优质初中数学《完全平方公式》教案

合集下载

《完全平方公式》一等奖说课稿

《完全平方公式》一等奖说课稿

《完全平方公式》一等奖说课稿1、《完全平方公式》一等奖说课稿今天我说课的题目是《完全平方公式》,所选用的教材为北师大版义务教育课程标准实验教科书。

根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标,教学方法,教学过程四个方面加以说明。

一、教材分析1、教材的地位和作用本节教材是初中数学七年级下册第一章第八节的内容,是初中数学的重要内容之一。

一方面,这是在学习了整式的加、减、乘、除及平方差公式的基础上,对多项式乘法的进一步深入和拓展;另一方面,又为学习《因式分解》《配方法》等知识奠定了基础,是进一步研究《一元二次方程》《二次函数》的工具性内容。

鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

2、学情分析从心理特征来说,初中阶段的学生逻辑思维能力有待培养,从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。

但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

从认知状况来说,学生在此之前已经学习了多项式乘法法则、平方差公式的探索过程,对“完全平方公式”已经有了初步的认识,为顺利完成本节课的教学任务打下了基础,但对于“完全平方公式” 的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

3、教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:对公式(a+b)2=a2+2ab+b2的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释。

难点确定为:从广泛意义上理解完全平方公式的符号含义,培养学生有条理的思考和语言表达能力。

完全平方公式优秀教案

完全平方公式优秀教案

完全平方公式优秀教案
一、教学目标
1、认识完全平方公式的概念;
2、掌握完全平方公式的使用;
3、正确应用完全平方公式解方程组。

二、教学准备
1、讲义;
2、黑板、白板;
3、实验用草稿纸和毛笔。

三、教学过程
(1)板书讲解:
(a)完全平方公式的定义:一元二次方程的完全平方公式有三种形式,分别为:
ax2 + bx + c = 0;
x2 + bx = c;
x2 + c = 0;
其中a、b、c为实数,且b2 - 4ac ≥ 0。

(b)完全平方公式的求解:
① 将二次方程化为完全平方公式;
②利用完全平方公式将问题分解为两个相等的完全平方;
③ 把每一个完全平方分解为两个和式;
④ 将每个和式求出根,最后得到结果。

(2)解题演示:
接下来,我就利用以上四步法来解一道完全平方公式的方程组。

让我们来看看方程:x2 + 2x = 8。

解:
① 将二次方程化为完全平方式:
x2 + 2x = 8
② 利用完全平方公式将问题分解为两个相等的完全平方:
x2 + 2x = 8
(x + 1)2 = 9
③ 把每一个完全平方分解为两个和式:
x + 1 = 3
x + 1 = -3
④ 将每个和式求出根,最后得到结果:
x = 2, -4 。

(3)习题训练:
最后,进行习题训练,教师根据学生的实际上课情况,提供适量的习题。

4.3第2课时完全平方公式(教案)

4.3第2课时完全平方公式(教案)
-灵活运用完全平方公式解决实际问题:学生在解决实际问题时,可能不知道如何将问题转化为完全平方公式的形式。教师应指导学生分析问题,找到合适的切入点,并给出解题策略。
举例:
(1)难点解析:对于公式推导的难点,教师可以通过以下步骤进行讲解:
a.展示一个边长为a的正方形,并在其内部添加一个边长为b的小正方形,形成一个由四个部分组成的大正方形。
b.让学生计算大正方形的面积,引导他们发现面积可以分解为a²、2ab和b²这三个部分。
c.将这个过程抽象化,得出完全平方公式(a±b)²=a²±2ab+b²。
(2)难点突破:在解决实际问题时,教师可以指导学生按照以下步骤进行:
a.分析问题,找出涉及完全平方公式的关键信息。
b.将实际问题转化为完全平方公式的形式,如求(x+3)²的面积等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的基本概念、推导过程、重要性和应用。通过实践活动和小组讨论,我们加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在数学学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.3第2课时完全平方公式(教案)
一、教学内容
本节课选自教材第四章第三节,第2课时,主题为“完全平方公式”。教学内容主要包括以下两个方面:
1.掌握完全平方公式的推导过程:即(a±b)²=a²±2ab+b²,并能灵活运用该公式进行计算。
2.学会运用完全平方公式解决实际问题,提高解题能力。通过例题讲解和练习,让学生掌握完全平方公式的应用技巧,并能够熟练运用到实际题目中。

完全平方公式教案精品

完全平方公式教案精品

完全平方公式教案精品《完全平方公式》教案篇一一、教材分析本节课是继乘法公式的内容的一种升华,起着承上启下的作用。

在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。

通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。

二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。

所以中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。

三、目标知识与技能利用添括号法则灵活应用乘法公式。

过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。

情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。

四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。

教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。

五、教学方法思考分析、归纳总结、练习、应用拓展等环节。

六、教学过程设计师生活动设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1) 4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。

引导学生通过实际例子发现完全平方公式的规律。

1.2 教学内容完全平方公式的定义和表达式。

完全平方公式的推导和证明。

1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。

1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。

观察学生在练习中的表现,及时给予指导和帮助。

第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。

引导学生通过证明理解完全平方公式的正确性。

2.2 教学内容完全平方公式的推导方法。

完全平方公式的证明过程。

2.3 教学方法使用图表和动画演示完全平方公式的推导过程。

引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。

2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。

观察学生在证明过程中的思路和推理是否清晰。

第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。

引导学生通过完全平方公式简化计算过程。

3.2 教学内容完全平方公式在实际问题中的应用。

完全平方公式在简化计算过程中的作用。

3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。

使用图表和动画演示完全平方公式在计算过程中的应用。

3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。

观察学生在解题过程中的思路和计算是否准确。

第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。

引导学生通过完全平方公式的扩展形式解决更复杂的问题。

4.2 教学内容完全平方公式的扩展形式。

完全平方公式的扩展形式在解决问题中的应用。

4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。

使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。

4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。

2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。

3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。

二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。

2. 教学难点:运用完全平方公式进行整式的乘法运算。

三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。

2. 知识讲解:讲解完全平方公式的推导过程和结构特点。

(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。

3. 练习环节:学生进行练习,教师进行个别指导。

4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。

5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。

五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。

在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。

不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。

完全平方公式一等奖教学设计

完全平方公式一等奖教学设计

完全平方公式一等奖教学设计完全平方公式一等奖教学设计第 1 篇目标:1、这一章的学习,使学生掌握二元一次方程组的解法。

2、学会解决实际问题,分析问题能力有所提高。

重点:这一章的知识点,数学方法思想。

难点:实际应用问题中的等量关系。

方法讲练结合、探索交流课型新授课教具投影仪全章小结四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。

还有不懂的方面?感到困难的部分是什么?方案<一> 基本练习题1、下列各组x,y的值是不是二元一次方程组的解?(1)(2)(3)2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:xy=4xy=10-x根据上表找出二元一次方程组的的解。

3、已知二元一次方程组的解求a,b的值。

4、解二元一次方程(1)(2)方案〈二〉1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。

2.写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。

3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。

设三边的长分别是xcm,ycm,zcm那么你会解这个方程组吗?方案〈三〉1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?2、甲、乙两地之间路程为20km,a,b两人同时相对而行,2小时后相遇,相遇后a就返回甲地,b仍向甲地前进,a 回到甲地时,b离甲地还有2km,求a,b两人速度。

3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?教学素材:a组题:1.已知x+y+(x-y+3)2=0,求x,y的值。

2.若3m-2n-7=0,则6n-9m-6是多少?3.解方程组(1)(2)4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计范文(精选7篇)

初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。

初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。

2、会推导完全平方公式,了解公式的几何背景,会用公式计算。

3、数形结合的数学思想和方法。

学习重点:会推导完全平方公式,并能运用公式进行简单的计算。

学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。

学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。

尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。

4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。

3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。

初中数学完全平方公式教育教案

初中数学完全平方公式教育教案

初中数学完全平方公式教育教案教案主题:初中数学完全平方公式教育教案教案要求:初中数学知识难度较低,以易于理解和记忆为目的,帮助学生深入了解完全平方公式的定义和运用。

教案概要:本教案侧重于讲解初中数学中的完全平方公式,包括完全平方公式的定义及其应用场景,以及如何运用完全平方公式来求解数学题目。

本课程基于初中数学课程标准,文本模式简洁明了,适合教师带领学生一步步学习。

教案结构:一、教学目标1. 掌握完全平方公式的定义;2. 能够利用完全平方公式来解决数学问题;3. 培养学生的计算能力和逻辑思维能力;4. 激发学生对数学知识的兴趣和热情。

二、教学内容1. 完全平方公式的定义;2. 完全平方公式的应用场景;3. 如何利用完全平方公式来解决问题。

三、教学步骤1. 导入环节在导入环节中,教师可以通过提问等交互性方式引导学生,激发学生的学习兴趣。

例如:“你们好,今天我们要继续学习数学知识。

前面学的乘方和开方有类似的地方吗?”“通过观察下面这个式子,你们知道这个公式是叫什么吗?” “这个公式有什么用呢?”2. 学习内容2.1 完全平方公式的定义首先,教师须清楚地阐述完全平方公式的定义。

例如:“完全平方公式可以用来计算一个整数的平方值。

”此外,教师还可以通过实验演示等方式直观呈现完全平方公式的定义。

2.2 完全平方公式的应用场景接下来,教师可以通过题目来演示完全平方公式的应用场景,以激发学生的学习兴趣。

例如,以下面的题目为例:求解5² = ?教师可以指导学生如何运用完全平方公式来解决这个问题。

例如:“你们可以通过在式子中填写数字,来求解这个问题。

5²可以看作是5×5,这是一个乘法的式子。

5×5可以化简成(5+5)×(5-5)+(5²-5²)。

这个式子可以通过化简和分类的方式,快速得出结论——5²=25。

”2.3 如何利用完全平方公式来解决问题接下来,教师需要讲解如何利用完全平方公式来解决数学问题。

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文

初中数学完全平方公式教案范文一、教学目标1.理解完全平方公式的含义和作用;2.掌握完全平方公式的求值方法;3.运用完全平方公式解决实际问题;4.培养学生对数学问题的分析和解决能力。

二、教学重点1.理解完全平方的概念;2.掌握完全平方公式的应用;3.运用完全平方公式解决实际问题。

三、教学难点1.运用完全平方公式解决实际问题。

四、教学过程1.导入新课教师出示一个边长为x的正方形,并称其面积为A。

请学生以最简洁的方式表示出A的面积。

引导学生发现正方形的面积可以用x^2来表示,即A=x^2、然后教师出示一个边长为(a+b)的正方形,并告诉学生这个正方形的面积为多少。

引导学生用(x+y)^2中的x和y代替a和b,推测出(a+b)^2可以表示成什么样的式子。

教师引导学生发现(a+b)^2=a^2+2ab+b^2,并告诉学生这个公式叫做完全平方公式。

2.讲授完全平方公式的应用教师通过具体的例子讲解完全平方公式的运用,如求(3+4)^2,学生将该式子应用完全平方公式计算出结果,并进行验证。

教师再给学生提供一些类似的练习题,巩固他们对完全平方公式的运用。

3.解决实际问题教师给学生提供一些实际问题,如求一个长方形的面积,已知长和宽之和为x,宽为y。

学生根据题目中的条件,利用完全平方公式来求解。

4.拓展思考教师引导学生思考完全平方公式的推广和拓展,如(a-b)^2的展开式、(a+b)(a-b)的展开式等。

然后给学生提供相应的练习题,让学生运用所学知识解答。

五、课堂小结教师对本节课的内容进行总结,并提醒学生复习完全平方公式的应用方法和注意事项。

六、课后作业1.完成课堂练习题;2.准备下节课的知识预习。

七、教学反思通过本节课的教学,学生能够理解完全平方公式的含义和作用,能够运用完全平方公式解决实际问题。

同时,通过课堂实践和思考,学生的数学思维和解决问题的能力得到了培养和提高。

在今后的教学中,可以进一步拓展与完全平方公式相关的知识,丰富教学内容,提高学生的综合应用能力。

初中完全平方公式教案

初中完全平方公式教案

初中完全平方公式教案一、教学目标:1. 让学生掌握完全平方公式的推导过程和应用。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 完全平方公式的推导。

2. 完全平方公式的应用。

3. 完全平方公式的拓展。

三、教学重点与难点:1. 完全平方公式的推导过程。

2. 完全平方公式的灵活运用。

四、教学过程:1. 导入:利用多媒体展示一个正方形,让学生观察并思考如何求得这个正方形的面积。

引导学生回顾平方公式,为新课的学习做好铺垫。

2. 新课讲解:a) 完全平方公式的推导:通过示例,讲解完全平方公式的推导过程,让学生理解并掌握完全平方公式的来源。

例如:(a+b)² = a² + 2ab + b²b) 完全平方公式的应用:讲解如何运用完全平方公式解决实际问题,例如:求解完全平方方程、估算无理数的大小等。

c) 完全平方公式的拓展:介绍完全平方公式的拓展知识,如:完全平方数、完全平方根等。

3. 课堂练习:设计一些练习题,让学生运用完全平方公式解决问题,巩固所学知识。

4. 总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的优点和不足,为今后的学习做好准备。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 课后作业:检查学生完成的课后作业,评估学生对完全平方公式的掌握程度。

3. 单元测试:通过单元测试,了解学生在段时间内对完全平方公式的运用能力。

六、教学策略:1. 采用直观演示法,让学生通过观察、实践,理解完全平方公式的推导过程。

2. 运用实例讲解法,让学生学会如何运用完全平方公式解决实际问题。

3. 设计多样化的练习题,激发学生的学习兴趣,提高学生的动手能力。

4. 鼓励学生积极参与课堂讨论,培养学生的合作意识。

5. 注重个体差异,给予每个学生充分的关注和指导,使他们在课堂上都能有所收获。

完全平方公式教案优秀8篇

完全平方公式教案优秀8篇

完全平方公式教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!完全平方公式教案优秀8篇作为一名专为他人授业解惑的人·民教师,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。

初中数学《完全平方公式》教学设计

初中数学《完全平方公式》教学设计

初中数学《完全平方公式》教学设计一、教学目标1.掌握完全平方公式的概念和运用方法。

2.理解完全平方公式的用途及其在数学上的意义。

3.能够灵活应用完全平方公式解决实际问题。

二、教学重点1.完全平方公式的概念和运用方法。

2.完全平方公式的用途及其在数学上的意义。

三、教学内容和方法教学内容1.完全平方公式的定义和形式。

2.完全平方公式的运用方法及其在解决实际问题中的应用。

教学方法1.讲授与练习相结合的教学方法。

2.由简入难的教学过程,逐步引导学生掌握完全平方公式的概念和运用方法。

3.多举例分析实际问题,并结合生活实例,使学生更好地理解并掌握完全平方公式的应用。

四、教学过程设计第一课时教学内容:1.完全平方公式的定义和形式。

2.讲述完全平方公式在数学上的作用及解决问题的例子。

3.提出完全平方公式的公式记忆方法和三个运用方法,即加法、减法、乘法。

教学方法:1.通过讲授概念,引导学生理解完全平方公式是什么。

2.举例演示完全平方公式的应用过程和计算方法,以便学生能够快速记忆公式及其演算方法。

3.安排相应练习,让学生进行练习,在练习中分析实际问题,逐步掌握完全平方公式的运用。

第二课时教学内容:1.进一步介绍完全平方公式的运用方法。

2.讲解完全平方公式在几何学中的应用。

教学方法:1.提醒学生仔细阅读题目,了解提问的意图,在大脑中建立模型。

2.引导学生结合几何学知识,从不同角度理解完全平方公式,深刻理解公式在不同问题中的运用方法。

第三课时教学内容:1.进一步讲解完全平方公式的应用。

2.讲解韦达定理以及应用韦达定理求解实际线性问题的方法。

教学方法:1.针对不同难度的题目,采取不同的教学方法,灵活引导学生解决难题。

2.通过小组讨论和展示总结,帮助学生发展其探究和解决问题的能力,提高实际应用能力。

五、教学评估1.制定简单好用的练习题,考察学生对完全平方公式的掌握程度。

2.发放实际应用题目,考察学生在解决实际问题中的应用能力和思维能力。

人教初中数学八上《完全平方公式》教案 (公开课获奖)

人教初中数学八上《完全平方公式》教案 (公开课获奖)

完全平方公式教学目标:一、知识与技能1、通过对完全平方公式的探索和推导,进一步开展符号〔字母〕的识别运用能力和推理能力。

2、培养学生进一步地掌握、灵活运用公式的能力。

二、过程与方法1、通过实际生活背景〔实验田面积计算〕,运用多项式乘法法那么,推导出公式(a+b)2=a2+2ab+b22、关于公式(a-b) 2=a2-2ab+b2的获得,既可照〔a+b〕2的公式推导方法,但利用(a-b)2=[a+(-b)]2更能表达公式使用条件的广泛性和“代数〞的意义。

三、情感与态度对公式的推导及理解,培养学生思维严密的习惯。

来源于生活实际的数学问题,是用以培养学生热爱数学并用运用数学的好习惯。

对公式结构的分析和认识,使学生有条理的思考和语言表达能力。

教学重难点:重点对公式(a±b)2=a2±2ab+b2的理解难点:完全平方公式的运用课前准备:投影仪、幻灯片教学设计:教师活动学生活动说明引导学生用多项式乘法计算(a+b) 2指导学生对公式〔a-b〕2=a2-2ab+b2的推导总结二公式,由学生表达公式内容。

例1的讲解,板书给出组织学生稳固新课,完成随堂练习。

学生由面积相等得出(a+b) 2=a2+2ab+b2学生分小组计算,统一结论。

分组进行,各抒己见,然后小组统一。

表述公式,指出二公式的特点、同异。

学生听讲。

学生独立完成,相互评价,可组织学生上讲台演算。

由现实情景中数学结论,激发学生学习热情此活动在于验证引例的正确,应要求学生把展开式按a的降幂排列。

显然学生有两种截然不同的推导方法,不强求,可由学生自我评价。

板书公式,强调公式内容、结构。

讲解例题应注重“套〞的过程,注意符号、系数、指数等。

补充一些简单例题,主要目的是稳固公式(a+b+c) 2可视学生情况而定。

教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .D CA BD CABDC A B于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .D CAB求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得E DC A B P2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文

初三数学《完全平方公式》教学教案范文教案:初三数学《完全平方公式》教学内容:本节课的教学内容选自初三数学教材第四章第二节《完全平方公式》。

该章节主要介绍了完全平方公式的概念、推导过程以及如何运用完全平方公式解决实际问题。

具体内容包括:完全平方公式的定义,完全平方公式的推导,完全平方公式的运用。

教学目标:1. 让学生理解完全平方公式的概念,掌握完全平方公式的推导过程。

2. 培养学生运用完全平方公式解决实际问题的能力。

3. 提高学生对数学知识的兴趣,培养学生的逻辑思维能力。

教学难点与重点:难点:完全平方公式的推导过程及运用。

重点:完全平方公式的记忆和运用。

教具与学具准备:教具:黑板、粉笔、多媒体课件。

学具:笔记本、练习本、铅笔、橡皮。

教学过程:一、情景引入(5分钟)1. 老师提出问题:同学们,你们知道生活中有哪些地方会用到平方公式吗?2. 学生思考后回答,老师给予评价和引导。

二、新课讲解(15分钟)1. 老师简要介绍完全平方公式的定义和推导过程。

2. 通过多媒体课件展示完全平方公式的推导过程,让学生跟随老师一起动手操作,加深理解。

3. 老师给出几个例子,让学生尝试运用完全平方公式解答,并及时给予指导和反馈。

三、随堂练习(10分钟)1. 老师给出几道练习题,让学生独立完成,并及时给予讲解和反馈。

2. 学生互相交流解题心得,老师给予评价和指导。

四、板书设计(5分钟)1. 老师根据讲解的内容,板书完全平方公式的定义和推导过程。

2. 老师在黑板上给出几个例子,让学生跟随板书,加深对完全平方公式的记忆。

五、作业设计(5分钟)1. 老师布置几道运用完全平方公式的练习题,让学生回家完成。

2. 学生独立完成作业,第二天交给老师批改。

六、课后反思及拓展延伸(5分钟)1. 老师让学生谈谈对本节课内容的理解和收获。

2. 学生提出问题,老师给予解答和指导。

3. 老师给出一些拓展延伸的问题,让学生思考和讨论。

教学反思:本节课通过情景引入、新课讲解、随堂练习、板书设计、作业设计等环节,让学生掌握了完全平方公式的概念和运用。

初三数学《完全平方公式》教学优质教案范文

初三数学《完全平方公式》教学优质教案范文

初三数学《完全平方公式》教学优质教案范文一、教学内容本节课我们将学习人教版初中数学教材九年级上册第二章《一元二次方程》中第三节《完全平方公式》。

具体内容包括:理解完全平方公式结构特点,掌握完全平方公式推导和应用,解决实际问题。

二、教学目标1. 知识目标:让学生掌握完全平方公式结构特点,能够熟练运用公式解决相关问题。

2. 能力目标:培养学生逻辑思维能力和解决问题能力,提高数学运算技巧。

3. 情感目标:激发学生学习兴趣,培养学生合作精神和探究意识。

三、教学难点与重点教学难点:完全平方公式推导和应用。

教学重点:完全平方公式结构特点及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过一个实际问题引入完全平方公式,让学生思考如何求解一个数平方。

实践情景:小明篮球弹跳高度为h,每次弹跳后上升高度是h/2,问小明第n次弹跳后,篮球上升总高度是多少?2. 新课导入:引导学生观察平方数规律,发现完全平方公式结构特点。

a. 展示平方数表,让学生观察平方数规律。

b. 学生小组讨论,推导完全平方公式。

3. 例题讲解:通过讲解典型例题,让学生掌握完全平方公式应用。

例题1:计算(3x + 4y)^2。

例题2:已知a^2 + 2ab + b^2 = 64,求a + b值。

4. 随堂练习:让学生独立完成练习题,巩固所学知识。

练习题1:计算(2x 3y)^2。

练习题2:已知x^2 2xy + y^2 = 25,求x y值。

六、板书设计1. 完全平方公式2. 内容:a. 完全平方公式结构特点:a^2 + 2ab + b^2 = (a + b)^2b. 完全平方公式推导过程c. 完全平方公式应用七、作业设计1. 作业题目:a. 计算(5x + 6y)^2。

b. 已知x^2 6xy + 9y^2 = 64,求x 3y值。

答案:a. (5x + 6y)^2 = 25x^2 + 60xy + 36y^2b. x 3y = ±82. 课后思考题:探究完全平方公式其他应用,如解一元二次方程等。

人教版数学八年级上册14.2.2完全平方公式(第二课时)优秀教学案例

人教版数学八年级上册14.2.2完全平方公式(第二课时)优秀教学案例
(三)小组合作
小组合作教学策略是指在教学过程中,教师将学生分成若干小组,让学生在小组内进行合作、交流和分享。在本节课的教学中,我设计了多个小组合作活动,以促进学生对完全平方公式的理解和应用。
例如,在完全平方公式的推导过程中,我让学生分组进行讨论,分享各自的思考和发现。在解决实际问题的环节,我让学生分组进行练习,相互检查、相互帮助。通过小组合作,培养学生团队合作意识,提高学生的交流能力和合作能力。
在教学内容上,我突出了以下几个方面:
1.通过生活情境,让学生感受完全平方公式的实际应用,从而理解完全平方公式的内涵。
2.引导学生通过自主探究,发现完全平方公式的推导过程,培养学生的逻辑思维能力。
3.组织学生进行合作交流,分享学习心得,提高学生的团队协作能力。
4.通过对完全平方公式的总结提升,使学生能够灵活运用完全平方公式解决实际问题。
在知识方面,学生需要掌握完全平方公式的定义、推导过程和应用。能够运用完全平方公式解决简单的数学问题,如求解二次方程的根、计算平面几何图形的面积等。通过练习题目的设计,使学生能够在实际问题中运用完全平方公式,提高学生的知识应用能力。
在技能方面,学生需要培养观察、分析、归纳、推理等数学基本技能。能够通过自主探究、合作交流等途径,发现完全平方公式的规律,提高学生的逻辑思维能力。同时,学生需要学会运用完全平方公式解决实际问题,提高学生的实践能力。
(三)学生小组讨论
在学生小组讨论环节,我设计了一系列具有启发性的问题,引导学生进行思考和探究。例如,我提出了以下问题:
1.你认为完全平方公式的应用范围是什么?
2.你能举例说明完全平方公式在实际问题中的应用吗?
3.你认为完全平方公式与其他数学公式有何联系和区别?
学生分组讨论这些问题,分享自己的思考和发现。通过小组讨论,培养学生团队合作意识,提高学生的交流能力和合作能力。

数学教案完全平方公式

数学教案完全平方公式

数学教案完全平方公式一、教学目标1、知识与技能目标学生能够理解并掌握完全平方公式的结构特征。

能够熟练运用完全平方公式进行整式的乘法运算。

2、过程与方法目标通过推导完全平方公式的过程,培养学生的逻辑推理能力和符号运算能力。

经历观察、猜想、验证、归纳等数学活动,提高学生的数学思维能力。

3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。

培养学生勇于探索、敢于创新的精神。

二、教学重难点1、教学重点完全平方公式的推导和应用。

2、教学难点理解完全平方公式的结构特征,灵活运用公式进行计算。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)复习多项式与多项式相乘的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

(2)计算:(a + b)×(a + b) ,(a b)×(a b)2、探索新知(1)引导学生利用多项式乘法法则计算:(a + b)²=(a + b)(a + b) = a²+ ab + ab + b²= a²+ 2ab +b²(a b)²=(a b)(a b) = a² ab ab + b²= a² 2ab + b²(2)总结完全平方公式:(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²(3)分析完全平方公式的结构特征:公式左边是两个数的和(或差)的平方,右边是一个三项式,其中首项和末项分别是这两个数的平方,中间一项是这两个数乘积的2 倍。

3、例题讲解例 1:运用完全平方公式计算(1)(4m + n)²解:原式=(4m)²+ 2×4m×n + n²= 16m²+ 8mn + n²(2)(y 1/2)²解:原式= y² 2×y×1/2 +(1/2)²= y² y + 1/4例 2:简便计算(1)102²解:原式=(100 + 2)²= 100²+ 2×100×2 + 2²= 10000 + 400 + 4= 10404(2)99²解:原式=(100 1)²= 100² 2×100×1 + 1²= 10000 200 + 1= 98014、课堂练习(1)计算:(3x 2y)²(2)简便计算:198²5、课堂小结(1)回顾完全平方公式:(a + b)²= a²+ 2ab + b²,(a b)²=a² 2ab + b²(2)强调公式的结构特征和应用时的注意事项。

初中数学《完全平方公式》教学设计【三篇】

初中数学《完全平方公式》教学设计【三篇】

【导语】总结公式的等号两边的特点,⽤语⾔表达公式的内容。

通过逐层深⼊的练习,巩固完全平⽅公式两种形式的应⽤。

⽆忧考为⼤家准备了初中数学《完全平⽅公式》教学设计【三篇】,希望对⼤家有所帮助!篇⼀ 课题名称:完全平⽅公式(1) ⼀、内容简介 本节课的主题:通过⼀系列的探究活动,引导学⽣从计算结果中总结出完全平⽅公式的两种形式。

关键信息: 1、以教材作为出发点,依据《数学课程标准》,引导学⽣体会、参与科学探究过程。

⾸先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学⽣⾃主、独⽴的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学⽣通过收集和处理信息、表达与交流等活动,获得知识、技能、⽅法、态度特别是创新精神和实践能⼒等⽅⾯的发展。

2、⽤标准的数学语⾔得出结论,使学⽣感受科学的严谨,启迪学习态度和⽅法。

⼆、学习者分析: 1、在学习本课之前应具备的基本知识和技能: ①同类项的定义。

②合并同类项法则 ③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的⽔平: 在学习完全平⽅公式之前,学⽣已经能够整理出公式的右边形式。

这节课的⽬的就是让学⽣从等号的左边形式和右边形式之间的关系,总结出公式的应⽤⽅法。

三、教学/学习⽬标及其对应的课程标准: (⼀)教学⽬标: 1、经历探索完全平⽅公式的过程,进⼀步发展符号感和推⼒能⼒。

2、会推导完全平⽅公式,并能运⽤公式进⾏简单的计算。

(⼆)知识与技能:经历从具体情境中抽象出符号的过程,认识有理 数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运⽤代数式、防城、不等式、函数等进⾏描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同 ⾓度寻求解决问题的⽅法,并能有效地解决问题,尝试评价不同⽅法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

数学《完全平方公式》教案

数学《完全平方公式》教案

•••••••••••••••••数学《完全平方公式》教案数学《完全平方公式》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。

那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《完全平方公式》教案,仅供参考,欢迎大家阅读。

数学《完全平方公式》教案1教学目标:1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。

3、了解完全平方公式的几何背景,培养学生的数形结合意识。

4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。

教学重点:1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;2、会用完全平方公式进行运算。

教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结。

教学过程:一、回顾与思考活动内容:复习已学过的平方差公式1、平方差公式:(a+b)(a—b)=a2—b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差。

2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

二、情境引入活动内容:提出问题:一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

三、初识完全平方公式活动内容:1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。

并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。

2、引导学生利用几何图形来验证两数差的完全平方公式。

3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优质初中数学《完全平方公式》教案总结公式的等号两边的特点,用语言表达公式的内容。

通过逐层深入的练习,巩固完全平方公式两种形式的应用。

下面就是我给大家带来的初中数学《完全平方公式》教案,希望能帮助到大家!数学《完全平方公式》教案1课题名称:完全平方公式(1)一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。

当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3、教学评价方式:(1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、教学媒体:多媒体六、教学和活动过程:教学过程设计如下:〈一〉、提出问题[引入]同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?(2m+3n)2=_______________,(-2m-3n)2=______________,(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题1、[学生回答]分组交流、讨论(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答]总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答]完全平方公式的数学表达式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、运用公式,解决问题1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=____________,(m-n)2=_______________,(-m+n)2=____________,(-m-n)2=______________,(a+3)2=______________,(-c+5)2=______________,(-7-a)2=______________,(0.5-a)2=______________.2、判断:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(-n-3m)2=n2-6mn+9m2()④(5a+0.2b)2=25a2+5ab+0.4b2()⑤(5a-0.2b)2=5a2-5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)23、小试牛刀①(x+y)2=______________;②(-y-x)2=_______________;③(2x+3)2=_____________;④(3a-2)2=_______________;⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________. 〈四〉、[学生小结]你认为完全平方公式在应用过程中,需要注意那些问题?(1)公式右边共有3项。

(2)两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:(1)(-3a+2b)2=________________________________(2)(-7-2m)2=__________________________________(3)(-0.5m+2n)2=_______________________________(4)(3/5a-1/2b)2=________________________________(5)(mn+3)2=__________________________________(6)(a2b-0.2)2=_________________________________(7)(2xy2-3x2y)2=_______________________________(8)(2n3-3m3)2=________________________________〈六〉、学生自我评价[小结]通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析结果,总结出了完全平方公式。

在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业]P34随堂练习P36习题数学《完全平方公式》教案2总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用.(2)了解完全平方公式的几何背景.数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.(2)发展学生的数形结合的数学思想.情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正确做法;针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维*,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.第二环节:验证(a+2)2=a2–4a+22活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.第三环节:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?展示动画,用几何图形诠释完全平方公式的几何意义.学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口诀、认识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)口诀:首平方,尾平方,首尾相乘的两倍在中央.活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.第七环节:公式应用活动内容:例:计算:①(2x–3)2;②(4x+)2解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.第八环节:随堂练习活动内容:计算:①;②;③(n+1)2–n2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.第九环节:学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.第十环节:学生反思活动内容:通过今天这堂课的学习,你有哪些收获?收获1:认识了完全平方公式,并能简单应用;收获2:了解了两数和与两数差的完全平方公式之间的差异;收获3:感受到数形结合的数学思想在数学中的作用.活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.第十一环节:布置作业:课本P43习题1.13数学《完全平方公式》教案3教学目标1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.教学重难点教学重点:1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.2、会运用公式进行简单的计算.教学难点:1、完全平方公式的推导及其几何解释.2、完全平方公式的结构特点及其应用.教学工具课件教学过程一、复习旧知、引入新知问题1:请说出平方差公式,说说它的结构特点.问题2:平方差公式是如何推导出来的?问题3:平方差公式可用来解决什么问题,举例说明.问题4:想一想、做一做,说出下列各式的结果.(1)(a+b)2(2)(a-b)2(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)二、创设问题情境、探究新知一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)(1)四块面积分别为:、、、;(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S=;②部分看:四块面积的和,S=.总结:通过以上探索你发现了什么?问题1:通过以上探索学习,同学们应该知道我们提出的问题4正确的结果是什么了吧?问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证) 问题3:你能说说(a+b)2=a2+2ab+b2这个等式的结构特点吗?用自己的语言叙述.(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.三、例题讲解,巩固新知例1:利用完全平方公式计算(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2解:(2x-3)2=(2x)2-2o(2x)o3+32=4x2-12x+9(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2=16x2+40xy+25y2(mn-a)2=(mn)2-2o(mn)oa+a2=m2n2-2mna+a2交流总结:运用完全平方公式计算的一般步骤(1)确定首、尾,分别平方;(2)确定中间系数与符号,得到结果.四、练习巩固练习1:利用完全平方公式计算练习2:利用完全平方公式计算练习3:(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)五、变式练习六、畅谈收获,归纳总结1、本节课我们学习了乘法的完全平方公式.2、我们在运用公式时,要注意以下几点:(1)公式中的字母a、b可以是任意代数式;(2)公式的结果有三项,不要漏项和写错符号;(3)可能出现①②这样的错误.也不要与平方差公式混在一起.七、作业设置。

相关文档
最新文档