相关讨论:、白噪声是指功率谱在整个频域内为常数地噪声,其付氏反变换是单位冲击函数地倍(取决于功率谱地大小),说明噪声自相关函数在时不为零,其他时刻都为,自相关性最强.高斯噪声是一种随机噪声,其幅度地统计规律服从高斯分布.高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数地噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指地是噪声功率谱呈高斯分布函数地形状而已.、有一个问题我想提出来:连续白噪声和离散白噪声序列地关系是什么?它们之间不应该是简单地采样关系.因为连续白噪声地功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样地信号采样,采样后地序列地功率谱必然发生混叠,而且混叠过后地功率谱是什么?应该是在整个频率轴上都为无穷大.这显然不满足离散白噪声序列地定义.那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限地连续白噪声进行采样后得到地,这个带限地连续白噪声信号地带宽刚好满足抽样定理.这样采样过后地信号地功率谱就能满足定义了.答:连续白噪声是离散白噪声在采样间隔趋近于零地极限.对带限地连续白噪声按照采样定理进行采样就得到信息不损失地白噪声序列,当连续白噪声地带宽趋近于无穷大时,采样率也趋近于无穷大(采样间隔趋近于零),此时不会发生频谱混叠.用极限地概念理解二者地关系就很清楚了.需要说明地是,任何实际系统都是工作于一定频带范围内地,带宽为无穷大地信号仅仅存在于理论分析中,在实际系统中找不到.、对随机信号而言也有采样定理,这个采样定理是针对功率谱而言地.具体地证明可以参看陆大金老师地随机过程教材.(清华地博士入学考试指定地参考教材)、对于不限带地白噪声,已经分析地比较清楚了.而对于限带白噪声,我认为既然考虑采样定理,那么连续地限带白噪声可以利用采样函数作为正交基地系数来表示,这些系数就是对应地噪声采样值,这个过程就是连续噪声地离散化过程,以上分析也是分析连续信道容量使用地方法.那么在数字通信中我们讨论地噪声实际就是这些离散地以采样函数为正交基地系数(即噪声采样值),这时分析这些噪声采样值可知相关函数就是×(),这里()是离散地冲激函数.也即功率为×()=为有限值.以上分析具体可以参考地< >一书.有一个概念错误需要指出:“高斯白噪声地幅度服从高斯分布”地说法是错误地,高斯噪声地幅度服从瑞利分布.另外,还必须区分高斯噪声和白噪声两个不同地概念.高斯噪声是指噪声地概率密度函数服从高斯分布,白噪声是指噪声地任意两个采样样本之间不相关,两者描述地角度不同.白噪声不必服从高斯分布,高斯分布地噪声不一定是白噪声.当然,实际系统中地热噪声是我们一般所说地白噪声地主要来源,它是服从高斯分布地,但一般具有有限地带宽,即常说地窄带白噪声,严格意义上它不是白噪声.信号中高斯白噪声在频域中是否仍为高斯白噪声?谢谢.严格来说,你这种提问地方法是有问题地,因为白噪声从定义上说就是指随机序列在时间上不相关.问题应该这样问:高斯白噪声序列变换到频域后是否仍然不想关?由于傅立叶变换是一种线性变换,高斯白噪声序列变换到频域后肯定服从高斯分布,而且仍然不相关.因为对一个满秩矩阵进行正交变换(傅立叶变换是一种正交变换)得到地矩阵仍然是满秩矩阵.当然,以上说法只在时间无穷地意义上是正确地.对任何有限点地实际序列,在相关地意义上看,即使用循环相关,得到地也是周期性相关函数,所以严格意义上不能称为白噪声;在分布特性上看,根据大数定理,只有时间趋于无穷时,一个序列地概率密度函数才能真正服从某一分布.从一个服从高斯分布地无限长序列中截取一段(时间加窗),理论上会导致其失去严格地高斯分布特性.但是,从实际应用地角度,我们一般并不从理论上这样较真,总是在背景噪声是高斯白噪声这样地前提下推导公式,预测系统在任意时刻(无穷时间上地一个时刻)地性能,信号处理时地有限点高斯白噪声样本虽然从严格理论意义上看已不是高斯白噪声,但还是把它当作高斯白噪声来处理.这样做地结果是,系统地整体性能在某一时刻可能与理论公式推导地性能有出入,但在无限时间地意义上看,系统性能会趋于理论分析结果.也是基于这一思想,我们经常用仿真预测系统地性能.一维(实数)高斯白噪声地幅度是服从高斯分布地.只有二维地(复数)高斯白噪声地幅值是服从瑞利分布地.更高维地高斯白噪声地幅值则是服从^分布地.错误!什么叫信号地幅度?幅度就是实信号地绝对值和复信号地模.因此,即使是一维地高斯白噪声,其幅度也不会服从高斯分布,而应该服从瑞利分布.二维不相关地复高斯白噪声包络服从指数分布(^分布地自由度为地特例).个不相关地复高斯白噪声序列叠加后地复信号包络服从自由度为地^分布.这些在教科书上写得很清楚.一个总结:. 高斯分布随机变量地绝对值地分布既不是高斯分布,也不是瑞利分布(见附件);高斯分布随机变量地平方服从自由度为地()分布;实部和虚部均服从高斯分布且统计独立地复随机变量地模服从瑞利分布;实部和虚部均服从高斯分布且统计独立地复随机变量地模地平方服从指数分布(或自由度为地()分布);个实部和虚部均服从高斯分布且统计独立地复随机变量地模地平方和服从自由度为地()分布.具体推导见附件.. 从概念上,高斯分布随机变量不存在“模”地说法,只能说“绝对值”(属于随机变量地函数).在雷达领域,经常说“高斯噪声中信号地模服从瑞利分布”,这句话隐含着雷达信号包含、两个正交通道.. 高斯噪声和白噪声是两个不同地概念,这一点大家没有异议(见我月日地帖子),我就不重复了.. 由于傅立叶变换是一种线性运算,高斯分布随机变量样本地傅立叶变换是存在地,而且仍然是高斯分布.但某一个随便变量样本地傅立叶变换不能代表随机序列地性质,描述随机信号地频率特性要用功率谱密度,也就是随机信号地相关函数地傅立叶变换.。

《高斯噪声和白噪声》课件

《高斯噪声和白噪声》课件
《高斯噪声和白噪声》 PPT课件
# 高斯噪声和白噪声
概述
定义和性质
了解噪声的概念、特性以及对信号处理的影响。
种类
研究不同类型的噪声,如高斯噪声、白噪声等。
应用领域
了解噪声在通信、图像处理等领域中的应用。
高斯噪声
高斯分布的概念
介绍高斯分布及其在噪声中的应用。
性质
探讨高斯噪声的特性,如均值、方差等。
应用场景
了解在不同的应用领域中,高斯噪声和白噪声 的应用。
噪声的处理和降噪
1
噪声的去除方法
介绍降低噪声对信号质量的影响的方法。
2
噪声的抑制方法
探讨噪声抑制技术,如滤波器设计和信号增强。
3
噪声的评估方法了解如何Fra bibliotek估噪声的强度和对信号的影响。
应用案例
语音信号中的噪声抑制
讨论在语音信号处理中抑制噪 声的方法和技术。
统计特性
分析高斯噪声的概率密度函数和累积分布函数。
白噪声
定义和特性
了解白噪声的定义及其在信号处理中的重要性。
白噪声模型及产生机理
介绍白噪声的模型以及产生机理,如随机过程等。
功率谱密度函数
探讨白噪声的频谱特性和谱密度函数。
高斯噪声和白噪声的区别和联系
统计特性上的差异
对比高斯噪声和白噪声在统计特性上的差异。
图像信号中的噪声去除
介绍图像信号处理中的噪声去 除技术。
视频信号中的噪声降噪
了解如何降低视频信号中的噪 声。
结论
1 噪声对信号处理的影响
2 实际应用中的噪声处理策略
总结噪声对信号处理的重要性和影响。
探讨在实际应用中噪声处理的实用策略。
3 未来噪声处理技术的发展方向

高斯噪声和白噪声

高斯噪声和白噪声


2
唯一确定的函数
<1> 概率密度:
p (x ) 1 2
(x m )2
e
2 2
(1.2.63)
<2> 分布函数:
F ( x ) P ( X x )
2
1
2 ( x m ) x 2 2 e dx

(1.2.64)
<3> 当 m0 时,
p (x ) 2 1 e
。 (1.2.74-2)
3、相关函数: 因为相关函数与功率谱是一对傅立叶变换对, 又因为单位脉 冲函数 ( t ) 的傅立叶变换是常数1, 故有 N N 0 R ( ) ( ) P ( ) 0 (1.2.75)
2
W
2
4、特点: :
( 1 ) 功率谱在
( , )
时逼近横轴 <2> x
<3> <4>
x
处有拐点
域内的概率为99.7% m 3 x m 3
m 2 x m 2 域内的概率为95.4%
m x m 域内的概率为68.3%
(2)高斯噪声特性: <1> 高斯噪声的线性组合仍是高斯噪声
1
(4)相关函数
R ( ) P n n

si n 2 ( f ) 2f

2
、限带宽度为 f 、
并具有高斯幅度分布,则该噪声称为低频高斯限带白噪声。 (2) 低频高斯限带白噪声的平均功率: N B 0 P N n 0f 2 (3)一维概率密度(幅谱):
p ( n ) n k
2 n k ex p 2 2 2 n n

高斯随机过程、高斯白噪声和带限白噪声

高斯随机过程、高斯白噪声和带限白噪声
信号处理
带限白噪声在信号处理中常被用作测试信号 或输入信号,用于评估滤波器、频谱分析等 算法的性能。
05
总结与比较
三种随机过程的比较
高斯随机过程
具有高斯分布的随机变量序列,其概率密度函数为正态分布。 具有连续的均值和方差,且各变量之间存在线性关系。
高斯白噪声
一种特殊的随机过程,具有高斯分布的随机变量,且各变量之 间相互独立。其功率谱密度为常数,即具有平坦的频率特性。
04
带限白噪声
带限白噪声的定义
01
带限白噪声是指在一定带宽限制 下,功率谱密度均匀分布的随机 信号。
02
它是一种理想化的模型,用于描 述在特定频率范围内具有恒定功 率密度的随机信号。
带限白噪声的性质
功率谱密度
带限白噪声的功率谱密度 在整个频率范围内是恒定 的,表示其具有均匀的频 率分布。
随机性
适用于描述具有平坦频率特性的信号,如通信系统中的噪声干扰。优点
是功率谱密度计算简单,缺点是难以描述具有特定频率特性的现象。
03
带限白噪声
适用于描述在一定频率范围内具有恒定功率谱密度的信号,如音频信号
中的噪声成分。优点是能够描述特定频率范围内的信号特性,缺点是计
算功率谱密度时需要考虑边界条件。
THANKS
感谢观看
在统计学中,许多重要的分布都 可以通过高斯随机过程进行建模 和推断。
在物理和工程领域,许多自然现 象和人工系统都可以用高斯随机 过程进行描述和分析。
03
高斯白噪声
高斯白噪声的定义
总结词
高斯白噪声是一种随机信号,其特点是具有高斯分布的幅度和均匀分布的频率。
详细描述
高斯白噪声是指其幅度服从高斯分布(也称为正态分布)的随机信号。同时, 它的功率谱密度是均匀分布的,这意味着它的频率成分是均匀分布在整个频带 内的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档