第三章X线物理与防护(优选.)

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 X线物理与防护

1、1895年11月8日,德国物理学家做阴极射线管放电实验时发现X线;1901年伦琴获得诺贝尔物理奖;1905年把X线命名为伦琴射线。1896年贝克勒尔发现钠盐的放射性。居里夫妇发现放射性元素钋和镭。

2、产生X线的基本条件:(1)电子源;(2)高速电子流:①X线管阴极和阳极间加高压,管电压越高,产生X线的最短波长越短;②为防止电子与空气分子冲击而减速和灯丝的氧化损坏,必须保持高真空度;(3)阳极靶面:高原子序数、高熔点的金属制成;阳极有两个作用:接受高速电子的撞击,完成高压电路的回路。

3、高速电子和靶物质相互作用过程中,将会产生碰撞损失和辐射损失,最终高速电子的动能变为辐射能、电离能和热能(上岗证考试考过,职称考试也会考)。三种能量的比例随入射电子能量的变化和靶物质性质的差别而不同。

4、连续X线(轫致辐射):高速电子流与靶物质的原子核作用。一束波长不等,连续的混合射线。连续X线光子的能量取决于:(1)电子接近核的情况;(2)电子的能量;(3)核电荷。重点

连续X线的最短波长(λmin):λmin=1.24/U(kV)nm。其最短波长仅与管电压有关,管电压越高,产生X线的最短波长越短。X线最短波长,对应最大光子能量。重点尤其是公式一定要看好单位还要记住是连续X线

5、特征X线(标识放射):是高速电子与靶原子的内层轨道电子作用电子被击脱,外壳层电子跃迁填充空位时,多余的能量以光子(X线)的形式放出,即为特征X线。不同的靶物质其质子结构不同,发出的X线的波长也不尽相同,这种由靶物质所决定的X线称为标识放射,与X线管电流无关。管电压必须满足eU ≥W,W是结合能,当eU=W时,U=W/e称为最低激发电压。各线系的最低激发电压大小按其相应的壳层内电子结合能大小顺序排列,即UK>UL>UM>UN。壳层越接近原子核,最低激发电压越大。若管电压低于某激发电压,则此系特征X 线将不会发生。

6、X线产生的效率:在X线管中产生的X线能与加速电子所消耗电能的比值。η=KZU。一般不足1%。公式一定要记住

7、影响连续X线产生的因素:(1)靶物质:连续X线强度与靶物质的原子序数成正比。(2)管电流:管电流的大小并不影响X线的质,但在管电压一定时,管电流越大,说明撞击阳极靶面的电子数越多,X线强度越大,X线强度I与管电流i(mA)成正比。(3)管电压:连续X线强度与管电压(kV)的n次方成正比(在诊断范围内,n近似为2)。当管电流、靶材料(原子序数Z)固定时,随管电压的升高,连续X线谱最短波长和最大强度所对应的波长均向短波方向移动。(4)高压波形:1)单相半波/全波、三相6脉冲/12脉冲。X线辐射强度由脉动电压产生的要比峰值相当的恒定电压产生的X线强度低;X线的平均波长由

脉动电压产生的也比峰值等高的恒定电压产生的波长长。2)峰值电压相同:三相比单相产生的X线硬度成分多,且管电流相同,其X线的辐射强度(或输出量率)也大。

8、影响特征X线产生的因素:特征X线的强度与管电流成正比,管电压大于激发电压时才发生K系放射,并随管电压的继续升高K系强度迅速增大。

9、在X线的两种成分中,特征X线只占很少一部分,并不重要。对钨靶X线管来说,低于K系激发电压将不会产生K系放射;管电压在80~150kV时,特征X 线只占10%~28%;高于150kV特征X线相对减少;高于300kV时,两种成分相比特征X线可忽略。可见,医用X线主要使用的是连续放射,但在物质结构的光谱分析中使用的是特征辐射。

10、阳极倾角指垂直于X线管长轴的平面与靶面的夹角。

11、在通过X线管长轴且垂直于有效焦点平面内,近阳极端X线强度弱,近阴极端强,最大值约在10°处,其分布是非对称性的,这种现象称为阳极效应,又叫足跟效应。阳极倾角越小,阳极效应越明显。口诀:阴盛阳衰

在通过X线管短轴且垂直于有效焦点平面内测定,在90°处最大,分布基本对称。

12、X线具有波粒二象性。X线在传播时表现了它的波动性,并有衍射、偏振、反射、折射等现象,它是一种横波,其传播速度在真空中与光速相同;X线与物质相互作用时,则突出表现粒子特性。X线光子只有运动质量,没有静止质量。重点

13、X线是一种电磁波:1)物理特性:(1)不可见:在真空中是直线传播的不可见电磁波;(2)非带电:X线不带电,不受磁场、电场影响;(3)穿透性:由于X线波长短,具有较高的能量,物质对其吸收较弱,具有很强的穿透本领(4)荧光作用;(5)电离作用:X线的电离作用主要是它的次级电子的电离作用;(6)热作用:X线被物质吸收,最终绝大部分都将变为热能,使物体产生温升。测定X线吸收剂量的量热法就是依据此原理研究出来的。

2)化学特性:(1)感光作用:它可使胶片乳剂感光,使很多物质发生光化反应。(2)着色作用:某些物质,如铅玻璃、水晶等经X线长期大剂量照射后,其结晶体脱水渐渐改变颜色,称为着色作用或脱水作用。

3)生物效应特性:特别是增殖性强的细胞。是放射治疗的基础。

14、光电效应:X线光子与构成原子的内壳层轨道电子碰撞时,将其全部能量都传递给原子的壳层电子,原子中获得能量的电子摆脱原子核的束缚,成为自由电子(光电子),而X线光子则被物质的原子吸收,这种现象称为光电效应。失去电子的原子变成正离子,处于激发态不稳定,外层电子填充空位,放出特征X 线。特征X线离开原子前,又击出外层轨道电子,使之成为俄歇电子,这种现象称为俄歇效应。

光电效应的产物有光电子、正离子、特征放射和俄歇电子。

15、入射光子的能量与轨道电子结合能必须“接近相等”(稍大于)才容易产生光电效应。光电效应发生概率大约和能量的三次方成反比,和原子序数的四次方成正比。它说明摄影中的三个实际问题:(1)不同密度的物质能产生明显的对比影像;(2)密度的变化可明显地影响到摄影条件;(3)要根据不同密度的物质选择适当的射线能量。口诀:光原四正,光能三反

16、光电效应不产生有效的散射,对胶片不产生灰雾。光电效应可增加X线的对比度。在光电效应中,因为光子的能量全部被吸收,使病人接受的剂量比任何其他效应都多,为减少对病人的照射,在适当的情况下,要采用高能量的射线。

17、当一个光子击脱原子外层轨道上的电子或自由电子时,入射光子损失部分能量,并改变原来传播方向,变成散射光子(散射线),电子从光子处获得部分能量脱离原子核束缚,按一定方向射出,成为反冲电子,这个过程称为康普顿效应。光子入射和散射方向的夹角称为散射角,即偏转角度。反冲电子的运动方向和入射光子的传播方向的夹角称为反冲角。一个光子被偏转以后能保留多大能量,由它的原始能量和偏转角度来决定,偏转的角度越大,能量损失就越大,光子波长就越大。

X线摄影中所遇到的散射线几乎都是来自康普顿散射。

康普顿散射发生概率与物质的原子序数成正比,与入射光子的能量成反比,即与入射光子的波长成正比。

18、一个具有足够能量的光子,在与靶原子核发生相互作用时,光子突然消失,同时转化为一对正、负电子,这个作用过程称为电子对效应。

一个电子对的静止质量能是1.02MeV。入射光子的能量就必须等于或大于

1.02MeV。光子能量超过该能量值的部分就变成了正、负电子的动能。

电子对效应的发生概率与原子序数的平方成正比,与单位体积内的原子个数成正比,近似地与光子能量的对数(lnhv)成正比。

19、相干散射:射线与物质相互作用而发生干涉的散射过程:包括瑞利散射(主要)、核的弹性散射和德布罗克散射。

相干散射是光子与物质相互作用中唯一不产生电离的过程。重点

相干散射的发生概率与物质原子序数成正比,并随光子能量的增大而急剧地减少。在整个诊断X线能量范围内都有相干散射发生,其发生概率不足全部相互作用的5%,对辐射屏蔽的影响不大。

20、光核反应:光子与原子核作用而发生的核反应。

X线与物质的相互作用有光电效应、康普顿相应、电子对效应三个主要过程和相干散射、光核反应两个次要过程。在诊断X线能量范围内,只能发生光电效应、康普顿效应和相干散射,电子对效应、光核反应不可能发生。光核反应在医用电子加速器等高能射线的放疗中发生率也很低。

相关文档
最新文档