MATLAB实验报告——运用MATLAB求解和分析线性时不变系统资料
线性系统理论Matlab实践仿真报告
线性系统理论Matlab实验报告1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。
(1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控;判断能控程序设计如下:>> A=[-0.8 0.02;-0.02 0];B=[0.05 1;0.001 0];Qc=ctrb(A,B)Qc =0.0500 1.0000 -0.0400 -0.80000.0010 0 -0.0010 -0.0200Rc=rank(Qc)Rc =2Qc =0.0500 1.0000 -0.0400 -0.80000.0010 0 -0.0010 -0.0200得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。
(2)求取状态反馈器中的K,设的期望特征根为-7,-9;其设计程序如下:>> A=[-0.8 0.02;-0.02 0];B=[0.05 1;0.001 0];P=[-7 -9];k=place(A,B,P)k =1.0e+003 *-0.0200 9.00000.0072 -0.4500程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。
2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。
设计程序:>> A=[0 1 0 0 0;-0.1 -0.5 0 0 0;0.5 0 0 0 0;0 0 10 0 0;0.5 1 0 0 0];>> B=[0;1;0;0;0];>> C=[0 0 0 1 0];>> Qc=ctrb(A,B)Qc =0 1.0000 -0.5000 0.1500 -0.02501.0000 -0.5000 0.1500 -0.0250 -0.00250 0 0.5000 -0.2500 0.07500 0 0 5.0000 -2.50000 1.0000 0 -0.1000 0.0500>> Rc=rank(Qc)Rc =4从程序运行的结果可得,系统能控型判别矩阵的秩为4,而系统为5阶系统,故而就验证了该系统为不可控的。
线性系统的稳定性分析实验报告
线性系统的稳定性分析实验报告本实验旨在对线性系统的稳定性进行分析,包括定义稳定性、利用极点分布法分析稳定性、利用本征模态分析稳定性、以及使用Matlab进行稳定性分析等内容。
一、实验背景稳定性是控制系统研究中一个非常重要的概念,它与系统的性能、可靠性、控制策略等密切相关。
简而言之,稳定性就是指当输入信号发生变化时,系统能否在一定时间范围内维持稳定状态。
对于线性系统,稳定性的分析可以通过系统的传递函数、本征模态等途径进行求解。
二、实验设备(1)计算机(2)Matlab软件三、实验过程及结果1.定义稳定性在控制系统稳定性分析中,一般都是针对线性时不变系统进行讨论。
对于线性时不变系统,我们可以采用两种常用的定义方法来判断其稳定性:(1)定义1:系统是稳定的,当且仅当系统的输入信号有界时,系统的输出信号也有界。
(2)定义2:系统是稳定的,当且仅当系统的特征方程所有极点的实部均小于0。
2.利用极点分布法分析稳定性极点分布法是一种常用的线性时不变系统稳定性分析方法,通过计算系统的特征方程的极点分布来判断系统的稳定性。
例如,现有一个传递函数为G(s)= 1/ (s+1)(s-2)的系统,可以写出系统的特征方程:s^2-s-2=0求解特征方程,得到系统的两个极点为s1=2,s2=-1,其中s2=-1的实部小于0,符合定义2的稳定性判断标准,因此该系统是稳定的。
3.利用本征模态分析稳定性本征模态是指一组特定的正交基,通过它们可以表示出系统的任意初始状态和任意输入下的响应。
因此,本征模态分解法是一种可以用来分析线性可逆系统稳定性的工具。
例如,现有一个传递函数为G(s)= 1/(s+3)的系统,对应的状态空间方程为:x(t+1)=Ax(t)+Bu(t)y(t)=Cx(t)+Du(t)其中,A=[-3],B=[1],C=[1],D=0。
求解系统的本征值,得到该系统的特征根为-3,证明该系统是非常稳定的。
因此,该系统满足定义2的稳定性判断标准。
基于MATLAB的线性系统时域分析及仿真
基于MATLAB的线性系统时域分析及仿真MATLAB是一种高级计算软件,广泛应用于各个领域中的科学和工程问题的分析与仿真。
在信号与系统领域,MATLAB提供了强大的工具来进行线性系统的时域分析与仿真。
线性系统是指具有线性特性的系统,它们满足叠加原理和比例原理。
在时域分析中,我们通常关注系统的时域响应,即系统对输入信号的输出响应。
MATLAB提供了许多实用的函数来分析线性系统的时域行为。
首先,我们可以通过建立线性系统模型来研究其时域特性。
MATLAB 中的tf和ss函数可以用于创建传递函数和状态空间模型。
传递函数是输入输出之间的比值关系,而状态空间模型描述了系统的状态变量和输入/输出之间的关系。
可以通过输入系统的差分方程或频域特性来创建或导入线性系统的模型。
接下来,我们可以使用step、impuls和lsim函数来分析线性系统的时域响应。
step函数用于计算系统的单位阶跃响应,impuls函数用于计算系统的单位脉冲响应,而lsim函数用于计算系统对任意输入信号的响应。
这些函数能够绘制系统的时域响应曲线,并提供有关系统稳定性和动态特性的信息。
除了时域分析,MATLAB还提供了一些仿真工具来模拟线性系统的时域行为。
Simulink是MATLAB的一个强大的仿真环境,它可以用于构建复杂的线性系统模型,并通过仿真来分析系统的时域响应。
Simulink提供了丰富的模块库,包括线性系统模型、输入信号源和观测器等,使用户能够快速搭建系统模型并进行仿真。
在仿真过程中,Simulink提供了多种仿真方法,如固定步长仿真和变步长仿真。
固定步长仿真通过以固定的时间步长进行仿真,可以在仿真过程中保持较高的精度。
变步长仿真则根据系统响应的动态特性自适应地调整仿真步长,以确保在不同仿真阶段获取较高的精度和仿真效率。
总之,MATLAB提供了强大的工具来进行线性系统的时域分析与仿真。
通过建立线性系统模型、使用时域分析函数和Simulink仿真工具,用户可以方便地研究和分析系统的时域特性,并得到系统的时域响应曲线,进而了解系统的稳定性、动态特性和性能等信息。
信号与系统 MATLAB综合实验
信号与系统MATLAB综合实验一、实验目的:1、学习MATLAB语言的编程方法及熟悉MATLAB指令。
2、掌握连续时间信号的卷积运算方式,分析建立信号波形间的联系。
3、通过使用MATLAB函数研究线性时不变离散时间系统的时域特性,以加深对线性时不变离散时间系统的时不变性的理解。
二、实验仪器1、计算机2、MATLAB 软件三、实验原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
若以T[•]表示这种运算,则一个离散时间系统可由图1-1来表示,即→∙→(1-1)x n T y n()[]()图1-1 离散时间系统离散时间系统中最重要的、最常用的是“线性时不变系统”。
时不变系统系统的运算关系T[•]在整个运算过程中不随时间(也不随序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
这个性质可用以下关系表示:若输入)(ny,则将输入序列移动任意位后,其输出序列除了跟着x的输出为)(n移位外,数值应保持不变,即若)ynm[mT--(m为任意整数)=(xn(()]()][nT=,则)yxn满足以上关系的系统就称为时不变系统。
四、实验内容及结论1、连续时间系统的时域分析已知微分方程: )(2)(3)(2)(3)(t f t f t y t y t y +'=+'+'',1)0(-='-y , 2)0(=-y 若激励信号为)()(t u t f =,利用阶跃响应函数step(sys,t) 求解画波形;利用零状态响应函数lsim 求解画波形;利用卷积函数求解画波形;比较结果。
程序如下:dt=0.001;t1=0:dt:10;f1=-1*exp(-t1)+4*exp(-2*t1);t2=t1;f2=u(t2);f=conv(f1,f2);f=f*dt;t3=0:dt:20;subplot(311)plot(t3,f);xlabel('时间(t)');ylabel('y(t)');title('零状态响应(卷积法)');b=[3 2];a=[1 3 2];sys=tf(b,a);t=0:0.01:10;x=stepfun(t,0);y=lsim(sys,x,t);subplot(312)plot(t,y);xlabel('时间(t)');ylabel('y(t)');title('零状态响应(阶跃函数求法)');sys=tf(b,a);t=0:0.1:10;y=step(sys,t);subplot(313)plot(t,y);xlabel('时间t)');ylabel('y(t)');title('阶跃响应');结论:上述三种方法求得的都是输入为阶跃函数时候的零状态响应,也为阶跃响应,通过图形我们可以看出,利用卷积法求出的零状态和另外两种方法求出的零状态响应图形有一点差别,三者在0到10区间上响应都一致,而利用卷积法求的响应却在下面的区间内发生了变化,我试图修改程序,无论怎么改,发现只要调用了卷积函数,求得的图形就像上述的卷积法求的图形一样,不得解。
MATLAB实验之线性规划问题求解
封面作者:PanHongliang仅供个人学习桂林电子科技大学数学与计算科学学院实验报告实验室:实验日期:年月日x附录Ⅱ综合性、设计性实验报告格式桂林电子科技大学数学与计算科学学院综合性、设计性实验报告版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
版权为潘宏亮个人所有This article includes some parts, including text, pictures, and design. Copyright is Pan Hongliang's personal ownership.用户可将本文的内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本网站及相关权利人的合法权利。
除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人的书面许可,并支付报酬。
Users may use the contents or services of thisarticle for personal study, research or appreciation, andother non-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目的的合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任。
matlab计算机实验报告
matlab计算机实验报告Matlab计算机实验报告引言Matlab是一种强大的计算机软件,广泛应用于科学计算、数据分析和工程设计等领域。
本实验报告旨在介绍我对Matlab的实验研究和应用。
通过实验,我深入了解了Matlab的功能和特点,并通过实际案例展示了其在科学计算和数据处理中的应用。
实验一:基本操作和语法在本实验中,我首先学习了Matlab的基本操作和语法。
通过编写简单的程序,我熟悉了Matlab的变量定义、赋值、运算符和条件语句等基本语法。
我还学习了Matlab的矩阵操作和向量化计算的优势。
通过实例演示,我发现Matlab在处理大规模数据时具有高效性和便捷性。
实验二:数据可视化数据可视化是Matlab的重要应用之一。
在本实验中,我学习了如何使用Matlab绘制各种图表,如折线图、散点图、柱状图和饼图等。
我了解了Matlab 的绘图函数和参数设置,并通过实例展示了如何将数据转化为直观的图形展示。
数据可视化不仅可以帮助我们更好地理解数据,还可以用于数据分析和决策支持。
实验三:数值计算和优化Matlab在数值计算和优化方面具有强大的功能。
在本实验中,我学习了Matlab 的数值计算函数和工具箱,如数值积分、微分方程求解和线性代数运算等。
通过实例研究,我发现Matlab在求解复杂数学问题和优化算法方面具有出色的性能。
这对于科学研究和工程设计中的数值分析和优化问题非常有用。
实验四:图像处理和模式识别Matlab在图像处理和模式识别领域也有广泛的应用。
在本实验中,我学习了Matlab的图像处理工具箱和模式识别算法。
通过实例演示,我了解了如何使用Matlab进行图像滤波、边缘检测和特征提取等操作。
我还学习了一些常见的模式识别算法,如支持向量机和神经网络等。
这些技术在计算机视觉和模式识别中具有重要的应用价值。
实验五:信号处理和系统建模Matlab在信号处理和系统建模方面也有广泛的应用。
在本实验中,我学习了Matlab的信号处理工具箱和系统建模工具。
离散时间系统的时域特性分析实验报告
信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。
本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。
二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统中最重要、最常用的是“线性时不变系统”。
1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即那么当且仅当系统同时满足和时,系统是线性的。
在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。
2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。
3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。
当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。
三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出波形。
(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。
clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。
MATLAB实验二-线性系统时域响应分析
武汉工程大学实验报告专业班号组别 01 教师姓名同组者(个人)2222)(nn n s s s G ωζωω++= (1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。
(2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。
(3)系统的特征方程式为010532234=++++s s s s ,试用二种判稳方式判别该系统的稳定性。
(4)单位负反馈系统的开环模型为 )256)(4)(2()(2++++=s s s s Ks G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。
三、 实验结果及分析1.可以用两种方法绘制系统的阶跃响应曲线。
(1)用函数step( )绘制 MATLAB 语言程序:>> num=[ 0 0 1 3 7]; >> den=[1 4 6 4 1 ]; >>step(num,den); >> grid;>>xlabel('t/s');ylabel('c(t)');title('step response');MATLAB运算结果:(2)用函数impulse( )绘制MATLAB语言程序:>> num=[0 0 0 1 3 7];>> den=[1 4 6 4 1 0];>> impulse(num,den);>> grid;>> xlabel('t/s');ylabel('c(t)');title('step response');MATLAB运算结果:2. (1))/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线的绘制: MATLAB 语言程序:>> num=[0 0 4];>> den1=[1 0 4]; >> den2=[1 1 4]; >> den3=[1 2 4]; >> den4=[1 4 4]; >> den5=[1 8 4]; >> t=0:0.1:10; >> step(num,den1,t); >> grid>> text(2,1.8,'Zeta=0'); hold Current plot held >> step(num,den2,t); >> text (1.5,1.5,'0.25'); >> step(num,den3,t); >> text (1.5,1.2,'0.5'); >> step(num,den4,t); >> text (1.5,0.9,'1.0'); >> step(num,den5,t); >> text (1.5,0.6,'2.0');>> xlabel('t');ylabel('c(t)'); title('Step Response ') ;MATLAB 运算结果:实验结果分析:从上图可以看出,保持)/(2s rad n =ω不变,ζ依次取值0,0.25,0.5,1.0和2.0时, 系统逐渐从欠阻尼系统过渡到临界阻尼系统再到过阻尼系统,系统的超调量随ζ的增大而减小,上升时间随ζ的增大而变长,系统的响应速度随ζ的增大而变慢,系统的稳定性随ζ的增大而增强。
线性代数的MATLAB软件实验报告
线性代数的MATLAB 软件实验一、实验目的1.熟悉矩阵代数主要MATLAB 指令。
2.掌握矩阵的转置、加、减、乘、除、乘方、除法等MATLAB 运算。
3.掌握特殊矩阵的MATLAB 生成。
4.掌握MATLAB 的矩阵处理方法。
5.掌握MATLAB 的矩阵分析方法。
6.掌握矩阵的特征值与标准形的MATLAB 验算。
7.掌握线性方程组的MATLAB 求解算法。
二、实验原理1.线性方程组 【基本观点】自然科学和工程实践很多问题的解决都涉及线性代数方程组的求解和矩阵运算.一方面,许多问题的数学模型本身就是一个线性方程组,例如结构应力分析问题、电子传输网分析问题和投入产出分析问题;另一方面,有些数值计算方法导致线性方程组求解,如数据拟合,非线性方程组求解和偏微分方程组数值解等.n 个未知量m 个方程的线性方程组一般形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212111212111m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a (3.1) 令,,,2121212222111211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=m n mn m m n n b b b b x x x x a a a a a aa a a A则得矩阵形式Ax=b. (3.2)若右端b=0,即Ax=0, (3.3)则称方程组为齐次的.方程组(3.1)可能有唯一解,可能有无穷多解,也可能无解,主要取决于系数矩阵A 及增广矩阵(A,b )的秩.若秩(A )=秩(A,b )=n,存在唯一解,其解理论上用Cramer 法则求出,但由于这种方法要计算n+1个n 阶行列式,计算量太大通常并不采用;若秩(A )=秩(A,b )<n,存在无穷多解,其通解可表示为对应齐次方程组(3.3)的一个基础解系与(3.2)的一个特解的叠加;若秩(A )≠秩(A,b ),则无解,这时一般寻求最小二乘近似解,即求x 使向量Ax-b 模最小.P50矩阵左除的数学思维:恒等变形Ax=b 方程两边的左边同时除以A ,得:b AAx A11=,即:b A b Ax 11-==MATLAB 的实现(左除):x=A\b 2.逆矩阵 【基本观点】方阵A 称为可逆的,如果存在方阵B ,使 AB=BA=E,这里E 表示单位阵.并称B 为A 的逆矩阵,记B=1-A .方阵A 可逆的充分必要条件是A 的行列式det A ≠0.求逆矩阵理论上的公式为*1det 1A AA =-, (3.4)这里*A 为A 的伴随矩阵.利用逆矩阵,当A 可逆时,(3.2)的解可表示为b A x 1-=.由于公式(3.4)涉及大量行列式计算,数值计算不采用.求逆矩阵的数值算法一般是基于矩阵分解的方法.3.特征值与特征向量 【基本观点】对于方阵A ,若存在数λ和非零向量x ,使,x Ax λ= (3.5) 则称λ为A 的一个特征值,x 为A 的一个对应于特征值λ的特征向量.特征值计算归结为特征多项式的求根.对于n 阶实数方阵,特征多项式在复数范围内总有n 个根。
实验二用MATLAB实现线性系统的时域分析
实验二用MATLAB实现线性系统的时域分析线性系统是一种重要的数学模型,用于描述许多自然和工程系统的行为。
在实际应用中,对线性系统进行时域分析是非常重要的,以了解系统的稳定性、响应和性能特性。
MATLAB是一种功能强大的数学软件,被广泛用于线性系统的建模和分析。
首先,我们将介绍线性系统的时域分析的基本概念和方法。
然后,我们将学习如何使用MATLAB进行线性系统的时域分析,并通过具体的例子来演示。
时域分析是研究系统在时间上的响应,主要包括系统的因果性、稳定性、阶数、零极点分布、阻尼特性和幅频特性等。
其中,系统的因果性表示系统的输出只依赖于输入的过去和现在,与未来的输入无关;系统的稳定性表示系统的输出有界,不会无限增长或发散;系统的阶数表示系统差分方程的最高阶导数的次数。
在MATLAB中,线性系统可以用传输函数、状态空间或差分方程的形式表示。
传输函数是输入输出之间的比例关系,常用于分析系统的频率特性;状态空间是通过一组状态变量和状态方程描述系统的,可以用于分析系统的稳定性和阻尼特性;差分方程是通过相邻时刻的输入和输出之间的关系来描述系统的,可以用于分析系统的因果性和稳定性。
下面,我们以传输函数为例,介绍如何在MATLAB中进行线性系统的时域分析。
首先,我们需要定义传输函数。
MATLAB提供了tf函数来定义传输函数,其语法为:G = tf(num, den),其中num是传输函数的分子多项式的系数,den是传输函数的分母多项式的系数。
接下来,我们可以使用MATLAB中提供的各种函数和命令来进行时域分析。
例如,可以使用step函数来绘制系统的阶跃响应曲线,语法为:step(G);可以使用impulse函数来绘制系统的冲激响应曲线,语法为:impulse(G);可以使用initial函数来绘制系统的零状态响应曲线,语法为:initial(G, x0),其中x0是系统的初始状态。
此外,还可以使用MATLAB中的函数和命令来计算系统的阶数、零极点分布、频率响应等。
自动控制原理实验报告《线性控制系统时域分析》
自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。
2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。
3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。
二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。
三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。
LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。
2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。
针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。
四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。
搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。
2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。
其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。
下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。
连续时间系统的时域分析实验报告
实验二连续时间系统的时域分析一、实验目的通过使用MATLAB 软件对连续时间线性非时变系统的时域特性进行仿真分析,熟悉IT 系统在典型激励下的响应及特征,熟悉相应MATLAB 函数的调用格式和作用,熟悉井掌握用MATLAB 函数求解冲激响应、阶跃响应、零输入响应、零状态响应及全响应的方法。
二、实验原理(一)连续时间系统的时域分析方法 连续时间线性非时变系统(LTI )的输入()t f 与输出()t y 可以用线性常系数微分方程来描述:()()()()()()()()()()t f b t f b t fb t y a t y a t y a t y a m m n n n n 0'10'111++=++++--如果已知系统的输入信号()t f 及系统的初始条件为()()()()()-----0,,0,0,01'''n y y y y ,就可以利用解析方法求出系统的响应。
线性系统的全响应由零输入响应分量和零状态响应分量组成。
零输入响应是指当输入为零时仅由t=0的初始条件产生的系统响应,零状态响应是当初始条件(在t=0)假定为零时仅由0≥t 时的输入产生的系统响应分量。
零输入响应(单极点时)为:()∑==+++=nk t k tn ttx k n e c ec ec ec t y 12121λλλλ f式中,n c c c 、、、 21为任意待定常数,由初始条件确定。
零状态响应为:()()()τττd t h f t y f -=⎰∞∞-此式是对任意输入()t f ,用单位冲激响应()t h 形式表示的零状态响应()t y f 的公式。
已知()t h 就可确定任意输入()t f 的零状态响应()t y f ,即系统对任意输入的响应都可以用单位冲激响应确定。
系统总响应为:()()()()()τττλd t h f ec t y t y t y tnj j f x j -+=+=⎰∑∞∞-=1对于高阶系统,手工计算非常繁琐。
信号与系统实验之连续线性时不变系统的分析
信号与系统实验报告连续线性时不变系统的分析专业:电子信息工程(实验班)姓名:曾雄学号:14122222203班级:电实12-1BF目录一、实验原理与目的 (3)二、实验过程及结果测试 (3)三、思考题 (10)四、实验总结 (10)五、参考文献 (11)一、实验原理与目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。
掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。
二、实验过程及结果测试1.描述某线性时不变系统的微分方程为: ''()3'()2()'()y t y t y t f t f t++=+ 且f(t)=t 2,y(0-)=1,y ’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。
编写相应MATLAB 程序,画出各波形图。
(1)单位冲激响应: 程序如下:%求单位冲激响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t);%用画图函数plot( )画单位冲激响应的波形plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h');title('单位冲激响应h(t)') 程序运行所得波形如图一:200400600800100012000.10.20.30.40.50.60.70.80.91th单位冲激响应h(t )图一 单位冲激响应的波形(2)单位阶跃响应: 程序如下:%求单位阶跃响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t);%用画图函数plot( )画单位阶跃响应的波形plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g');title('单位阶跃响应g(t)') 程序运行所得波形如图二:2004006008001000120000.10.20.30.40.50.60.70.80.91tg单位阶跃响应g(t )图二 单位阶跃响应的波形 (3)零状态响应: 程序如下:%求零状态响应yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3;ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]);title('零状态响应曲线yzs'); ylabel('yzs');程序运行所得波形如图三:00.511.522.53-112345t零状态响应曲线yzsy z s图三 零状态响应的波形(4)零输入响应: 程序如下:%求零输入响应yzi=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画零输入响应的波形 t=0:0.01:3;ezplot(yzi,t);%零输入响应曲线 axis([0,3,-1,2]); title('零输入响应yzi'); ylabel('yzi');程序运行所得波形如图四:图四 零输入响应的波形(5)全响应:程序如下:%求全响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画全响应响应的波形00.511.522.53-1-0.50.511.52t零输入响应yziy z it=0:0.01:3;ezplot(y,t); %全响应曲线 axis([0,3,-1,5]); title('全响应y'); ylabel('y');程序运行所得波形如图五:00.511.522.53-112345t全响应yy图五 全响应的波形(6)自由响应:程序如下:%自由响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1'); %全响应 yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht;yh=y-yp; % 求齐次解,即自由响应 t=0:0.01:3; ezplot(yh,t); title('自由响应yh'); ylabel('yh');程序运行所得波形如图六:0.511.522.530.511.52t自由响应yhy h图六 自由响应的波形(7)强迫响应: 程序如下:%强迫响应yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht; % 求特解,即强迫响应 t=0:0.01:3; ezplot(yp,t); title('强迫响应yp'); ylabel('yp');程序运行所得波形如图七:0.511.522.53-112345t强迫响应ypy p图七 强迫响应的波形2.给定一个连续线性时不变系统,描述其输入输出之间关系的微分方程为:编写MATLAB 程序,绘制系统的幅频响应、相频响应、频率响应的实部和频率响应的虚部的波形,确定滤波器的类型。
信号与系统matlab实验报告
信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。
通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。
本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。
实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。
首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。
然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。
实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。
然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。
最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。
实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。
首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。
然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。
最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。
实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。
首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。
然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。
最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。
实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。
MATLAB实验报告(信号与线性系统分析)
实验一 MATLAB 的基本使用【一】 实验目的1.了解MA TALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境;2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力;3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。
【二】 MATLAB 的基础知识通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取五. MATLAB 的数值计算功能六. 程序流程控制 七. M 文件八. 函数文件九. MATLAB 的可视化 【三】上机练习1. 仔细预习第二部分内容,关于MATLAB 的基础知识。
2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍3.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123456789,987654321B A 。
求A*B ,A .* B ,比较二者结果是否相同。
并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以及最大值。
解:代码:A=[1,2,3;4,5,6;7,8,9];B=[9,8,7;6,5,4;3,2,1]; A*B A.*B两者结果不相同A*B=30 24 18 84 69 54 138 114 90 A.*B= 9 16 21 24 25 24 21 16 9求A 矩阵的行和列: [M,N]=size(A)M =3N =3 求A 矩阵的长度:x=length(A)x =3 元素和:sum(sum(A))ans =45最大值:max(max(A))ans =94. Fibonacci 数组的元素满足Fibonacci 规则:),2,1(,12=+=++k a a a k k k ;且121==a a 。
现要求该数组中第一个大于10000的元素。
信号与系统matlab实验线性时不变系统的时域分析(最新整理)
答案
1. x n hn u n u n 4 ;
nx=0:9;x=ones(1,length(nx)); nh=0:4;h=ones(1,length(nh)); y=conv(x,h); % 下限=下限1+下限2 ny_min=min(nx)+min(nh); % 上限=上限1+上限2 ny_max=max(nx)+max(nh); ny=ny_min:ny_max; subplot(3,1,1);stem(nx,x); xlabel('n');ylabel('x(n)');axis([ny_min ny_max 0 max(x)]); subplot(3,1,2);stem(nh,h); xlabel('n');ylabel('h(n)');axis([ny_min ny_max 0 max(h)]); subplot(3,1,3);stem(ny,y); xlabel('n');ylabel('x(n)*h(n)');axis([ny_min ny_max 0 max(y)]);
到连续卷积的数值近似,具体算法如下:
y=conv(x,h)*dt
% dt 为近似矩形脉冲的宽度即抽样间隔
例 2-2:采用不同的抽样间隔 值,用分段常数函数近似 x t u t u t 1 与
h t sin t u t u t π 的 卷 积 , 并 与 卷 积 的 解 析 表 达 式
x(t)
h(t)
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
1 0.5
0 0 0.5 1 1.5 2 2.5 3 3.5 t
MATLAB实验报告
MATLAB实践报告2016/2017学年第一学期专业:电气工程及其自动化班级:学号:姓名:2017年 2 月目录第1章绪论 (1)1.1 Matlab简介 (1)1.2 Matlab语言特点及优势 (1)1.2.1 语言特点 (1)1.2.2 优势 (2)1.3 Matlab的功能 (5)第2章Matlab实践任务 (6)2.1实验一Matlab环境语法、基本运算及绘图 (6)2.1.1实验目的 (6)2.1.2实验原理 (6)2.1.3实验内容 (6)2.2实验二Matlab数值运算 (10)2.2.1实验目的 (10)2.2.2实验原理 (10)2.2.3实验内容 (10)2.3实验三Matlab的符号计算 (19)2.3.1实验目的 (19)2.3.2实验内容 (19)2.4实验四Matlab基本编程方法 (23)2.4.1实验目的 (23)2.4.2实验内容 (23)第3章小结 (27)参考文献 (28)第1章绪论1.1 Matlab简介Matlab是“Matrix Laboratory”的缩写,意为“矩阵实验室”,是当今美国很流行的科学计算软件.信息技术、计算机技术发展到今天,科学计算在各个领域得到了广泛的应用.在许多诸如控制论、时间序列分析、系统仿真、图像信号处理等方面产生了大量的矩阵及其相应的计算问题.自己去编写大量的繁复的计算程序,不仅会消耗大量的时间和精力,减缓工作进程,而且往往质量不高.美国Mathwork软件公司推出的Matlab软件就是为了给人们提供一个方便的数值计算平台而设计的.Matlab是一个交互式的系统,它的基本运算单元是不需指定维数的矩阵,按照IEEE的数值计算标准(能正确处理无穷数Inf(Infinity)、无定义数NaN(not-a-number)及其运算)进行计算。
系统提供了大量的矩阵及其它运算函数,可以方便地进行一些很复杂的计算,而且运算效率极高。
Matlab命令和数学中的符号、公式非常接近,可读性强,容易掌握,还可利用它所提供的编程语言进行编程完成特定的工作。
实验3线性时不变系统
∑N bk sk
H
(s)
=
k=0
∑M ak sk
k=0
即可求出指定时间范围内 h(t) 的数值解并画出其时域波形。类似的函数还 有step函数,可用来计算和绘制单位阶跃响应 s(t)。例如
例 1 描述连续时间系统的微分方程为 y′′ (t) + 2y′ (t) + 5y (t) = x′ (t) + 5x (t), 计算系统的单位冲激响应和单位阶跃响应。
subplot(2,1,1); impulse(sys,t); 6 subplot(2,1,2); step(sys,t);
即可画出如图3.2所示的单位冲激响应和单位阶跃响应的波形。 如果运行命令
ht=impulse(sys,t); 2 st=step(sys,t);
则可得到单位冲激响应和单位阶跃响应的数值解。
a=[1 0.4 -0.12]; % Dቤተ መጻሕፍቲ ባይዱnominators. 2 b=[1 2]; % Numerators.
N=15; %Number of samples.
36
实验三 线性时不变系统的时域分析
3.2 实验原理
Amplitude
1.5 1
0.5 0
−0.5 0
1.5 1
0.5 0 0
Impulse Response
∑m y [n] = bkω [n − k] ,
k=0
(3.4)
MA 滤波器的输出是非递归的,只和输入有关,可通过卷积计算。因此3.2式给出的
IIR 滤波器也称为 ARMA 滤波器。一般来说,总是可以将3.2式写为递推的形式:
y [n]
=
1 a0
− ∑n aky [n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB实验报告
课程名称 MATLAB程序设计实验日期 2015 年 05 月 11 日学生姓名学号班级
实验名称运用MATLAB求解和分析线性时不变系统
实验仪器MATLAB7.1 Windows XP
实验目的1.熟悉线性时不变LTI系统在典型激励信号下的响应及其特征。
2.掌握线性LTI系统单位冲激响应的求解方法。
3.熟悉MATLAB的相关函数的调用格式和作用。
4.会用MATLAB对系统进行时域分析。
实验基本原理1.Impulse函数
功能:计算并画出系统的冲激响应。
调用格式: Impulse(sys):其中sys 可以是利用命令tf,zpk或ss建立的系统函数。
Impulse(sys,t)计算并画出系统在向量t定义的时间内的冲激响应。
Y=impulse(sys,t):保存系统的输出值。
2.Step函数
功能:计算并画出系统的阶跃响应曲线。
调用格式: Step(sys):其中sys可以是利用命令tf,zpk,或ss 建立的系统。
Step(sys,t):计算并画出系统在向量t定义的时间内的阶跃响应。
3.Lsim函数
功能:计算并画出系统在任意输入下的零状态响应。
调用格式: Lsim(sys,x,t):其中sys可以是利用命令tf,zpk或ss建立的系统函数,x是系统的输入,t定义的是时间范围。
Lsim(sys,x,t,zi):计算出系统在任意输入和零状态下的全响应,sys必须是状态空间形式的系统函数,zi是系统的原始状态。
4.roots函数
功能:计算齐次多项式的根。
调用格式: r=roots(b):计算多项式b的根,r为多项式的根。
5.impz函数
功能: 求离散系统单位脉冲响应,并绘制其时域波形。
调用格式:impz(b ,a) :以默认方式绘出向量a , b 定义的离散系统的单位脉冲响应的离散时域波形.
impz(b ,a ,n) :绘出由向量a , b定义的离散系统在0—n (n必须为整数)离散时间范围内的单位序列响应的时域波形.
impz(b ,a ,n1:n2) : 绘出由向量a , b定义的离散系统在n1—n2
(n1 , n2必须为整数,且n1<n2)离散时间范围内的单位序列响应的时域波形。
y=impz(b , a , n1 :n2): 并不绘出系统单位序列响应的时域波形,而是求出向量a , b定义的离散系统在n1—n2(n1 , n2必须为在整数,且n1<n2)离散时间范围内的单位序列响应的数值。
5.filter函数
功能:对输入数据数字滤波.
调用格式: y=filter(b , a ,x) :返回向量a , b定义的离散系统在输入为x时的零状态响应.如果x是一个矩阵,那么函数filter对矩阵x的列进行操作;如果x是一个N维数组,函数filter对数组中的一个非零量进行操作[y , zf]=filter(b , a ,x): 返回了一个状态向量的最终值zf.
[y , zf]= filter(b , a , x , zi) :指定了滤波器的初始状态向量zi.
[y ,zf]= filter(b ,a , x ,zi , dim ) 则是给定x中要进行滤波的维数dim.如果要使用零初始状态,则将zi设为空向量。
实验内容和步骤
实践内容:
1.例1
2.4-1
(1)用MATLAB在时域中求解
)(
)(
12
)(
16
)(
7
)(
2
2
3
3
t e
t r
dt
t
dr
dt
t r d
dt
t r d
=
+
+
+
的齐次解。
(2))(
)
(
5
)(
2
)(
2
2
t e
t r
dt
t
dr
dt
t r
d
=
+
+起始条件为2
)
0(
1
)
0('=
=-
+
zi
zi
r
r,,求系统的零输入响应。
2.例12.4-2
求连续时间系统
)(
)(
)(
3
)t(
2
)(
2
2
t e
dt
t
de
t r
dt
dr
dt
t r
d
+
=
+
+
,当2
)(t
t e=时的特解。
3. 例12.4-3
用户MATLAB在时域中求解
)(
)(
)(
t e
t r
dt
t
dr
=
+
,)(
)
1(
)(3t
u
e
t
e t-
+
=的零响入相应。
4.例12.4-5
用MATLAB求解方程零状态响应分量,已知系统差分方程为
)1
(
2
)2
(
7
)
(
1.0
)1
(
7.0
)2
(+
-
+
=
+
+
-
+n
x
n
x
n
y
n
y
n
y系统的激励序列)
(
)
(n
u
n
x=。
数据记录及分析1.例12.4-1
(1)用MATLAB在时域中求解
)(
)(
12
)(
16
)(
7
)(
2
2
3
3
t e
t r
dt
t
dr
dt
t r d
dt
t r d
=
+
+
+
的齐次解。
程序截图:
(2)
程序截图:
运行图像截图:
2.例12.4-2
求连续时间系统
)(
)(
)(
3
)t(
2
)(
2
2
t e
dt
t
de
t r
dt
dr
dt
t r
d
+
=
+
+
,当2
)(t
t e=时的特解。
程序截图:
运行图像截图:
3. 例12.4-3
用户MATLAB在时域中求解
)(
)(
)(
t e
t r
dt
t
dr
=
+
,)(
)
1(
)(3t
u
e
t
e t-
+
=的零响
入相应。
解法一:程序截图:
运行图像截图:
解法二:
用MATLAB的dsolve函数直接获得零状态响应的表达式程序截图:
运行图像截图:
解法三:程序截图:
运行图像截图:
4.例12.4-5
用MATLAB求解方程零状态响应分量,已知系统差分方程为
x
n
y
n
+n
-
n
x
n
u
n
x=。
(n
)
+
y系统的激励序列)
( y
+
(
7
)
)2
2
)1
(
=
(
(+
-
+
1.0
)2
7.0
)1
(
程序截图:
运行图像截图:
实验注意
每一次M-file的修改后,都要存盘。
事项
实验心得1、实验例题12.4-1中最初没搞清楚roots的用法,耗费了较长时间,
经过咨询老师后才知道原来本例题并不复杂,加之由于书本印刷错误导致在本例题用去了很多时间,但也说明对于程序的认识较浅,不能够很好的发现问题。
2、感觉在编写过程中还是无法脱离教材,按照教材样式将程序输进电
脑,但搞到进步的是很多函数基本可以搞清楚用途、
3、实验过程中还是出现了程序自己核对正确但无法运行的情况,经过
尝试重新输入解决了问题,同时学会了通过系统查找程序错误的方法。
4、程序中出现的变量名应该和定义里已经给出的变量名保持一致,否
则程序会出现没有定义的错误。
在试验中,发生“l”和“1”,“0”
和“o”分不清的问题,以后需要注意。
5、通过本次matlab实验使我学习掌握了许多知识,本次实验是我们
MATLAB程序设计课程的第二次实验,虽然对MATLAB软件的运用还不是很熟练,但通过老师的讲解和对课本例题的分析,实验还是一步步地完成了。
实验中遇到的问题经过老师的讲解与和同学的交流一个个的解决了,也得出了实验结果。
本次实验基本达到了实验要求,同时通过此次实验,掌握了MATLAB的基本使用,颇有收获。