word初一有理数所有知识点总结和常考题提高难题压轴题练习含答案解析良心出品必属
(完整word版)最新初一数学知识点讲解习题附答案大全(绝对实用)(良心出品必属精品)
第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离. 5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42. a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( ) A a>0,b>0 B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
七年级数学考点大串讲(人教版):有理数(17个考点梳理)(解析版)
专题01有理数(17个考点梳理+题型解读+提升训练)【知识导图】【知识清单】1.有理数:(1)凡能写成)0p q ,p (pq为整数且形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数; 不是有理数;(2)有理数的分类:①负分数负整数负有理数零正分数正整数正有理数有理数②负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a >0 a 是正数;a <0 a 是负数;a≥0 a 是正数或0 a 是非负数;a≤0 a 是负数或0 a 是非正数.【例1】把下列各数填在相应的大括号里:2 ,-3.14,0,18%,435,2019,227,132 ,-1整数: ______...;正分数: ______...;非负有理数: ______....【答案】2 ,0,2019,-1;18%,435 ,227;0,18%,435,2019,227【分析】根据整数(包括正整数,0和负整数),正分数(大于0的分数)以及非负有理数(包括0和正有理数)的定义解答即可.【详解】解:22 ,443355,整数: 2,0,2019,1 ;正分数:42218%,3,57;非负有理数:4220,18%,3,2019,57.故答案为:2 ,0,2019,-1;18%,435 ,227;0,18%,435,2019,227.【点睛】本题考查的是有理数的分类,多重符号的化简,绝对值的含义,掌握有理数的分类是解题的关键,难点是非负有理数的理解.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.【例2】.(2023•馆陶县校级模拟)如图,数轴上的两个点分别表示数a 和﹣2,则a 可以是()A .﹣3B .﹣1C .1D .2【分析】根据数轴上,右边的数总比左边的大得到a 的取值范围,进而得出答案.【解答】解:根据数轴得:a <﹣2,∴a 可以是﹣3.故选:A .【点评】本题考查了数轴,掌握数轴上,右边的数总比左边的大是解题的关键.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c 的相反数是-(a-b+c)=-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 a+b=0 a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等【例3】如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n 的值为()A .1B .0C .2D .-1【答案】A【分析】先根据相反数的定义确定m 、n 的值,再代入m +n ,计算即可求出其值.【详解】∵m 的相反数是最大的负整数,n 的相反数是它本身,∴m =1,n =0,∴m +n =1+0=1,故A 选项是正确答案.4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:)0a (a )0a (0)0a (a a 或)0()0(a a a a a ;(3)0a 1aa ;0a 1aa ;(4)|a|是重要的非负数,即|a|≥0,非负性;【例4】(2022秋•寻乌县期末)请根据图示的对话解答下列问题.(1)a =,b =.(2)已知|m ﹣a |+|b +n |=0,求mn的值.【解答】解:(1)∵a 与2互为相反数,而2的相反数是﹣2,∴a =﹣2,∵b 与﹣互为倒数,而﹣的倒数是﹣3,∴b =﹣3,故答案为:﹣2,﹣3;(2)∵|m ﹣a |+|b +n |=0,∴m ﹣a =0,b +n =0,又∵a =﹣2,b =﹣3,∴m =﹣2,n =3,∴mn =﹣2×3=﹣6,答:mn 的值为﹣6.【点评】本题考查的是非负数的性质,相反数以及互为倒数,掌握相反数、倒数的定义以及绝对值的非负性是正确解答的前提.5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
有理数(压轴必刷30题8种题型专项训练)—2023-2024学年七年级数学上册(人教版)(解析版)
有理数(压轴必刷30题8种题型专项训练)一.正数和负数(共1小题)1.(2022秋•江都区期中)“十一”国庆期间,俄罗斯特技飞行队在黄山湖公园特技表演,其中一架飞机起飞后的高度变化如表: 高度变化记作 上升4.4km4.4km 下降3.2km﹣3.2km 上升1.1km+1.1km 下降1.5km ﹣1.5km(1)此时这架飞机比起飞点高了多少千米?(2)如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?【分析】(1)根据表格列出算式,计算即可得到结果;(2)求出表格中数据绝对值之和,再乘以2即可得到结果.【解答】解:(1)4.4﹣3.2+1.1﹣1.5=0.8(千米),答:这架飞机比起飞点高了0.8千米;(2)|4.4|+|﹣3.2|+|+1.1|+|﹣1.5|=10.2(千米)10.2×2=20.4升.答:一共消耗了20.4升燃油.【点评】此题考查了有理数的加减混合运算,正数和负数,弄清题意是解本题的关键.二.有理数(共1小题) 2.(2022秋•浏阳市期中)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a ,b ,c 满足abc >0,求的值.【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.z①a ,b ,c 都是正数,即a >0,b >0,c >0时,则;②当a ,b ,c 中有一个为正数,另两个为负数时,不妨设a >0,b <0,c <0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求的值; (2)若a ,b ,c 为三个不为0的有理数,且,求的值.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)根据已知等式,利用绝对值的代数意义判断出a ,b ,c 中负数有2个,正数有1个,判断出abc 的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)∵abc <0,∴a ,b ,c 都是负数或其中一个为负数,另两个为正数,①当a ,b ,c 都是负数,即a <0,b <0,c <0时,则:=++=﹣1﹣1﹣1=﹣3; ②a ,b ,c 有一个为负数,另两个为正数时,设a <0,b >0,c >0,则=++=﹣1+1+1=1. (2)∵a ,b ,c 为三个不为0的有理数,且,∴a ,b ,c 中负数有2个,正数有1个,∴abc >0,∴==1. 【点评】本题主要考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键.三.数轴(共11小题)3.(2022秋•阳新县校级期末)已知在数轴上A ,B 两点对应数分别为﹣4,20.(1)若P 点为线段AB 的中点,求P 点对应的数.(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.①几秒后点M到点A、点B的距离相等?求此时M对应的数.②是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.【分析】(1)利用中点坐标计算方法直接得出答案即可;(2)①画出图形,设t秒后点M到点A、点B的距离相等,分别表示出AM和BM的长度,建立方程求得答案即可;②利用(2)中的AM和BM的长度,分两种情况:M在AB之间,A在BM之间,结合3MA=2MB建立方程求得答案即可.【解答】解:(1)P点表示的数是=8;(2)①如图,设t秒后点M到点A、点B的距离相等,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,则2t+4=20﹣6t,z解得t=2,M表示2×4=8.A、B重合时,MA=BM,此时t=6,此时M表示24.②如图①,AM=4t﹣(﹣4+2t)=2t+4,BM=20﹣2t﹣4t=20﹣6t,∵3MA=2MB,∴3(2t+4)=2(20﹣6t),∴t=,∴点M表示×4=;z 如图②,AM =4t ﹣(﹣4+2t )=2t+4,BM =2t+4t ﹣20=6t ﹣20,∵3MA =2MB ,∴3(2t+4)=2(6t ﹣20),∴t =,∴点M 表示×4=. 【点评】此题考查数轴,一元一次方程的实际运用,利用图形,得出数量关系是解决问题的关键.4.(2022秋•鲤城区校级期末)如图,数轴上点A 、C 对应的数分别为a 、c ,且a 、c 满足|a +4|+(c ﹣1)2=0.,点B 对应的数为﹣3,(1)求a 、c 的值;(2)点A ,B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒,若运动时间为t 秒,运动过程中,当A ,B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动到点C 处后立即以原速返回,到达自己的出发点后停止运动,点A 运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C 运动,当点B 停止运动时,点A 随之停止运动,在此运动过程中,A ,B 两点同时到达的点在数轴上表示的数是 .(说明:直接在横线上写出答案,答案不唯一,不解、错解均不得分,少解、漏解酌情给分)【分析】(1)根据非负数的性质列式求解即可得到a 、c 的值;(2)求出AB ,再根据到原点距离相等时,分两种情况:①点A 、B 重合,②点A 在原点的右边,点B 在原点的左边,列出方程求解即可;(3)由(2)可知A ,B 两点第一次同时到达的点为﹣2,A ,B 两点第二次同时到达的点,是在A 点到达C 点返回与B 点相遇的点,A ,B 两点第三次同时到达的点,是在A 点返回到出发点后又折返向点C 运动,与B 点运动到点C 处后返回的相遇点.【解答】解:(1)∵|a+4|+(c ﹣1)2=0,且|a+4|≥0,+(c ﹣1)2≥0,∴a+4=0,c ﹣1=0,∴a =﹣4,c =1;(2)由(1)可知A点表示的数为﹣4,C点表示的数为1,∵点B对应的数为﹣3,∴AB=1,由A,B两点到原点O的距离相等,分两种情况:①点A、B重合,②点A在原点的右边,点B在原点的左边①当点A、B重合时,A、B均在原点的左边,此时A点运动的距离等于B点运动的距离+1,即:2t=t+1,解得:t=1;②当点A在原点的右边,点B在原点的左边时,A、B两点表示的数互为相反数,即:(2t﹣4)+(﹣3+t)=0,解得:t=,综上所述当t=1或t=时,A,B两点到原点O的距离相等;(3)由(2)可知A,B两点第一次同时到达的点,在数轴上表示的数为:﹣2;A,B两点第二次同时到达的点,A点从﹣2到达C点(C点表示1)时,用时1.5秒,此时B点运动1.5个单位长度,到达﹣2+1.5=﹣0.5的位置,A、B之间相距1.5个单位长度,经过1.5÷(1+2)=0.5秒,A、B相遇,此时A、B两点均在原点,即A,B两点第二次同时到达的点在数轴上表示的数为:0;A,B两点第三次同时到达的点,在第二次相遇后,B到C点用时1秒,A点到出发点(表示﹣4的点)用时2秒,此时B点有到达原点,A、B两点再一次相遇用时4÷(2+1)=秒,此时A、B两点均在数轴上表示的数为﹣.综上所述,在此运动过程中,A,B两点同时到达的点在数轴上表示的数是﹣2,0,﹣.故答案为:﹣2,0,﹣.【点评】此题考查了数轴的有关知识,解题的关键是:借助数轴分析A,B两点同时到达的点.5.(2022秋•新城区期中)一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣1,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以100千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣15,+25,﹣10,﹣15,则该货车运送的水果总重量是多少千克?【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;(2)1+3+|﹣6|+|﹣1|+|﹣2|+5=18,答:该货车共行驶了18千米;(3)100×5+50﹣15+25﹣10﹣15=535(千克),答:货车运送的水果总重量是535千克.z【点评】本题考查了正数和负数和数轴,掌握数轴的画法,掌握正负数所表示的意义是解决问题的关键.6.(2022秋•法库县期中)如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为 ;点B表示的数为 ;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= ;当t=3时,甲小球到原点的距离= ;乙小球到原点的距离= ;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.【分析】(1)利用绝对值的非负性即可确定出a,b即可;(2)①根据运动确定出运动的单位数,即可得出结论.②根据(I)0<t≤2,(Ⅱ)t>2,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.【解答】解:(1)∵|a+2|+|b﹣4|=0;∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=3,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动2个单位,此时,乙小球到原点的距离=4﹣2=2,故答案为:3,2;当t=3时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球3秒钟向左运动3个单位,此时,甲小球到原点的距离=5,∵一小球乙从点B处以2个单位/秒的速度也向左运动,∴乙小球2秒钟向左运动2个单位,此时,刚好碰到挡板,改变方向向右运动,再向右运动1秒钟,运动2个单位,∴乙小球到原点的距离=2.②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6.故当t=秒或t=6秒时,甲乙两小球到原点的距离相等.故答案为:5,2.【点评】此题主要考查了数轴,点的运动特点,解本题的关键是抓住运动特点确定出结论.7.(2022秋•宜兴市期中)已知数轴上A,B两点表示的有理数分别为a,b,且(a﹣1)2+|b+2|=0.(1)求a,b的值;(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求c值;(3)小蜗牛甲以1个单位长度/s的速度从点B出发向其左边6个单位长度外的食物爬去,3s后位于点A 的小蜗牛乙收到它的信号,以2个单位长度/s的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D点相遇,则点D表示的有理数是什么?从出发至此时,小蜗牛甲共用去多少时间?【分析】(1)根据几个非负数的和为0的性质得到a﹣1=0,b+2=0,求出a、b的值;(2)分类讨论:点C在点B的左边时或点C在点A的右边,利用数轴上两点间的距离表示方法得到关于c 的方程,解方程求出c的值即可;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得到t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),解方程得t=4,点D表示的有理数是1﹣2×4,小蜗牛甲共用的时间为3+4.【解答】解:(1)根据题意得a﹣1=0,b+2=0,解得a=1,b=﹣2.(2)①当点C在点B的左边时,1﹣c+(﹣2﹣c)=11,解得c=﹣6;②当点C在点A的右边时,c﹣1+c﹣(﹣2)=11,解得c=5;(3)设小蜗牛乙收到信号后经过t秒和小蜗牛甲相遇,根据题意得:t+2t=1﹣(﹣2)﹣(﹣6)+(6﹣1×3),∴t=4,∴1﹣2×4=﹣7,3+4=7.答:点D表示的有理数是﹣7,小蜗牛甲共用去7秒.【点评】本题考查了数轴的三要素:正方向、原点和单位长度.也考查了几个非负数的和为0的性质以及数轴上两点间的距离.8.(2022秋•天河区校级期中)如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.z(1)求a 、b 、c 的值;(2)若点P 到A 点的距离是点P 到B 点的距离的2倍,求点P 对应的数;(3)当点P 运动到B 点时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c ﹣10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P 的对应的数;(3)分类讨论:当P 点在Q 点的右侧,且Q 点还没追上P 点时;当P 在Q 点左侧时,且Q 点追上P 点后;当Q 点到达C 点后,当P 点在Q 点左侧时;当Q 点到达C 点后,当P 点在Q 点右侧时,根据两点间的距离是4,可得方程,根据解方程,可得答案.【解答】解:(1)∵|a+24|+|b+10|+(c ﹣10)2=0∴a+24=0,b+10=0,c ﹣10=0解得a =﹣24,b =﹣10,c =10(2)﹣10﹣(﹣24)=14,①点P 在AB 之间,AP =14×=, ﹣24+=﹣,点P 的对应的数是﹣; ②点P 在AB 的延长线上,AP =14×2=28,﹣24+28=4,点P 的对应的数是4;(3)设在点Q 开始运动后第a 秒时,P 、Q 两点之间的距离为4,当P 点在Q 点的右侧,且Q 点还没追上P 点时,3a+4=14+a ,解得a =5;当P 在Q 点左侧时,且Q 点追上P 点后,3a ﹣4=14+a ,解得a =9;当Q 点到达C 点后,当P 点在Q 点左侧时,14+a+4+3a ﹣34=34,a =12.5;当Q 点到达C 点后,当P 点在Q 点右侧时,14+a ﹣4+3a ﹣34=34,解得a =14.5,综上所述:当Q点开始运动后第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.9.(2022秋•临平区月考)如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?【分析】(1)根据中点坐标公式即可求解;(2)此题是相遇问题,先求出相遇所需的时间,再求出点Q走的路程,根据左减右加的原则,可求出﹣20向右运动到相遇地点所对应的数;(3)此题是追及问题,分相遇前两只蚂蚁间的距离为20个单位长度,相遇后两只蚂蚁间的距离为20个单位长度,列出算式求解即可.z【解答】解:(1)M点对应的数是(﹣20+100)÷2=40;(2)A,B之间的距离为120,它们的相遇时间是120÷(6+4)=12(秒),即相同时间Q点运动路程为:12×4=48(个单位),即从数﹣20向右运动48个单位到数28;(3)相遇前:(100+20﹣20)÷(6﹣4)=50(秒),相遇后:(100+20+20)÷(6﹣4)=70(秒).故当它们运动50秒或70秒时间时,两只蚂蚁间的距离为20个单位长度.【点评】此题考查的是数轴上点的运动,还有相遇问题与追及问题.注意用到了路程=速度×时间.10.(2022秋•南安市月考)点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数所表示的点是{M,N}的奇点;数所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?【分析】(1)根据定义发现:奇点表示的数到{ M,N}中,前面的点M是到后面的数N的距离的3倍,从而z得出结论;根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;(2)点A到点B的距离为80,由奇点的定义可知,分2种情况讨论:①P是{A,B}的奇点;②P是{B,A}的奇点.【解答】解:(1)5﹣(﹣3)=8,8÷(3+1)=2,5﹣2=3;﹣3+2=﹣1.故数3所表示的点是{ M,N}的奇点;数﹣1所表示的点是{N,M}的奇点.故答案为:3;﹣1;(2)∵A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30,∴AB=30﹣(﹣50)=80.分2种情况:①P是{A,B}的奇点,PA=3PB,∴PB=20,P点表示的数为10;②P是{B,A}的奇点,PB=3PA,∴PB=60,P点表示的数为﹣30;故P点运动到数轴上的10或﹣30的位置时,P、A和B中恰有一个点为其余两点的奇点.【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A 的距离是到后面的数B的距离的3倍,列式可得结果.11.(2022秋•魏都区校级月考)操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数 表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.【分析】(1)1与﹣1重合,可以发现1与﹣1互为相反数,因此﹣3表示的点与3表示的点重合;(2)①﹣1表示的点与3表示的点重合,则折痕点为1,因此5表示的点与数﹣3表示的点重合;z②由①知折痕点为1,且A、B两点之间距离为11,则A表示1﹣5.5=﹣4.5,B点表示1+5.5=6.5.【解答】解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定折痕点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离折痕点的距离为11÷2=5.5,∵折痕点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.【点评】题目考查了数轴上点的对称,通过点的对称,发现对称点的规律,题目设计新颖,难易程度适中,适合课后训练.12.(2022秋•槐荫区校级月考)如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB 的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x= 秒时,点P到达点A.(2)运动过程中点P表示的数是 (用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.【分析】(1)直接得出AB的长,进而利用P点运动速度得出答案;(2)根据题意得出P点运动的距离减去4即可得出答案;(3)利用当点P运动到点C左侧2个单位长度时,当点P运动到点C右侧2个单位长度时,分别得出答案.【解答】解:(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,∴AB=10,∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,z∴运动时间为10÷2=5(秒),故答案为:5;(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴运动过程中点P表示的数是:2x﹣4;故答案为:2x﹣4;(3)点C表示的数为:[6+(﹣4)]÷2=1,当点P运动到点C左侧2个单位长度时,2x﹣4=1﹣2解得:x=1.5,当点P运动到点C右侧2个单位长度时,2x﹣4=1+2解得:x=3.5综上所述,x=1.5或3.5.【点评】此题主要考查了数轴,正确分类讨论得出PC的长是解题关键.13.(2022秋•和平区校级期中)数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a= ,c= ;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m= ;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?【分析】(1)根据非负数的性质得出a、c的值,再在数轴上描点即可得;(2)分m<﹣6、﹣6≤m≤1、m>1三种情况去绝对值符号,再解所得方程可得;(3)设运动时间为t,则点A表示的数为﹣6+2t,点B表示的数为﹣2+t,根据点A到点C的距离是点B到点C距离的3倍列出方程|﹣6+2t﹣1|=3|﹣2+t﹣1|,解之可得.【解答】解:(1)∵|a+6|+(c﹣1)2=0,∴a+6=0且c﹣1=0,z解得:a=﹣6、c=1,如图所示:,故答案为:﹣6、1;(2)若m<﹣6,则1﹣m﹣m﹣6=15,解得:m=﹣10;若﹣6≤m≤1时,1﹣m+m+6=5≠15,此情况不存在;若m>1,则m﹣1+m+6=15,解得:m=5;综上,m=﹣10或5,故答案为:﹣10或5;(3)设t秒时,点A到点C的距离是点B到点C距离的3倍,则此时点A表示的数为﹣6+2t,点B表示的数为﹣2+t,则|﹣6+2t﹣1|=3|﹣2+t﹣1|,整理,得:|2t﹣7|=3|t﹣3|,∴2t﹣7=3(t﹣3)或2t﹣7=﹣3(t﹣3),解得:t=2或t=,∴点A表示的数为﹣2或,答:点A到点C的距离是点B到点C距离的3倍,点A对应的数为﹣2或.【点评】本题考查了一元一次方程的应用与数轴,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.四.绝对值(共6小题)14.(2022秋•包河区期末)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是 .【分析】数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.【解答】解:数形结合.绝对值的几何意义:|x﹣y|表示数轴上两点x,y之间的距离.画数轴易知,|x﹣2|+|x+3|+|x﹣1|+|x+1|表示x 到﹣3,﹣1,1,2这四个点的距离之和.令y=|x﹣2|+|x+3|+|x﹣1|+|x+1|,x=﹣3时,y=11,x=﹣1时,y=7,x=1时,y=7,x=2时,y=9,可以观察知:当﹣1≤x≤1时,由于四点分列在x两边,恒有y=7,当﹣3≤x<﹣1时,7<y≤11,当x<﹣3时,y>11,当1≤x<2时,7≤y<9,当x≥2时,y≥9,综合以上:y≥7 所以:a≤7即|x﹣2|+|x+3|+|x﹣1|+|x+1|≥7对一切实数x恒成立.从而a的取值范围为a≤7.【点评】本题考查绝对值,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.15.(2022秋•深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.【分析】依题意a≤b≤c≤d 原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,所以d=9,a=1,即可求解.【解答】解:依题意a≤b≤c≤d,则原式=(b﹣a)+(c﹣b)+(d﹣c)+(d﹣a)=2(d﹣a)最大,则d=9,a=1 四位数要取最小值且可以重复,故答案为1119.【点评】此题考查了绝对值的性质,同时要根据低位上的数字不小于高位上的数字进行逻辑推理.16.(2022秋•定远县期中)同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索(1)求|5﹣(﹣2)|= ;(2)同样道理|x+1008|=|x﹣1005|表示数轴上有理数x所对点到﹣1008和1005所对的两点距离相等,则x=(3)类似的|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是 .(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【分析】(1)5与﹣2两数在数轴上所对的两点之间的距离为5﹣(﹣2)=7;(2)在数轴上,找到﹣1008和1005的中点坐标即可求解;(3)利用数轴解决:把|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,然后根据数轴可写出满足条件的整数x;(4)把丨x﹣3丨+丨x﹣6丨理解为:在数轴上表示x到3和6的距离之和,求出表示3和6的两点之间的距离即可.【解答】解:(1)|5﹣(﹣2)|=7;(2)(﹣1008+1005)÷2=﹣1.5;(3)式子|x+5|+|x﹣2|=7理解为:在数轴上,某点到﹣5所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x可为﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(4)有,最小值为﹣3﹣(﹣6)=3.故答案为:7;﹣1.5;﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.【点评】此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.17.(2022秋•南城县校级月考)先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;z(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)如图,点B为所求点.B点表示的数﹣2.5,C点表示的数1,BC的长度是1﹣(﹣2.5)=3.5;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为|x﹣(﹣1)|,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1,3.5;|x﹣(﹣1)|,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.18.(2022秋•隆昌市校级月考)同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|= .(2)若|x﹣2|=5,则x=(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是 .【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.19.(2022秋•花垣县月考)同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:。
有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)
z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。
分 数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大 。
(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。
七年级上册有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
2.如图,数轴上一动点从原点出发,在数轴上进行往返运动,运动情况如下表(注:表格中的表示2到4之间的数).运动次数运动方向运动路程数轴上对应的数第1次____①_____3-3第2次左____②_____第3次____③_________④_____(1)完成表格;①________;②________;③________;④________.(2)已知第4次运动的路程为 .①此时数轴上对应的数是________;②若第4次运动后点恰好回到原点,则这4次运动的总路程是多少?________【答案】(1)左;;右; .(2)或;解:当时,或-0.5,不符合题意;当时,,,所以这4次运动的总路程是32.【解析】【解答】解:(1)动点从原点运动到点-3,所以是向左运动;再从点-3向左运动,故终点数字是;∵,∴,∴第三次点是向右运动,运动路程是,故答案为:左,,右, .( 2 )①向右运动时,;向左运动时,,故答案为或;【分析】(1)根据始点与终点的数字符号确定第一次运动方向;第一次终点数字与第二次运动路程的差即第二次终点数字;根据第三次终点数字与第二次终点数字的差的符号确定运动方向和运动路程.(2)①分向左或向右两种可能,根据确定第四次移动后最终在数轴上的对应数字;②根据第四次运动后的对应数字确定的值,再计算总路程.3.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.4.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.7.阅读材料:我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.例1:已知,求的值.解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.例2:已知,求的值.解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.仿照阅读材料的解法,求下列各式中的值.(1)(2)(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.【答案】(1)解:,在数轴上与原点距离为3的点的对应数为-3和3,即的值为-3和3(2)解:,在数轴上与-2距离为4的点的对应数为-6和2,即的值为-6和2;(3)解:有最小值,最小值为3,理由是:∵理解为:在数轴上表示到3和6的距离之和,∴当在3与6之间的线段上(即)时:即的值有最小值,最小值为.【解析】【分析】(1)由阅读材料中的方法求出的值即可;(2)由阅读材料中的方法求出的值即可;(3)根据题意得出原式最小时的范围,并求出最小值即可.8.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.【答案】(1)解:∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5(2)解:①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.9.阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;④解方程|x+1|+|x﹣2|=5.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.所以答案为:3或-2.【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.10.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
完整word版,七年级数学有理数知识点和习题,推荐文档
七年级数学有理数知识点和习题有理数对于初中数学来说是简单的一个栏目,所以我们一定要掌握,今天就给大家分享七年级数学,希望大家学习有理数知识点1.有理数:(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么初中数学知识点总结(初一)的倒数是初中数学知识点总结(初一);若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,初中数学知识点总结(初一).13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
word初一第二章有理数知识点总结良心出品必属
1.1正数和负数知识点归纳一、正数和负数的定义回:大于0的数叫做正数。
根据需要,有时在正数前面加上正号“ +”,但是正数前面的正号“ +”,一般省略不写。
负数在正数前面加上负号“-”的数叫做负数。
负数前面的负号“-”不能省略。
注:对于正数和负数的概念,不能简单地理解为带“ +”的数就是正数,带“-”的数就是负数。
eg:-a不一定是负数,因为字母a可以表示任何数,当a是正数时,-a是负数;当a 表示负数时,-a则是一个正数,而不是负数;当a表示0时,-a就是在0前面加上一个负号,仍是0,0不分正负。
二、具有相反意义的量正数和负数表示具有相反意义的量。
若用正数表示某种意义的量,则负数就表示与其相反的量,反之亦然。
常见的表示相反意义的量:零上和零下、前进和后退、海平面以上和海平面以下、收入和支出、向南和向北、盈利和亏损、升高和下降。
三、0的意义(重点理解)数0既不是正数,也不是负数。
0是正数和负数的分界线。
I 0C是一个确定的温度,海拔0表示海平面的平均高度。
—有”。
1、下列说法不正确的是()A. 0不是正数,也不是负数BC.非负数是正数或0 D2、水位上升-0.5cm的意义是(.负数是带有“-”的数,正数是带有“ +”的数.0是一个特殊的整数,它并不只是表示“没有”)A.水位上升0.5cm B .水位下降0.5cm C .水位没有变化 D .水位下降了5cm3、下列说法错误的是()A. -5 一定是负数BC.自然数一定是正数D4、下列说法正确的有().在正数前面加上“-”就成了负数.-a不一定是负数①不带负号的数都是正数②带负号的数不一定是负数③0C表示没有温度④0既不是正数,也不是负数A.0 个B.1 个C.2 个D3 个5、在跳远测验中,合格标准是4.00m,小明跳出了4.18m,记作+0.伽,小华跳出了3.96m,应记作_______________________6、-1,2 , -3,4 , -5 _____, ____ , ___ ,…第81 个数是____ ,第2005 个数是_____ 。
有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)
有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。
(完整版)七年级上册《有理数》知识点总结及培优练习
七年级上册?有理数?知识点总结?有理数?知识点总结主讲: 王老师1.数轴:〔1〕数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.〔2〕数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.〔一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.〕3〕用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.相反数〔1〕相反数的概念:只有符号不同的两个数叫做互为相反数.〔2〕相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.〔3〕多重符号的化简:与“+〞个数无关,有奇数个“﹣〞号结果为负,有偶数个“﹣〞号,结果为正.〔4〕规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣〞,如a的相反数是﹣a,m+n的相反数是﹣〔m+n〕,这时m+n是一个整体,在整体前面添负号时,要用小括号.3.绝对值:〔1〕概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于 0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.〔2〕如果用字母a表示有理数,那么数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a〔a>0〕0〔a=0〕﹣a〔a<0〕4.非负数的性质:绝对值:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,那么其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.5.倒数:〔1〕倒数:乘积是1的两数互为倒数.一般地,a?1/a=1〔a≠0〕,就说a〔a≠0〕的倒数是1/a.〔2〕方法指引:①倒数是除法运算与乘法运算转化的“桥梁〞和“渡船〞.正像减法转化为加法及相反数一样,非常重要.倒数是伴随着除法运算而产生的.②正数的倒数是正数,负数的倒数是负数,而0没有倒数,这与相反数不同.【规律方法】求相反数、倒数的方法:注意:0没有倒数.求一个数的相反求一个数的相反数时,只需在这个数前面加上“﹣〞即可数求一个数的倒数求一个整数的倒数,就是写成这个整数分之一求一个分数的倒数,就是调换分子和分母的位置6.有理数的加减混合运算〔1〕有理数加减混合运算的方法:有理数加减法统一成加法.〔2〕方法指引:①在一个式子里,有加法也有减法,根据有理数减法法那么,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.7.有理数的乘法〔1〕有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘.〔2〕任何数同零相乘,都得0.〔3〕多个有理数相乘的法那么:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.-1-七年级上册?有理数?知识点总结〔4〕方法指引:①运用乘法法那么,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号领先,这样做使运算既准确又简单.8.有理数的乘方:〔1〕有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.〔将a n看作是a的n次方的结果时,也可以读作a的n次幂.〕〔2〕乘方的法那么:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.〔3〕方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.9.有理数的混合运算〔1〕有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.〔2〕进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧:1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式再进行计算.4.巧用运算律:在计算中巧妙运用加法或乘法运算律往往使计算更简便.10.近似数和有效数字:〔1〕有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有数字都是这个数的有效数字.〔2〕近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保存几个有效数字等说法.〔3〕规律方法总结:“精确到第几位〞和“有几个有效数字〞是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以表达出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.代数式求值;〔1〕代数式的:用数值代替代数式里的字母,计算后所得的结果叫代数式的值.〔2〕代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①条件不化简,所给代数式化简;②条件化简,所给代数式不化简;③条件和所给代数式都要化简.12.幂的乘方与积的乘方:〔1〕幂的乘方法那么:底数不变,指数相乘.〔a m〕n=a mn〔m,n是正整数〕注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘〞指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加〞的区别.〔2〕积的乘方法那么:把每一个因式分别乘方,再把所得的幂相乘.〔ab〕n=a n b n〔n是正整数〕注意:①因式是三个或三个以上积的乘方,法那么仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.-2-七年级上册?有理数?知识点总结七年级上册?有理数?培优一.选择题〔共10小题〕1.假设x的相反数是3,|y|=5,那么x+y的值为〔〕A ﹣8B.2C.8或﹣2D.﹣8或2.2.以下各组数中,数值相等的是〔〕和3和〔﹣4〕24B.﹣4.和〔﹣2〕3D.〔﹣2和﹣2222×3〕×3.3.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB,那么线段AB盖住的整点的个数是〔〕或2003B.2003或2004C.2004或2005D.2005或20062 002.4.某种鲸的体重约为×105kg.关于这个近似数,以下说法正确的选项是〔〕精A确到百分位,有3个有效数字.精B确到个位,有6个有效数字.精C确到千位,有6个有效数字.精D确到千位,有3个有效数字.5.〔﹣2〕100比〔﹣2〕99大〔〕C .299D.3×2 992 AB .﹣2.6.以下说法正确的选项是〔〕倒A数等于它本身的数只有1B.平方等于它本身的数只有1.立C方等于它本身的数只有1D.正数的绝对值是它本身.7.两个互为相反数的有理数相乘,积为〔〕正A数B.负数C.零D.负数或零.8.一个有理数与它的相反数的乘积〔〕一A定是正数B.一定是负数C.一定不大于0D.一定不小于0.9.的所有可能的值有〔〕B.2个C.3个D.4个1个.10.假设|a﹣3|﹣3+a=0,那么a的取值范围是〔A a≤3B.a<3C.a≥3D.a>3-3-二.填空题〔共6小题〕11.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为.12.如图,在长方形草地内修建了宽为2米的道路,那么草地面积为米13.平方等于的数是.14.假设n为自然数,那么〔﹣1〕2n+〔﹣1〕2n+1= .15.760340〔精确到千位〕≈,〔保存两个有效数字〕≈.16.近似数精确到位,有有效数字;近似数万精确到位.三.解答题〔共14小题〕17..在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,1〕求a,b的值;2〕假设|x+a|+|y﹣b|=0,求〔x﹣y〕÷y的值.18.观察以下等式:,,,将以上三个等式两边分别相加得:〔1〕猜想并写出:= ;〔2〕直接写出以下各式的计算结果:①= ;②= .〔3〕探究并计算:.19.小王上周五在股市以收盘价〔收市时的价格〕每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:〔单位:元〕星期一二三四五每股涨跌〔元〕+2 ﹣﹣根据上表答复以下问题:〔1〕星期二收盘时,该股票每股多少元?〔2〕本周内该股票收盘时的最高价,最低价分别是多少?〔3〕买入股票与卖出股票均需支付成交金额的千分之五的交易费.假设小王在本周五以收盘价将全部股票卖出,他的收益情况如何?20.〔1〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|-4-当A、B两点都不在原点,①如2,点A、B都在原点的右|AB|=|OB||OA|=|b||a|=ba=|ab|;②如3,点A、B都在原点的左,|AB|=|OB||OA|=|b||a|=ba=|ab |;③如4,点A、B在原点的两,|AB|=|OB||OA|=|b||a|=b〔a〕=|ab|;上,数上A、B两点之的距离|AB|=|ab|.〔2〕答复以下:①数上表示2和5的两点之的距离是,数上表示2和5的两点之的距离是数上表示1和3的两点之的距离是;②数上表示x和1的两点A和B之的距离是,如果|AB|=2,那么x;③当代数式|x+1|十|x2|取最小,相的x的取范是.21.以下材料,解答.水是关系到学生身心健康的重要生活,坡中学共有教学班24个,平均每班有学生50人,估算,学生一年在校240天〔除去各种假日〕,春、夏、秋、冬季各60天.原来,学生水一般都是水〔其它碳酸料或果汁价格更高〕,水零售价元/瓶,每个学生春、秋、冬季平均每天1瓶水,夏季平均每天要2瓶水,学校了减学生消担,要求每个班自行1台冷水机,,一台功率500w的冷水机150元,水每桶6元,每班春、秋两季,平均每天4桶,夏季平均每天5桶,冬季平均每天1桶,水机每天开10小,当地民用价元/度.:〔1〕在未水机之前,全年平均每个学生要花元来水用;〔2〕算:在水机解决学生水后,每班当年共要花多少元?〔3〕便利学生的措施施后,坡中学一年要全体学生共元.22.商了促,推出两种促方式:方式①:所有商品打折售:方式②:一次物200元送60元金.〔1〕老要价628元和788元的商品各一件,有四种方案:方案一:628元和788元的商品均按促方式①;方案二:628元的商品按促方式①,788元的商品按促方式②;方案三:628元的商品按促方式②,788元的商品按促方式①;方案四:628元和788元的商品均按促方式②.你老提出的最合理方案是.〔2〕通算下表中价在600元到800元之商品的付款金,你出商品的律是.商品价〔元〕628638648768778788付款金〔元〕方式①方式②23.水葫芦是一种水生浮植物,有着惊人的繁殖能力.据道,已造成某些流域河道堵塞,水染等重后果、据研究说明:适量的水葫芦生水的化是有利的,关是科学管理和化利用.假设在适宜条件下,〔不考植株死亡、被打等其它因素〕.〔1〕假江面上有1株水葫芦,填写下表:第几天51015⋯50⋯n株数24⋯⋯-5-七年级上册?有理数?知识点总结〔2〕假定某流域内水葫芦持在33万株以内化水有益.假设有10株水葫芦,你利用算器行估算探究,照上述生速度,多少天水葫芦有33万株?此后就必开始定期打理水葫芦.〔要求写出必要的、估算程!〕24.某市有一土地共100,某房地商以每80万元的价格得此地,准修建“和花园〞住宅区.划在住宅区内建造八个小区〔A区,B区,C区⋯H区〕,其中A区,B区各修建一24的楼房;C区,D 区,E区各修建一18的楼房;F区,G区,H区各修建一16的楼房.了足市民不同的房需求,开商准将A区,B区两个小区都修建成高档,每800m2,初步核算本钱800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每800m2,初步核算本钱700元/m2;将F区,G区,H区三个小区都修建成适用房,每750m2,初步核算本钱600元/m2.整个小区内其他空余局部土地用于修建小区公路通道,植造林,建花园,运和居民生活商店等,些所需用加上物管理,置安装楼梯等用共需要9900万元.开商打算在修建完工后,将高档,中档和适用房以平均价格分3000元/m2,2600元/m2和2100元/m2的价格售.假设房屋全部出售完,你帮助算出房地开商的利是多少元?25某自行厂一周划生1400自行,平均每天生200.由于各种原因,上每天的生量与划量相比有出入.下表是某周的生情况〔增正,减〕:星期一二三四五六日增减+524+1310+169〔1〕根据可知,前三天共生了自行;〔2〕量最多的一天比量最少的一天多生了自行;3〕厂行件工制,每生一得60元,超完成每15元,少生一扣15元,那么厂工人一周的工是多少?26.某位需以“挂号信〞或“特快〞方式向五所学校各寄一封信.五封信的重量分是72g,90g,215g,340g,400g.根据五所学校的地址及信件的重量范,在局得相关准如下:种位准〔元〕挂号〔元/封〕特制信封〔元/个〕挂号信首重100g,每重20g 3重101~2000g,每重100g特快首重1000g内 3〔1〕重量 90g的信假设以“挂号信〞方式寄出,寄多少元?假设以“特快〞方式寄出呢?2〕五封信分以怎的方式寄出最合算?明理由.3〕通解答上述,你有何启示?〔你用一、两句明〕-6-27.甲、乙、丙三个教承担本学期期末考的第17的网上卷任,假设由三人中的某一人独立完成卷任,甲需要15小,乙需要10小,丙需要8小.〔1〕如果甲乙丙三人同改卷,那么需要多少完成?〔2〕如果按照甲、乙、丙、甲、乙、丙,⋯的次序流卷,每一中每人各卷 1小,那么需要多少小完成?3〕能否把〔2〕所的甲、乙、丙的次序作适当整,其余的不,使得完成任的至少提前半小?〔答要求:如不能,需明理由;如能,至少出一种流的次序,并求出相能提前多少完成卷任〕28.某学校改善学条件,划置至少40台,有甲,乙两家公司供:甲公司的价每台2000元,40台以上〔含40台〕,按价的九折惠;乙公司的价也是每台2000元,40台以上〔含40台〕,一次性返回10000元学校.〔1〕假设你是学校人,在品牌,量,售后服等完全相同的前提下,你如何?明理由;〔2〕甲公司乙公司与他争〔但甲公司不知乙公司的售方案〕,便主与校系,提出新的售方案;价每台2000元,40台以上〔含40台〕,按价的九折惠,在40台的基上,每增加15台,便送一台.:学校划120台〔包括送〕,至少需要多少元?29.假设|a|=2,b= 3,c是最大的整数,求a+b c的.30.|a|=3,|b|=5,且a<b,求a b的.-7-七年级第一章?有理数?培优解析一.选择题〔共10小题〕1.〔2006?哈尔滨〕假设x 的相反数是 3,|y|=5,那么x+y 的值为〔D 〕A .﹣8B .2C .8或﹣2D .﹣8或22.〔2021秋?曲阜市期中〕以下各组数中,数值相等的是〔C〕A 4和432和〔﹣4〕23B .﹣4.C ﹣23和〔﹣2〕3D .〔﹣2×3〕2和﹣22×32.解:A 、34=81,43=64,81≠64,故本选项错误,B 、﹣42=﹣16,〔﹣4〕2=16,﹣16≠16,故本选项错误,C 、﹣23=﹣8,〔﹣2〕3=﹣8,﹣8=﹣8,故本选项正确,22 2C .D 、〔﹣2×3〕=36,﹣2×3=﹣36,36≠﹣36,故本选项错误,应选3.〔2021秋?安徽期中〕数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB ,那么线段AB 盖住的整点的个数是〔C 〕A .2002或2003B .2003或2004C .2004或2005D .2005或2006解:依题意得: ①当线段AB 起点在整点时覆盖2005个数;②当线段AB 起点不在整点,即在两个整点之间时覆盖2004个数.4.〔2021?青岛〕某种鲸的体重约为×105kg.关于这个近似数,以下说法正确的选项是〔D〕A.精确到百分位,有3个有效数字B.精确到个位,有6个有效数字C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字分析:有效数字的计算方法:从左边第一个不是0的数字起,后面所有数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:×105kg最后一位的6表示6千,共有1、3、6三个有效数字.应选:D.点评:此题考查了科学记数法表示的数的有效数字确实定方法,要注意10的n次方限定的乘号前面的最后一位数表示的数位.5.〔2021秋?德州校级期末〕〔﹣2〕100比〔﹣2〕99大〔D〕B.﹣2C.99D.3×2992.解:〔﹣2〕100﹣〔﹣2〕99=2100+299=299×〔2+1〕=3×299.应选D.求〔﹣2〕100比〔﹣2〕99大多少,用减法.6.〔2021秋?鄞州区期末〕以下说法正确的选项是〔DA.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身7.〔2021秋?莱州市期末〕两个互为相反数的有理数相乘,积为〔D〕A.正数B.负数C.零D.负数或零8.〔2021秋?滨湖区校级期末〕一个有理数与它的相反数的乘积〔C〕一A定是正数B.一定是负数C.一定不大于0D.一定不小于0.9.〔2004?南平〕的所有可能的值有〔C〕-8-七年级上册?有理数?知识点总结个B.2个C.3个D.4个.分析:由于a、b的符号不确定,应分a、b同号,a、b异号两种情况分类求解.解:①a、b同号时,、也同号,即同为1或﹣1;故此时原式=±2;②a、b异号时,、也异号,即一个是1,另一个是﹣1,故此时原式=1﹣1=0;所以所给代数式的值可能有3个:±2或0.应选C.10.〔2003?黑龙江〕假设|a﹣3|﹣3+a=0,那么a的取值范围是〔 A 〕A.a≤3B.a<3 C.a≥3 D.a>3分析:移项,|a﹣3|﹣3+a=0可变为,|a﹣3|=3﹣a,根据负数的绝对值是其相反数,0的绝对值是0可知,a﹣3≤0,那么a≤3.解答:解:由|a﹣3|﹣3+a=0可得,|a﹣3|=3﹣a,根据绝对值的性质可知,a﹣3≤0,a≤3.应选A.二.填空题〔共6小题〕11.〔2021秋?赵县期末〕如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为4或2.分析:考虑在A点左边和右边两种情形解答问题.12.如图,在长方形草地内修建了宽为2米的道路,那么草地面积为144米2.13.〔2021秋?靖江市期中〕平方等于的数是.14.〔2021秋?雁江区期末〕假设n为自然数,那么〔﹣1〕2n+〔﹣1〕2n+1=0.15.760340〔精确到千位〕≈×105,〔保存两个有效数字〕≈×102.考点:近似数和有效数字.分析:对于较大的数,进行精确到个位以上或保存有效数字时,必须用科学记数法取近似值,再根据题意要求四舍五入.解答:解:76040×105≈×105;×102≈×102.点评:此题注意精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,这是经常考查的内容.16.〔2021秋?常州期中〕近似数精确到百万分位,有 4 有效数字;近似数万精确到百位.三.解答题〔共14小题〕17..在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,1〕求a,b的值;2〕假设|x+a|+|y﹣b|=0,求〔x﹣y〕÷y的值.解答:解:〔1〕共有以下几种情况:〔﹣5〕×1×〔﹣3〕=15,〔﹣5〕×1×5=﹣25,﹣5×1×〔﹣2〕=10,﹣5×〔﹣3〕×5=75,﹣5×〔﹣3〕×〔﹣2〕=﹣30,﹣5×5×〔﹣2〕=50,1×〔﹣3〕×5=﹣15,1×〔﹣3〕×〔﹣2〕=6,〔﹣3〕×5×〔﹣2〕=30,最大的积是a=75,最小的积是b=﹣30,〔2〕|x+75|+|y+30|=0,∴x+75=0,y+30=0,-9-七年级上册?有理数?知识点总结x=﹣75,y=﹣30,∴〔x﹣y〕÷y=〔﹣75+30〕÷〔﹣30〕.18.〔2007?邵阳〕观察以下等式:,,,将以上三个等式两边分别相加得:〔1〕猜想并写出:=;〔2〕直接写出以下各式的计算结果:①=;②=.〔3〕探究并计算:.专题:规律型.分析:〔1〕从材料中可看出规律是〔2〕直接根据规律求算式〔2〕中式子的值,即展开后中间的项互相抵消为零,只剩下首项和末项,要注意的是末项的符号是负号,规律为;〔3〕观察它的分母,发现两个因数的差为2,假设把每一项展开成差的形式,那么分母是2,为了保持原式不变那么需要再乘以,即得出最后结果.解答:解:〔3〕原式====19.〔2004?芜湖〕小王上周五在股市以收盘价〔收市时的价格〕每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:〔单位:元〕星期一二三四五每股涨跌〔元〕+2﹣﹣根据上表答复以下问题:1〕星期二收盘时,该股票每股多少元?2〕本周内该股票收盘时的最高价,最低价分别是多少?3〕买入股票与卖出股票均需支付成交金额的千分之五的交易费.假设小王在本周五以收盘价将全部股票卖出,他的收益情况如何?分析:〔1〕由题意可知:星期一比上周的星期五涨了2元,星期二比星期一跌了元,那么星期二收盘价表示为25+2﹣,然后计算;2〕星期一的股价为25+2=27;星期二为27﹣;星期三为26.5+1.5=28;星期四为28﹣;星期五为26.2+0.8=27;那么星期三的收盘价为最高价,星期四的收盘价为最低价;3〕计算上周五以25元买进时的价钱,再计算本周五卖出时的价钱,用卖出时的价钱﹣买进时的价钱即为小王的收益.-10-七年级上册?有理数?知识点总结解答:解:〔1〕星期二收盘价为 25+2﹣〔元/股〕.〔2〕收盘最高价为25+2﹣0.5+1.5=28〔元/股〕,收盘最低价为 25+2﹣﹣〔元/股〕.〔3〕小王的收益为:27×1000〔1﹣5‰〕﹣25×1000〔1+5‰〕=27000﹣135﹣25000﹣125=1740〔元〕.∴小王的本次收益为1740元.20.〔2002?南京〕〔1〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣〔﹣a〕=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.〔2〕答复以下问题:数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;当代数式|x+1|十|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣〔﹣答:5〕|=3.数轴上表示1和﹣3的两点之间的距离是|1﹣〔﹣3〕|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣〔﹣1〕|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,表达了数评:形结合的优点.21.〔2005?黄冈〕阅读以下材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天〔除去各种节假日〕,春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯洁水〔其它碳酸饮料或果汁价格更高〕,纯洁水零售价为元/瓶,每个学生春、秋、冬季平均每天买1瓶纯洁水,夏季平均每天要买2瓶纯洁水,学校为了减轻学生消费负担,要求每个班自行购置1台冷热饮水机,经调查,购买一台功率为500w的冷热饮水机约为150元,纯洁水每桶6元,每班春、秋两季,平均每天购置4桶,夏季平均每天购置5桶,冬季平均每天购置1桶,饮水机每天开10小时,当地民用电价为元/度.问题:〔1〕在未购置饮水机之前,全年平均每个学生要花费450 元钱来购置纯洁水饮用;〔2〕请计算:在购置饮水机解决学生饮水问题后,每班当年共要花费多少元?〔3〕这项便利学生的措施实施后,东坡中学一年要为全体学生共节约424080 元.分析:〔1〕通过每个学生每天的用水量,计算出每个季节的用水量,进而算出全年用水量;〔2〕购置饮水机解决学生饮水问题后,每班学生全年共花费:水费+电费;〔3〕原水费﹣现在水费=节约水费.解答:解:〔1〕∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶,∴一个学生在春、秋、冬季共要购置180瓶的矿泉水,夏天要购置120瓶矿泉水,∴一年中一个学生共要购置300瓶矿泉水,即一个学生全年共花费×300=450元钱;〔2〕购置饮水机后,一年每个班所需纯洁水的桶数为:春秋两季,每天4桶,-11-七年级上册?有理数?知识点总结那么120天共要〔4×120〕×=320桶.夏季每天5桶,共要60×5=300桶,冬季每天1桶,共60桶,∴全年共要纯洁水〔320+300+60〕=680桶,故购置矿泉水费用为:680×6=4080元,使用电费为:240×10××0.5=6 00元,故每班学生全年共花费:4080+600+150=4830元;〔3〕∵一个学生节省的钱为:450﹣元,∴全体学生共节省的钱数为:×24×50=424080元.点评:此题是一道实际问题,通过解答,不仅学会了阅读分析题目条件解题,更培养了同学们关注生活、将数学应用于生活的好习惯.22.〔2021?宁夏〕商场为了促销,推出两种促销方式:方式①:所有商品打折销售:方式②:一次购物满200元送60元现金.〔1〕杨老师要购置标价为628元和788元的商品各一件,现有四种购置方案:方案一:628元和788元的商品均按促销方式①购置;方案二:628元的商品按促销方式①购置,788元的商品按促销方式②购置;方案三:628元的商品按促销方式②购置,788元的商品按促销方式①购置;方案四:628元和788元的商品均按促销方式②购置.你给杨老师提出的最合理购置方案是方案三.。
最新七年级数学有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.【答案】(1)(2)(3);;20.【解析】【解答】(1) ==1﹣=,故答案为:;(2) ==1﹣=,故答案为:;(3)①原式==1﹣=,故答案为:;②原式===1﹣=,故答案为:;③设这个数为x,根据题意得:( )x= x﹣1,整理得: x= x﹣1,去分母得:( )x=x﹣4,即(1﹣ )x=x﹣4,整理得: x=x﹣4,解得:x=20,答:这个数是20.【分析】(1)各项拆项后,计算即可求出值;(2)归纳总结得到一般性规律,写出即可;(3)①原式拆项后,计算即可求出值;②原式变形后拆项,计算即可求出值;③设这个数为x,根据题意列出方程,求出方程的解即可得到结果.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。
初一数学有理数难题与提高练习和培优综合题压轴题(含解析汇报)
初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()A.25% B.37.5% C.50% D.75%5.有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20086.有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.07.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F ,3+F=12,E+D=1B ,那么A+C=( ) A .16 B .1C C .1A D .228.若ab >0,且a+b <0,那么( )A .a >0,b >0B .a >0,b <0C .a <0,b <0D .a <0,b >09.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是( )A .a 1+a 2+a 3+a 7+a 8+a 9=2(a 4+a 5+a 6)B .a 1+a 4+a 7+a 3+a 6+a 9=2(a 2+a 5+a 8)C .a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9=9a 5D .(a 3+a 6+a 9)﹣(a 1+a 4+a 7)=(a 2+a 5+a 8)10.为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s 对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc11.设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127二.填空题(共10小题)13.2.40万精确到位,有效数字有个.14.如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=2,则原点是(填入M、N、P、R中的一个或几个).15.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.16.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.17.请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b= (用a,b的一个代数式表示).18.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值.19.符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010= .20.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是.(只填序号,答案格式如:“①②③④”).21.若|x|=2,|y|=3,且<0,则x+y= .22.王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+= .三.解答题(共18小题)23.计算:++++…+.24.请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).25.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.26.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.27.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.28.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④当x= 时,|x+1|+|x﹣2|=5.29.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.30.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是,(2)数轴上表示x与2的两点之间的距离可以表示为.(3)如果|x﹣2|=5,则x= .(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.31.阅读材料:求值1+2+22+23+24+…+22014解:设S=1+2+22+23+24+…+22014①,将等式两边同时乘以2得2S=2+22+23+24+…+22014+22015②将②﹣①得:S=22015﹣1,即S=1+2+22+23+24+…+22014=22015﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)32.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是,最小值是.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.33.(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x 为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.34.计算:(×)×(×)×(×)×…×(×)×(×).35.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了 1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?36.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a= ,b= ,c=(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.37.阅读材料:求1+2+22+23+24+…22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得:2S﹣S=22014﹣1,即S=22014﹣1,即1+2+22+23+24+…22013=﹣1请你仿照此法计算1+3+32+33+34…+32014的值.38.计算:(1);(2)﹣24+3﹣16﹣5;(3);(4);(5);(6);(7);(8);(9);(10);(11);(12)(﹣47.65)×2+(﹣37.15)×(﹣2)+10.5×(﹣7).39.1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+3×4+…n(n+1)=?观察下面三个特殊的等式1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=3×4×5=20读完这段材料,请你思考后回答:(1)直接写出下列各式的计算结果:①1×2+2×3+3×4+…10×11=②1×2+2×3+3×4+…n(n+1)=(2)探究并计算:1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2)=(3)请利用(2)的探究结果,直接写出下式的计算结果:1×2×3+2×3×4+3×4×5+…+10×11×12= .40.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?初一数学有理数难题与提高练习和培优综合题压轴题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2016春•碑林区校级期末)1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米【分析】首先根据题意求出头发丝的半径是(60 000÷2)纳米,然后根据1纳米=10﹣9米的关系就可以用科学记数法表示头发丝的半径.【解答】解:头发丝的半径是60 000÷2×10﹣9=3×10﹣5米.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2014秋•赛罕区校级期末)足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队0【分析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.依此列出算式进行计算.【解答】解:由题意知,红队共进4球,失2球,净胜球数为:4+(﹣2)=2,黄队共进3球,失5球,净胜球数为3+(﹣5)=﹣2,蓝队共进2球,失2球,净胜球数为2+(﹣2)=0.故选A.【点评】每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.3.(2010春•佛山期末)要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数【分析】如果为整数,则(a﹣5)2为4的倍数,可确定a的取值.【解答】解:∵为整数,∴(a﹣5)2为4的倍数,∴a﹣5是偶数,则a可取任意奇数.故选A.【点评】本题考查了奇数、偶数、乘方的有关知识.注意:奇数±奇数=偶数,任何一个偶数必定能够被2整除,偶数的平方能够被4整除.4.(2013秋•郑州期末)体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()A.25% B.37.5% C.50% D.75%【分析】根据正数是大于标准的数,非负数是达标成绩,可得达标人数,达标人数除以总人数,可的达标率.【解答】解:﹣1<0,0=0,﹣1.2<0,﹣0.1<0,0=0,﹣0.6<0,达标人数为6人,达标率为6÷8=75%,故选:D.【点评】本题考查拉正数和负数,注意非负数是达标人数,达标人数除以总人数的达标率.5.(2014•新华区模拟)有一列数a1,a2,a3,a4,…,an,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.2008【分析】从所给出的资料中,可得到若a1=2,a2=,a3=﹣1,a4=2…则这列数的周期为3,据此解题即可.【解答】解:根据题意可知:若a1=2,则a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2,…,这列数的周期为3,∵2008=3×669+1∴a2008=2.故选:A.【点评】考查有理数的运算方法和数学的综合能力.解此题的关键是能从所给出的资料中找到数据变化的规律,并直接利用规律求出得数,代入后面的算式求解.6.(2016春•沭阳县期末)有理数a,b,c都不为零,且a+b+c=0,则++=()A.1 B.±1 C.﹣1 D.0【分析】根据a、b、c是非零有理数,且a+b+c=0,可知a,b,c为两正一负或两负一正,按两种情况分别讨论,求得代数式的可能的取值即可.【解答】解解:∵a、b、c是非零有理数,且a+b+c=0,∴a,b,c为两正一负或两负一正,且b+c=﹣a,a+c=﹣b,a+b=﹣c,①当a>b>0>c时:++=++=1+1﹣1=1;②当a>0>b>c时:++=++=1﹣1﹣1=﹣1;综上,++的所有可能的值为±1.故选(B)【点评】本题主要考查了代数式求值,关键是掌握绝对值的性质等知识点,注意分情况讨论字母的符号,不要漏解.7.(2013•天桥区一模)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:例如,用十六进制表示5+A=F ,3+F=12,E+D=1B ,那么A+C=( ) A .16 B .1C C .1A D .22【分析】首先把A+C 利用十进制表示,然后化成16进制即可. 【解答】解:A+C=10+12=22=16+6,则用16进制表示是16. 故选A .【点评】本题考查了有理数的运算,理解十六进制的含义是关键.8.(2012秋•祁阳县校级期中)若ab >0,且a+b <0,那么( ) A .a >0,b >0 B .a >0,b <0 C .a <0,b <0 D .a <0,b >0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数. 【解答】解:∵ab >0, ∴a ,b 同号; 又∵a+b <0, ∴a ,b 同为负数. 故本题选C .【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.9.(2011秋•南海区期末)如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是( )A .a 1+a 2+a 3+a 7+a 8+a 9=2(a 4+a 5+a 6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【分析】从表格中可看出a5在中间,上下相邻的数为依次大7,左右相邻的数为依次大1,所以可得到代数式.【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选D.【点评】本题考查有理数的加减混合运算,关键是从表格中看出各个数与a5的关系,从而得出结果.10.(2010•广州)为确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c按上述规定,将明文“maths”译成密文后是()A.wkdrc B.wkhtc C.eqdjc D.eqhjc【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故选:A.【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.11.(2009秋•和平区校级期中)设y=|x﹣1|+|x+1|,则下面四个结论中正确的是()A.y没有最小值B.只有一个x使y取最小值C.有限个x(不止一个)y取最小值D.有无穷多个x使y取最小值【分析】根据非负数的性质,分别讨论x的取值范围,再判断y的最值问题.【解答】解:方法一:由题意得:当x<﹣1时,y=﹣x+1﹣1﹣x=﹣2x;当﹣1≤x≤1时,y=﹣x+1+1+x=2;当x>1时,y=x﹣1+1+x=2x;故由上得当﹣1≤x≤1时,y有最小值为2;故选D.方法二:由题意,y表示数轴上一点x,到﹣1,1的距离和,这个距离和的最小值为2,此时x的范围为﹣1≤x≤1,故选D.【点评】本题主要考查利用非负数的性质求代数式的最值问题,注意按未知数的取值分情况讨论.12.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…且公式,则C125+C126=()A.C135B.C136C.C1311 D.C127【分析】根据题目信息,表示出C125与C126,然后通分整理计算即可.【解答】解:根据题意,有C125=,C126=,∴C125+C126=+,=,=,=C136.故选B.【点评】本题是信息给予题,读懂题目信息是解题的关键.二.填空题(共10小题)13.(2009秋•绥中县期末)2.40万精确到百位,有效数字有 3 个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.14.(2016秋•余杭区期末)如图M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a对应的点在M与N之间,数b 对应的点在P与R之间,若|a|+|b|=2,则原点是N或P (填入M、N、P、R 中的一个或几个).【分析】根据数轴判断出a、b之间的距离小于3,且大于1,然后根据绝对值的性质解答即可.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,1<|a|+|b|<3,又因为|a|+|b|=2,所以原点可能在N 或P点;②当原点在M或R点时,|a|+|b|>2,所以原点不可能在M或R点;综上所述,原点应是在N或P点.故答案为:N或P.【点评】此题考查了数轴的定义和绝对值的意义.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简后根据整点的特点求解.15.(2015•茂名)为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.【点评】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.16.(2013•天河区一模)我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13 .【分析】根据题目信息,利用有理数的乘方列式进行计算即可得解.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.【点评】本题考查了有理数的乘方,读懂题目信息,理解二进制与十进制的数的转化方法是解题的关键.17.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b= (用a,b的一个代数式表示).【分析】由题中的新定义,将已知的等式结果变形后,总结出一般性的规律,即可用a与b表示出新运算a⊕b.【解答】解:根据题意可得:1⊕2=2⊕1=3=+,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣=+,(﹣3)⊕5=5⊕(﹣3)=﹣=+,则a⊕b=+=.故答案为:.【点评】此题考查了有理数的混合运算,属于新定义的题型,其中弄清题意,找出一般性的规律是解本题得关键.18.(2011•越秀区校级模拟)我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9 .【分析】首先把所求的式子转化成一般的不等式的形式,然后根据x,y是整数即可确定x,y的值,从而求解.【解答】解:根据题意得:1<xy﹣12<3,则13<xy<15,因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7,当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案是:±15或±9.【点评】本题考查了不等式的整数解,正确确定x,y的值是关键.19.(2011春•宿迁校级期末)符号“G”表示一种运算,它对一些数的运算结果如下:(1)G(1)=1,G(2)=3,G(3)=5,G(4)=7,…(2)G()=2,G()=4,G()=6,G()=8,…利用以上规律计算:G(2010)﹣G()﹣2010= ﹣2009 .【分析】此题是一道找规律的题目,通过观察可发现(1)中等号后面的数为前面括号中的数的2倍减1,(2)中等号后面的数为分母减去1再乘2,计算即可.【解答】解:G(2010)﹣G()﹣2010=2010×2﹣1﹣(2010﹣1)×2﹣2010=﹣2009.【点评】找到正确的规律是解答本题的关键.20.(2006•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).【分析】首先能够根据数轴得到a,b之间的关系的正确信息,然后结合数的运算法则进行分析.【解答】解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①正确;②中,a+b<0,故②正确;③中,由于b的符号无法确定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④正确.所以一定成立的有①②④.故答案为:①②④.【点评】此题综合考查了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,能够运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.21.(2006•贺州)若|x|=2,|y|=3,且<0,则x+y= ±1 .【分析】根据绝对值的意义,知绝对值等于正数的数有2个,且互为相反数.根据分式值的符号判断字母符号之间的关系:同号得正,异号得负.【解答】解:∵|x|=2,|y|=3,∴x=±2,y=±3.又∵<0,∴x,y异号,故x=2,y=﹣3;或x=﹣2,y=3.∴x+y=2+(﹣3)=﹣1或﹣2+3=1.故答案为:±1.【点评】理解绝对值的意义,注意互为相反数的两个数的绝对值相同.同时能够根据分式的值的符号判断两个字母符号之间的关系.22.(2004•乌鲁木齐)王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n为整数时,+++…+= 1﹣.【分析】结合图形,知+=1﹣,++=1﹣,推而广之即可.【解答】解:结合图形,得+++…+=1﹣.【点评】此题注意运用数形结合的思想进行分析.三.解答题(共18小题)23.计算:++++…+.【分析】把++++…+变形为++++++++…++,再根据加法交换律和结合律计算即可求解.【解答】解:++++…+=++++++++…++=+(+)+(+)+(+)+…+(+)+=2×2014+=4028+=4028.【点评】此题考查了有理数的混合运算,关键是把++++…+变形为++++++++…++计算.24.(2016秋•湖北月考)请你仔细阅读下列材料:计算:(﹣)÷(﹣+﹣)解法1:按常规方法计算原式=(﹣)÷[+﹣(+)]=(﹣)÷(﹣)=(﹣)×3=﹣解法2:简便计算,先求其倒数原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣30)=﹣20+3﹣5+12=﹣10故(﹣)÷(﹣+﹣)=﹣再根据你对所提供材料的理解,模仿以上两种方法分别进行计算:(﹣)÷(﹣+﹣).【分析】观察解法1,用常规方法计算即可求解;观察解法2,可让除数和被除数交换位置进行计算,最后的结果取计算结果的倒数即可.【解答】解:解法1,=﹣÷[+﹣(+)]=﹣÷[﹣]=﹣÷=﹣;解法2,原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣56)=﹣×56+×56﹣×56+×56=﹣21+12﹣28+16=﹣21,故(﹣)÷(﹣+﹣)=﹣.【点评】此题考查了有理数的混合运算,解决本题的关键是读懂题意,理解第二种解法的思路:两个数相除,可先求这两个数相除的倒数.25.(2016秋•东莞市期末)已知x、y为有理数,现规定一种新运算※,满足x ※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.26.(2014秋•朝阳区期末)若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1可得a+b=0,cd=1,代入可得出答案.【解答】解:由题意得:a+b=0,cd=1,m2=4,原式=m2﹣3=4﹣3=1.【点评】本题考查了倒数和相反数的知识,难度不大,注意细心运算.27.(2016秋•东台市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c <0,a+b <0,c﹣a >0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c 的正负情况是解题的关键.28.(2016秋•镜湖区校级期中)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a ﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是 3 ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是 4 ;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3 ;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2 .④当x= 3或﹣2 时,|x+1|+|x﹣2|=5.【分析】①根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;②根据数轴上A,B两点之间的距离|AB|=|a﹣b|回答即可;③|x+1|+|x﹣3|的最小值,意思是x到﹣1的距离与到3的距离之和最小,那么x应在﹣1和3之间的线段上.④分三种情况讨论即可求得.【解答】解:①|2﹣5|=3,|﹣2﹣(﹣5)|=3,|1﹣(﹣3)|=4;②|x﹣(﹣1)|=|x+1|,如果AB=2,则x+1=±2,解得x=1或﹣3;③若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.④若x+1>0,x﹣2>0,则(x+1)+(x﹣2)=5,解得x=3,若x+1<0,x﹣2<0,则﹣(x+1)﹣(x﹣2)=5,解得x=﹣2,若x+1和x﹣2异号,则等式不成立,所以当x=3或﹣2时,|x+1|+|x﹣2|=5.故答案为:3,3,4;|x+1|,1或﹣3;﹣1≤x≤2;3或﹣2.【点评】本题主要考查了数轴和绝对值,掌握数轴上两点间的距离=两个数之差的绝对值.29.(2016•河北)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.【分析】(1)将式子变形为(1000﹣1)×(﹣15),再根据乘法分配律计算即可求解;(2)根据乘法分配律计算即可求解.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)。
人教版七年级上册数学 有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.3.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.4.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.5.如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.(1)A,B两点之间的距离为________.(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?【答案】(1)13(2)-2(3)解:设运动t秒后,点A与点B相距4个单位,由题意可知点A表示的数为-9+3t,点B表示的数为4+2t,∴,∴或解得t=17或9.答:运动9秒或17秒后,点A与点B 相距4个单位.【解析】【解答】解:(1)AB=4-(-9)=13(2)设点C表示的数是x,则AC=x-(-9)=x+9,BC=4-x,∵A落在点B的右边1个单位,∴AC-BC=1,即AC-BC=x+9-(4-x)=2x+5=1,解得:x=-2,∴点C表示的数是-2.故答案为:-2.【分析】(1)根据数轴上两点的距离公式即可求解;(2)设点C表示的数是x,分别表示出AC、BC,再根据AC-BC=1列出方程解答即可;(3)运动t秒后,可知点A表示的数为-9+3t,点B表示的数为4+2t,再根据AB的距离为4,可得方程,解方程即可.6.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?【答案】(1)40;﹣8;48(2)8或﹣40(3)解:(i)当0<t≤8时,点Q还在点B处,∴PQ=t=4;(ii)当8<t≤12时,点P在点Q的右侧,∴解得:;(iii)当12<t≤48时,点P在点Q的左侧,∴3(t﹣8)﹣t=4,解得:t=14,综上所述:当t为4秒、10秒和14秒时,P、Q两点相距4个单位长度.【解析】【解答】解:(1)∵|a﹣40|+(b+8)2=0,∴a﹣40=0,b+8=0,解得a=40,b=﹣8,AB=40﹣(﹣8)=48.故点A表示的数为40,点B表示的数为﹣8,线段AB的长为48;(2)点C在线段AB 上,∵AC=2BC,∴AC=48× =32,点C在数轴上表示的数为40﹣32=8;点C在射线AB上,∵AC=2BC,∴AC=40×2=80,点C在数轴上表示的数为40﹣80=﹣40.故点C在数轴上表示的数为8或﹣40;【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤8、8<t≤12,12<t≤48三种情况考虑,根据P,Q移动的路程结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.7.观察下列两个等式:2﹣=2× +1,5﹣=5× +1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是________;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)________“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为________;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.【答案】(1)(2)是(3)(0.-1)等(4)解:∵(a,3)是“共生有理数对”,∴a-3=3a+1解之:a=-2.【解析】【解答】(1)数对(﹣2,1)∴-2×1+1=-1,-2-1=-3-1≠-3∴数对(﹣2,1)不是“共生有理数对”;数对(3,)∴,∴数对(3,)是“共生有理数对”;故答案为:(3,);(2)∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n-(-m)=m-n-n(-m)+1=mn+1∴-n-(-m)=-n(-m)+1,∴(﹣n,﹣m)是“共生有理数对”故答案为:是.(3)∵0×(-1)+1=10-(-1)=1∴(0,-1)是“共生有理数对”.【分析】(1)利用“共生有理数对”的定义:若(a,b)是“共生有理数对”,可得到a-b=ab+1,通过计算可作出判断。
最新人教版七年级数学上册 有理数(基础篇)(Word版 含解析)
【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点 B 所表示的 数;根据路程=速度×时间可得点 P 运动的距离,再根据平移的点的坐标的性质可得点 P 表 示的数; (2)①由题意可列方程求解;②分两种情况讨论求解: P 与 Q 重合前: 当 2AP=PQ 时,可得关于 t 的方程求解; 当 AP=2PQ 时,可得关于 t 的方程求解; P 与 Q 重合后: 当 AP=2PQ 时,可得关于 t 的方程求解; 当 2AP=PQ 时,可得关于 t 的方程求解。
3.如图,已知数轴上点 A 表示的数为-3,B 是数轴上位于点 A 右侧一点,且 AB=12.动点 P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向点 B 方向匀速运动,设运动时间为 t 秒.
(1)数轴上点 B 表示的数为________;点 P 表示的数为________(用含 t 的代数式表示). (2)动点 Q 从点 B 出发,以每秒 1 个单位长度的速度沿数轴向点 A 方向匀速运动;点 P、点 Q 同时出发,当点 P 与点 Q 重合后,点 P 马上改变方向,与点 Q 继续向点 A 方向匀 速运动(点 P、点 Q 在运动过程中,速度始终保持不变);当点 P 到达 A 点时,P、Q 停止 运动.设运动时间为 t 秒. ①当点 P 与点 Q 重合时,求 t 的值,并求出此时点 P 表示的数. ②当点 P 是线段 AQ 的三等分点时,求 t 的值. 【答案】 (1)9;-3+2t (2)解:①根据题意,得:(1+2)t=12, 解得:t=4, ∴ -3+2t=-3+2×4=5, 答:当 t=4 时,点 P 与点 Q 重合,此时点 P 表示的数为 5;
初一有理数所有知识点答案解析(word文档物超所值)
【分析】科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整 数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值 与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值 <1 时,n 是负数. 【解答】解:194 亿=19400000000,用科学记数法表示为:1.94×1010. 故选:A. 【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的 值.
第 3 页(共 24 页)
即可得出结果. 【解答】解:x 的相反数是 3,则 x=﹣3,
|y|=5,y=±5,
∴x+y=﹣3+5=2,或 x+y=﹣3﹣5=﹣8.
则 x+y 的值为﹣8 或 2. 故选:D. 【点评】此题主要考查相反数、绝对值的意义. 绝对值相等但是符号不同的数是互为相反数. 一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负 数的绝对值是它的相反数;0 的绝对值是 0. 8.(2008•赤峰)如果|a|=﹣a,下列成立的是( ) A.a>0 B.a<0 C.a≥0 D.a≤0 【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相 反数,0 的绝对值是 0. 【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则 a≤0. 故选 D. 【点评】本题主要考查的类型是:|a|=﹣a 时,a≤0. 此类题型的易错点是漏掉 0 这种特殊情况. 规律总结:|a|=﹣a 时,a≤0;|a|=a 时,a≥0. 9.(2013•自贡)在我国南海某海域探明可燃冰储量约有 194 亿立方米.194 亿 用科学记数法表示为( ) A.1.94×1010 B.0.194×1010 C.19.4×109 D.1.94×109
【精选】 有理数(基础篇)(Word版 含解析)
因为 AP=4t,BQ=2t,AB=70 所以 PQ=AB-(AP+BQ)=70-6t
又因为 PQ= AB=35 所以 70-6t=35
所以 t= ,AP=
=,
②如图 2,当点 P 在点 Q 右侧时,
因为 AP=4t,BQ=2t,AB=70, 所以 PQ=(AP+BQ)-AB=6t-70,
(2)数轴上表示 2 和 6 两点之间的距离是________,数轴上表示 1 和﹣2 的两点之间的距 离为________; (3)数轴上表示 x 和 1 两点之间的距离为________,数轴上表示 x 和﹣3 两点之间的距离 为________ (4)若 x 表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________; (5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为 ________. (6)|x+1|﹣|x﹣3|的最大值为________. 【答案】 (1) (2)4;3 (3)|x﹣1| ;|x+3|
点 表示的数;(2)①根据题意表示出点 、 的数即可;②列出含 t 的 、 的代 数式,得出方程,求出方程的解即可.
4.观察下列等式:
第 1 个等式:a1=
,
第 2 个等式:a2=
,
第 3 个等式:a3=
,
…
请解答下列问题:
(1)按以上规律列出第 5 个等式:a5=________=________; (2)用含有 n 的代数式表示第 n 个等式:an=________=________(n 为正整数); (3)求 a1+a2+a3+…+a2019 的值.
(word版)有理数运算知识点汇总及练习,文档
有理数的运算知识点汇总知识点1:有理数的加减法一、有理数加法法那么:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;一个数与0相加,仍得这个数.二、有理数加法运算律:加法的交换律:a+b=b+a;加法的结合律:〔a+b〕+c=a+〔b+c〕.在运用运算律时,一定要根据需要灵活运用,以到达化简的目的,通常有以下规律:〔1〕互为相反数的两个数先相加——“相反数结合法〞;〔2〕符号相同的两个数先相加——“同号结合法〞;〔3〕分母相同的数先相加——“同分母结合法〞;〔4〕几个数相加得到整数,先相加——“凑整法〞;〔5〕整数与整数、小数与小数相加——“同形结合法〞。
三、有理数减法法那么:减去一个数,等于加上这个数的相反数;即a-b=a+〔-b〕.知识点2:有理数的乘除法一、有理数乘法:有理数乘法法那么法那么一:两数相乘,同号得正,异号得负,并把绝对值相乘;〔“同号得正,异号得负〞专指“两数相乘〞的情况,如果因数超过两个,就必须运用法那么三〕法那么二:任何数同0相乘,都得0;法那么三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;法那么四:几个数相乘,如果其中有因数为0,那么积等于0.有理数乘法的运算律:1〕乘法的交换律:ab=ba;2〕乘法的结合律:〔ab〕c=a〔bc〕;3〕乘法的分配律:a〔b+c〕=ab+ac.二、有理数除法法那么除以一个不等0的数,等于乘以这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0三.有理数的加减乘除混合运算乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
有理数加减乘除混合运算,如果有括号先计算括号里的,如果无括那么按照‘先乘除,后加减’的顺序进行。
知识点3:有理数乘方(一、乘方(乘方的概念(1〕求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第页(共23页) 1初一有理数所有知识点总结和常考题知识点1、 正数和负数(1) 、大于0的数叫做正数。
(2) 、在正数前面加上负号“-”的数叫做负数。
(3) 、数0既不是正数,也不是负数,0是正数与负数的分界。
(4) 、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、 有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数 .注意:0即不是正数,也不是负数;-a 不一定是负数,如:-(-2)=4,这个时 候的a=-2。
二不是有理数;⑶自然数二0和正整数;a > 0 a 是正数;a v 0 a 是负数;a >0= a 是正数或0 是非负数;a < 0= a 是负数或0= a 是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:-2-10123① 在直线上任取一个点表示数0,这个点叫做原点;② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方 向; ③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个 点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2) 、数轴的三要素:原点、正方向、单位长度。
(3) 、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选 (选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字 母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示 有理数。
(4) 、一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点 的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是 a 个单 位长度。
4、相反数正有理数丿 '正整数正分数 '正整数 整数2零有理数的分类:①有理数2零②有理数 负有理数负整数 负分数 分数』2 第页(共23页) (1) 、只有符号不同的两个数叫做互为相反数。
① 注意:a 的相反数是-a ; a-b 的相反数是b-a ; a+b 的相反数是-(a+b)=-a-b ; ② 非零数的相反数的商为-1 ;③ 相反数的绝对值相等。
(2) 、一般地,设a 是一个正数,数轴上与原点的距离是 a 的点有两个,他们分 别在原点的两侧,表示a 和-a ,我们说这两点关于原点对称。
(3) 、a 和-a 互为相反数。
0的相反数是0,正数的相反数是负数,负数的相反 数是正数。
相反数是它本身的数只有 0。
(4) 、在任意一个数前面添上“-”号,新的数就表示原数的相反数。
(5) 、若两个数a 、b 互为相反数,就可以得到a+b=0;反过来若a+b=0,则a 、 b 互为相反数。
(6) 、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数。
比如:-2 X 4X(-3 ) X( -1 ) X( -5 ),首先由4个负号,所以最终结果是正数,再算数字相乘得到 120 5、绝对值(1) 、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
(2) 、正数的绝对值等于它本身;0的绝对值是0 (或者说0的绝对值是它本身, 或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对 值的意义是数轴上表示某数的点离开原点的距离;)。
0是绝对值最小的数。
a (a 0)a = <0 (a =0)或 a[-a (av0)(4) 、间=1二 a = 0 •间=—1二 a7 ; a , a ,(5) 、任何数的绝对值总是非负数(非负数是正数或 0),即|a| > 0。
(6) 、互为相反数的两个数的绝对值相等。
绝对值相等的两个数可能是互为相反 数或者相等。
(7) 、有理数比大小:① 正数比0大,0大于负数,正数大于负数;② 两个负数比较,绝对值大的反而小;③ 数轴上的两个数,右边的数总比左边的数大;(8) 、比较两个负数的大小的步骤如下:① 先求出两个数负数的绝对值;② 比较两个绝对值的大小;③ 根据“两个负数,绝对值大的反而小”做出正确的判断。
1、有理数的加法(1) 、有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝 对值; ③ 一个数与0相加,仍得这个数•(2)、加法计算步骤:先定符号,再算绝对值。
(3)、绝对值可表示为: (a —0) (a 乞 0)(3)、有理数加法的运算律:①加法的交换律:a+b=b+a;②加法的结合律:(a+b)+c=a+(b+c).(4)、为了计算简便,往往会采取以下方法:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
2、有理数的减法(1)、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). (有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数. )注:有理数的减法实质就是把减法变加法。
3、有理数的乘法(1)、有理数乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数同零相乘都得零;(2)、一个数同1相乘,结果是原数;一个数同-1 相乘,结果是原数的相反数。
(3)、乘积为1 的两个数互为倒数;注意:0 没有倒数;若ab=1<====>a、b 互为倒数。
(4)、几个不是偶的数相乘,积的符号由负因式的个数决定。
负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。
(5)、有理数乘法的运算律:①乘法的交换律:ab=ba;②乘法的结合律:(ab)c=a (be);③乘法的分配律:a(b+c)=ab+ac.4、有理数的除法(1)、有理数除法法则:除以一个不等于0 的数,等于乘这个数的倒数。
(2)、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0 的数,都得0。
(3)、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法则进行计算得出结果。
(1)、把一个大于10数表示成a x I0n的形式(其中a是整数数位只有一位的数,而且1 <| a |< 10, n是正整数),使用的是科学计数法。
(2)、用科学记数法表示一个n位整数,其中10的指数是n-1。
例:240 000 000用科学计数法记为2.4 x 1087、近似数(1)、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。
(2)、精确度:近似数与准确数的接近程度可以用精确度表示。
(3)、利用四舍五入法得到的近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。
(4)、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。
(5)、解题技巧:①近似数精确到哪一位,只需看这个数的最末一位在原数的哪—位。
②当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似第页(共23 页)3数。
(6)、a x 10n中有效数字是指a的有效数字。
7、等于本身的数汇总:① 相反数等于本身的数:0② 倒数等于本身的数:1,-1③绝对值等于本身的数:正数和0④平方等于本身的数:0,1⑤立方等于本身的数:0,1,-1.常考题:一•选择题(共12小题)1. 1的倒数是( )2A. - 2 B . 2 C. 1D .2 22. | - 2|的相反数是( )A. 1 B . - 2 C. 1 D. 22 23. | - 1|的相反数是( )A. B.- I C. 3 D.- 33 34. 某粮店出售的三种品牌的面粉袋上,分别标有质量为( 25± 0.1 ) kg、(25± 0.2 ) kg、(25± 0.3 ) kg的字样,从中任意拿出两袋,它们的质量最多相差( ) A. 0.8kg B.0.6kg C. 0.5kg D. 0.4kg5. 计算(-3) 2的结果是( )A . - 6B . 6 C. - 9 D . 96 .有理数a、b在数轴上的对应的位置如图所示,则( )a b~ 0 ~~~~1A . a+b<0B . a+b>0 C. a- b=0 D. a- b>07•若x的相反数是3, |y|=5,则x+y的值为( )A.- 8 B . 2 C. 8 或-2 D . - 8 或28. 如果|a|= - a,下列成立的是( )A. a>0B. a v0C. a>0D. a<09. 在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A. 1.94 X 1010B. 0.194 X 1010 C . 19.4 X 109 D. 1.94 X 10910. 下列说法不正确的是( )A. 0既不是正数,也不是负数B. 1是绝对值最小的数C•一个有理数不是整数就是分数D. 0的绝对值是04 第页(共23页)11. 一种面粉的质量标识为“ 25± 0.25千克”,贝U下列面粉中合格的是( )A . 24.70 千克B. 25.30 千克C. 24.80 千克D. 25.51 千克12 .某地某天的最高气温是8C,最低气温是-2C,则该地这一天的温差是( )A . - 10°CB . - 6°C C. 6°CD . 10°C二 .填空题(共12小题)13 . PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为_________ .14 .如图,是一个简单的数值运算程序,当输入x的值为-1时,则输出的数值为_______ .输入囂c=^>( )- - - 〉X f---------- 1-------------- 卜输出15 .点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是__________ .16 .绝对值小于5的所有的整数的和是__________ .17 .若x的相反数是3,|y|=5,则x+y的值为____________ .18 .纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米,已知某种植物抱子的直径为45000纳米,用科学记数法表示该抱子的直径为______________ 米.19 .符号“ f ”表示一种运算,它对一些数的运算结果如下:(1) f (1) =0, f (2) =1, f (3) =2, f (4) =3,…;(2) f J) =2, f (「)=3, f J) =4, f ( ) =5,…2 3 4 5利用以上规律计算:f (2009)- f ( ' ) = ______ .200920 .图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,第四行有8个,…,你是否发现苹果的排列规律?猜猜看,第六行有个苹果、第十行有_________ 个.(可用乘方形式表示)第页(共23页) 56 第页(共23页)21•水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第,其变化值是勺 人 lb 19* 35* 67>23.若实数a ,b 满足• :|,则 = . Ia| |b| U bb| ---------------------------24•如图,数轴上的两个点 A , B 所表示的数分别是a , b ,在a+b , a - b , ab ,|a| - |b|中,是正数的有 __________ 个.三.解答题(共16小题)将以上三个等式两边分别相加得: (2)直接写出下列各式的计算结果:①U ===齐「匸M 广 -----------------------------②厂」4T :一;d I := -------------------------• +— HP —~—+小・ 4^ —— 2X4 4X6 6X8 2008X201026.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数 来表示,记录如下:与标准质量的 差值(单位: 千克)-3-2 -1.5 0 1 2.5 :筐数 1 4 2 3 28(1) 20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2) 与标准重量比较,20筐白菜总计超过或不足多少千克? (3) 若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整 数) 27. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的 公路上免w -\w -:-二原水面第一欢第二次22.观察两行数根据你发现的规律,求写出最后的计算结果) _________取每行数的第10个数,求得它们的和是(要 25.观察下列等式. Ill 111二 — , =2X3 2 3 3乂4 3 4(1)猜想并写出: (3)探究并计算: n(n+l)费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,- 4,+13,- 10,- 12,+3,- 13,- 17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?28. 计算:1 - 2+2X( - 3).9•小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000 股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)本周内该股票收盘时的最高价,最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?30.据国家税务总局通知,从2007年1月1日起,个人年所得12万元(含12 万元)以上的个人需办理自行纳税申报. 小张和小赵都是某公司职员,两人在业余时间炒股.小张2006年转让沪市股票3次,分别获得收益8万元、1.5万元、 -5万元;小赵2006年转让深市股票5次,分别获得收益-2万元、2万元、- 6万元、1万元、4万元.小张2006年所得工资为8万元,小赵2006年所得工资为9万元.现请你判断:小张、小赵在2006年的个人年所得是否需要向有关税务部门办理自行纳税申报并说明理由.(注:个人年所得=年工资(薪金)+年财产转让所得.股票转让属“财产转让”,股票转让所得盈亏相抵后为负数的,则财产转让所得部分按零“填报”)31.某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?32. 计算:-1100-( 1 - 0.5 )X 】X [3 -( - 3)].33. 已知|a|=3,|b|=5,且a v b,求a-b 的值.第页(共23页) 734.计算:-14- - X [2 -( - 3)].635.计算: (-2) 4-(- 2') 1 2 3 4+5「X( - 1 )- 0.25 .3 2 636•计算「M. 1/ \ -37.有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1〜13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24,例如1, 2, 3, 4,可作如下运算:(1+2+3)X 4=24.(注意上述运算与4X(2+3+1)应视作相同方法的运算)现有四个有理数3, 4,- 6, 10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1) _______ ; (2) ______ ; (3) _______ •另有四个数3,- 5, 7,- 13,可通过运算式(4) _____________ 使其结果等于24.初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一•选择题(共12小题)1. (2015?宿迁)■'的倒数是()A.- 2 B . 2 C. 1D .'2 2-6 -5 -4 -3 -2 ^1 0 1 2 3 4 5(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A: ___________2 观察数轴,与点A的距离为4的点表示的数是:_____________ ;3 若将数轴折叠,使得A点与-3表示的点重合,则B点与数______________ 表示的点重合;4 若数轴上M N两点之间的距离为2010( M在N的左侧),且M N两点经过(3)_____________________________________________________ 中折叠后互相重合,则M N两点表示的数分别是:M ___________________________ N :______ .40.已知x、y为有理数,现规定一种新运算※,满足乂※y=xy+1.(1)求2探4的值;(2)求(1探4)※(-2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和O中,并比较它们的运算结果:□※。