2019-2020年高三上期末数学试卷及答案
2019-2020学年上学期高三期末考试数学卷及答案解析
2019-2020学年上学期高三期末考试数学卷(考试时间:120分钟 满分:150分)参考公式:1、三角函数的积化和差公式:)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=2、三角函数和差化积公式:2cos2sin2sin sin ϕφϕφϕφ-+=+2sin2cos 2sin sin ϕφϕφϕφ-+=- 2cos2cos 2cos cos ϕφϕφϕφ-+=+ 2sin2sin 2cos cos ϕφϕφϕφ-+-=- 第I 卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请把答案填在第II 卷指定的位置上)1.设全集U={0,1,2,3,4},集合A={0,2,4},B={0,1,3},则( ) (A )A ∪C U B=U (B )CUA ∩B=∅ (C )C U A ∩C U B=U (D )C U A ∩C U B=∅2.已知函数y=f(x)的反函数为f -1(x)=2x+1,则f(1)等于( ) (A )0 (B )1 (C )-1 (D )43.在等比数列{a n }中,a 1+a 2=1,a 3+a 4=9,那么a 4+a 5等于( ) (A )27 (B )-27 (C )81或-36 (D )27或-274.在△ABC 中,∠A=60°,b=1,这个三角形的面积为3,则ABC 外接圆的直径是( )(A )3392 (B )3326 (C )33 (D )2295.[x]表示不超过x 的最大整数,(例如[5.5]=5,[-5.5]=-6),则不等式[x]2-5[x]+6≤0的解集是( ) (A )(2,3) (B )[)4,2 (C )[2,3] (D )[2,4]6.抛物线y 2=4x 按向量e 平移后的焦点坐标为(3,2),则平移后的抛物线的顶点坐标为( )(A )(4,2) (B )(2,2) (C )(-2,-2) (D )(2,3) 7.线段AB 的端点A 、B 到面a 的距离分别是30cm 和50cm ,则线段AB 中点M 到平面a 的距离为( ) (A )40cm (B )10cm (C )80cm (D )40cm 或10cm8.已知映射f :A →B ,其中A=B=R ,对应法则f :y=-22x +2x+1,对于实数K ∈B ,在集中A 中不存在原象,则k 的取值范围是( )(A )k>1 (B )k ≥1 (C )k<1 (D )k ≤19.圆x 2+y 2-2x -6y+9=0关于直线x -y -1=0对称的曲线方程为( ) (A )x 2+y 2+2x+6y+9=0 (B )x 2+y 2-8x+15=0 (C )x 2+y 2-6x -2y+9=0 (D )x 2+y 2-8x -15=0 2x (x ≤1)10.已知函数f(x)= ,则函数y=f(1-x)的图象是( ) 21log x (x>1)11.设数列{a n }的通项公式为an=n 2-an ,若数列{a n }为单调递增数列,则实数a 的取值范围为( ) (A )a<2 (B )a ≤2 (C )a<3 (D )a ≤312.一个人以匀速6m/s 的速度去追停在交通灯前的公共汽车,当他离汽车25m 时,交通灯由红变绿,汽车正以1m/s 2的加速度开走,则( )(A )人可在7s 内追上汽车 (B )人会在7s 后追上汽车(C )人追不上汽车,其间最近距离为5m (D )人追不上汽车,其间最近距离为7m 。
2019-2020学年山东省泰安市高三上期末数学测试卷(理)(含答案)
山东省泰安市高三(上)期末测试数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .1203.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.下列命题错误的是( )A .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β 5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A. B.C.D.8.已知实数a,b满足2a=3,3b=2,则函数f(x)=a x+x﹣b的零点所在的区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是.13.如果实数x,y满足条件,则z=x+y的最小值为.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= .三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC 的内角A 、B 、C 所对的边a 、b 、c ,且(Ⅰ)求角A(Ⅱ)若,求a 的最小值.17.如图,多面体ABCDEF 中,四边形ABCD 是矩形,EF ∥AD ,FA ⊥面ABCD ,AB=AF=EF=1,AD=2,AC 交BD 于点P(Ⅰ)证明:PF ∥面ECD ; (Ⅱ)求二面角B ﹣EC ﹣A 的大小.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n .19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 21.已知函数f (x )=lnx+ax 在点(t ,f (t ))处切线方程为y=2x ﹣1 (Ⅰ)求a 的值(Ⅱ)若,证明:当x >1时,(Ⅲ)对于在(0,1)中的任意一个常数b ,是否存在正数x 0,使得:.2019-2020学年山东省泰安市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为( )A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}【考点】Venn 图表达集合的关系及运算.【分析】由韦恩图可知阴影部分表示的集合为(C U A )∩B ,根据集合的运算求解即可. 【解答】解:全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6}, 由韦恩图可知阴影部分表示的集合为(C U A )∩B , ∵C U A={4,6,7,8}, ∴(C U A )∩B={4,6}. 故选B .2.设{a n }是公差为正数的等差数列,若a 1+a 3=10,且a 1a 3=16,则a 11+a 12+a 13等于( ) A .75 B .90 C .105 D .120 【考点】等差数列的通项公式.【分析】由已知得a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根,解方程x 2﹣10x+16=0,得a 1=2,a 3=8,由此求出公差,从而能求出a 11+a 12+a 13的值.【解答】解:∵{a n }是公差为正数的等差数列,a 1+a 3=10,且a 1a 3=16, ∴a 1<a 3,且a 1,a 3是方程x 2﹣10x+16=0的两个根, 解方程x 2﹣10x+16=0,得a 1=2,a 3=8, ∴2+2d=8,解得d=3,∴a 11+a 12+a 13=3a 1+33d=3×2+33×3=105. 故选:C .3.已知p :0<a <4,q :函数y=x 2﹣ax+a 的值恒为正,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数的性质结合充分条件和必要条件的定义进行判断即可.【解答】解:若函数y=x2﹣ax+a的值恒为正,即x2﹣ax+a>0恒成立,则判别式△=a2﹣4a<0,则0<a<4,则p是q的充要条件,故选:C4.下列命题错误的是()A.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β【考点】平面与平面之间的位置关系.【分析】命题A,B可以通过作图说明;命题C可以直接进行证明;命题D可以运用反证法的思维方式说明是正确的.【解答】解:A、如图,平面α⊥平面β,α∩β=l,l⊂α,l不垂直于平面β,所以不正确;B、如A中的图,平面α⊥平面β,α∩β=l,a⊂α,若a∥l,则a∥β,所以正确;C、如图,设α∩γ=a,β∩γ=b,在γ内直线a、b外任取一点O,作OA⊥a,交点为A,因为平面α⊥平面γ,所以OA⊥α,所以OA⊥l,作OB⊥b,交点为B,因为平面β⊥平面γ,所以OB⊥β,所以OB⊥l,又OA∩OB=O,所以l⊥γ.所以正确.D 、若平面α内存在直线垂直于平面β,根据面面垂直的判定,则有平面α垂直于平面β,与平面α不垂直于平面β矛盾,所以,如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β,正确; 故选:A .5.不等式|x ﹣5|+|x+1|<8的解集为( ) A .(﹣∞,2) B .(﹣2,6) C .(6,+∞)D .(﹣1,5)【考点】绝对值不等式的解法.【分析】由条件利用绝对值的意义,求得绝对值不等式|x ﹣5|+|x+1|<8的解集. 【解答】解:由于|x ﹣5|+|x+1|表示数轴上的x 对应点到5、﹣1对应点的距离之和, 而数轴上的﹣2和6对应点到5、﹣1对应点的距离之和正好等于8, 故不等式|x ﹣5|+|x+1|<8的解集为(﹣2,6), 故选:B .6.已知点F 1、F 2分别是椭圆的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于 M 、N 两点,若△M NF 2为等腰直角三角形,则该椭圆的离心率e 为( )A .B .C .D .【考点】椭圆的简单性质.【分析】把x=﹣c 代入椭圆,解得y=±.由于△MNF 2为等腰直角三角形,可得=2c ,由离心率公式化简整理即可得出.【解答】解:把x=﹣c 代入椭圆方程,解得y=±,∵△MNF 2为等腰直角三角形,∴=2c ,即a 2﹣c 2=2ac ,由e=,化为e 2+2e ﹣1=0,0<e <1. 解得e=﹣1+.故选C .7.设f (x )在定义域内可导,其图象如图所示,则导函数f ′(x )的图象可能是( )A .B .C .D .【考点】利用导数研究函数的单调性.【分析】由f (x )的图象可得在y 轴的左侧,图象下降,f (x )递减,y 轴的右侧,图象先下降再上升,最后下降,即有y 轴左侧导数小于0,右侧导数先小于0,再大于0,最后小于0,对照选项,即可判断. 【解答】解:由f (x )的图象可得,在y 轴的左侧,图象下降,f (x )递减, 即有导数小于0,可排除C ,D ;再由y 轴的右侧,图象先下降再上升,最后下降, 函数f (x )递减,再递增,后递减, 即有导数先小于0,再大于0,最后小于0, 可排除A ; 则B 正确. 故选:B .8.已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x ﹣b 的零点所在的区间是( ) A .(﹣2,﹣1) B .(﹣1,0)C .(0,1)D .(1,2)【考点】函数的零点;指数函数的图象与性质.【分析】根据对数,指数的转化得出f (x )=(log 23)x +x ﹣log 32单调递增,根据函数的零点判定定理得出f (0)=1﹣log 32>0,f (﹣1)=log 32﹣1﹣log 32=﹣1<0,判定即可. 【解答】解:∵实数a ,b 满足2a =3,3b =2, ∴a=log 23>1,0<b=log 32<1, ∵函数f (x )=a x +x ﹣b ,∴f (x )=(log 23)x +x ﹣log 32单调递增, ∵f (0)=1﹣log 32>0f (﹣1)=log 32﹣1﹣log 32=﹣1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x ﹣b 的零点所在的区间(﹣1,0), 故选:B .9.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤),其图象与直线y=﹣1相邻两个交点的距离为π.若f(x)>1对任意x∈(﹣,)恒成立,则φ的取值范围是()A.[,] B.[,] C.[,] D.(,]【考点】正弦函数的图象.【分析】由题意求得sin(ωx+φ)=﹣1,函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,根据周期性求得ω的值,可得f(x)的解析式.再根据当x∈(﹣,)时,f(x)>1,可得sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,由此求得φ的取值范围.【解答】解:函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤)的图象与直线y=﹣1相邻两个交点的距离为π,令2sin(ωx+φ)+1=﹣1,即sin(ωx+φ)=﹣1,即函数y=sin(ωx+φ)的图象和直线y=﹣1邻两个交点的距离为π,故 T==π,求得ω=2,∴f(x)=2sin(2x+φ)+1.由题意可得,当x∈(﹣,)时,f(x)>1,即 sin(2x+φ)>0,故有﹣+φ≥2kπ,且+φ≤2kπ+π,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,结合所给的选项,故选:B.10.已知函数f(x)=,若a<b,f(a)=f(b),则实数a﹣2b的取值范围为()A.B.C.D.【考点】函数的值.【分析】由已知得a≤﹣1,a﹣2b=a﹣e a﹣1,再由函数y=﹣e x+a﹣1,(x≤﹣1)单调递减,能求出实数a﹣2b的范围.【解答】解:∵函数f(x)=,a<b,f(a)=f(b),∴a≤﹣1,∵f(a)=e a,f(b)=2b﹣1,且f(a)=f(b),∴e a=2b﹣1,得b=,∴a﹣2b=a﹣e a﹣1,又∵函数y=﹣e x+a﹣1(x≤﹣1)为单调递减函数,∴a﹣2b<f(﹣1)=﹣e﹣1=﹣,∴实数a﹣2b的范围是(﹣∞,﹣).故选:B.二、填空题:本大题共5个小题,每小题5分,共25分,请把答案填写在答题卡相应位置.11.若α∈(0,)且cos2α+cos(+2α)=,则tanα= .【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【分析】首先根据诱导公式和同角三角函数的关系式进行恒等变换,整理成正切函数的关系式,进一步求出正切的函数值.【解答】解:cos2α+cos(+2α)=,则:,则:,整理得:3tan2α+20tanα﹣7=0,所以:(3tanα﹣1)(tanα+7)=0解得:tan或tanα=﹣7,由于:α∈(0,),所以:.故答案为:12.直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,则实数a的值是﹣2 .【考点】直线与圆的位置关系.【分析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.【解答】解:圆x2+y2﹣2ax+a=0可化为(x﹣a)2+y2=a2﹣a∴圆心为:(a,0),半径为:圆心到直线的距离为:d==.∵直线ax+y+1=0被圆x2+y2﹣2ax+a=0截得的弦长为2,∴a2+1+1=a2﹣a,∴a=﹣2.故答案为:﹣2.13.如果实数x,y满足条件,则z=x+y的最小值为.【考点】简单线性规划.【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最小,z有最小值为.故答案为:.14.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为.【考点】由三视图求面积、体积.【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算. 【解答】解:由三视图知几何体是圆锥的一部分, 由正视图可得:底面扇形的圆心角为120°, 又由侧视图知几何体的高为4,底面圆的半径为2,∴几何体的体积V=××π×22×4=.故答案为:15.规定记号“*”表示一种运算,a*b=a 2+ab ,设函数f (x )=x*2,且关于x 的方程f (x )=ln|x+1|(x ≠﹣1)恰有4个互不相等的实数根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4= ﹣4 . 【考点】根的存在性及根的个数判断.【分析】由题意可得f (x )=x 2+2x ,可得图象关于x=﹣1对称,由函数图象的变换可得函数y=ln|x+1|(x ≠﹣1)的图象关于直线x=﹣1对称,进而可得四个根关于直线x=﹣1对称,由此可得其和. 【解答】解:由题意可得f (x )=x*2=x 2+2x , 其图象为开口向上的抛物线,对称轴为x=﹣1, 函数y=ln|x+1|可由y=ln|x|向左平移1个单位得到, 而函数函数y=ln|x|为偶函数,图象关于y 轴对称, 故函数y=ln|x+1|的图象关于直线x=﹣1对称,故方程为f (x )=ln|x+1|(x ≠﹣1)四个互不相等的实数根x 1,x 2,x 3,x 4, 也关于直线x=﹣1对称,不妨设x 1与x 2对称,x 3与x 4对称, 必有x 1+x 2=﹣2,x 3+x 4=﹣2,故x1+x2+x3+x4=﹣4,故答案为:﹣4.三、解答题:本大题共有6小题,满分75分,解答应写出文字说明、证明过程或演算步骤.16.△ABC的内角A、B、C所对的边a、b、c,且(Ⅰ)求角A(Ⅱ)若,求a的最小值.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简已知可得sinAsinB=sinBcosA,又sinB≠0,从而可求tanA,由于0<A <π,即可解得A的值.(Ⅱ)利用平面向量数量积的运算和余弦定理化简已知等式可得bc=8,利用余弦定理及基本不等式即可求得a的最小值.【解答】(本题满分为12分)解:(Ⅰ)因为,由正弦定理,得sinAsinB=sinBcosA,又sinB≠0,从而tanA=,由于0<A<π,所以A=.…4分(Ⅱ)由题意可得:=+•(﹣)﹣=+﹣•﹣=c2+b2﹣bccosA﹣a2=2bccosA﹣bccosA=bc=4,∵bc=8,由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc≥2bc﹣bc=bc=8,∴a≥2,∴a的最小值为.…12分17.如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD 于点P(Ⅰ)证明:PF∥面ECD;(Ⅱ)求二面角B﹣EC﹣A的大小.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取CD中点G,连结EG、PG,推导出四边形EFPG是平行四边形,由此能证明FP∥平面ECD.(Ⅱ)以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,利用向量法能求出二面角B﹣EC﹣A的大小.【解答】证明:(Ⅰ)取CD中点G,连结EG、PG,∵点P为矩形ABCD对角线交点,∴在△ACD中,PG AD,又EF=1,AD=2,EF∥AD,∴EF PG,∴四边形EFPG是平行四边形,∴FP∥EG,又FP⊄平面ECD,EG⊂平面ECD,∴FP∥平面ECD.解:(Ⅱ)由题意,以AB所在直线为x轴,AD所在直线为y轴,AF所在直线为z轴,建立空间直角坐标系,则F(0,0,1),B(1,0,0),C(1,2,0),E(0,1,1),∴=(0,2,0),=(1,1,﹣1),=(1,2,0),取FB中点H,连结AH,则=(),∵=0, =0,∴AH⊥平面EBC,故取平面AEC法向量为=(),设平面AEC 的法向量=(x ,y ,1),则,∴=(2,﹣1,1),cos <>===,∴二面角B ﹣EC ﹣A 的大小为.18.已知正项等比数列{a n }的前n 项和为S n ,且S 2=6,S 4=30,n ∈N *,数列{b n }满足b n •b n+1=a n ,b 1=1 (I )求a n ,b n ;(Ⅱ)求数列{b n }的前n 项和为T n . 【考点】数列的求和;数列递推式.【分析】(I )设正项等比数列{a n }的公比为q (q >0),由等比数列的通项公式,解方程可得首项和公比均为2,可得a n =a 1q n ﹣1=2n ;再由n 换为n+1,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,运用等比数列的通项公式,即可得到所求b n ;(Ⅱ)讨论n 为奇数和偶数,运用分组求和和等比数列的求和公式,化简整理即可得到所求和. 【解答】解:(I )设正项等比数列{a n }的公比为q (q >0), 由题意可得a 1+a 1q=6,a 1+a 1q+a 1q 2+a 1q 3=30, 解得a 1=q=2(负的舍去), 可得a n =a 1q n ﹣1=2n ; 由b n •b n+1=a n =2n ,b 1=1, 可得b 2=2,即有b n+1•b n+2=a n =2n+1,可得=2,可得数列{b n }中奇数项,偶数项均为公比为2的等比数列,即有b n =;(Ⅱ)当n 为偶数时,前n 项和为T n =(1+2+..+)+(2+4+..+)=+=3•()n ﹣3;当n 为奇数时,前n 项和为T n =T n ﹣1+=3•()n ﹣1﹣3+=()n+3﹣3.综上可得,T n =.19.如图,是一曲边三角形地块,其中曲边AB 是以A 为顶点,AC 为对称轴的抛物线的一部分,点B 到边AC 的距离为2km ,另外两边AC ,BC 的长度分别为8km ,2km .现欲在此地块内建一形状为直角梯形DECF的科技园区.(Ⅰ)求此曲边三角形地块的面积; (Ⅱ)求科技园区面积的最大值.【考点】扇形面积公式;弧度制的应用.【分析】(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点建立平面直角坐标系,求出曲边AB 所在的抛物线方程,利用积分计算曲边三角形ABC 地块的面积;(Ⅱ)设出点D 为(x ,x 2),表示出|DF|、|DE|与|CF|的长,求出直角梯形CEDF 的面积表达式,利用导数求出它的最大值即可.【解答】解:(Ⅰ)以AC 所在的直线为y 轴,A 为坐标原点,建立平面直角坐标系xOy ,如图所示;则A(0,0),C(0,8),设曲边AB所在的抛物线方程为y=ax2(a>0),则点B(2,4a),又|BC|==2,解得a=1或a=3(此时4a=12>8,不合题意,舍去);∴抛物线方程为y=x2,x∈[0,2];又x2=x3=,∴此曲边三角形ABC地块的面积为﹣x2=×(8+4)×2﹣=;S梯形ACBM(Ⅱ)设点D(x,x2),则F(0,x2),直线BC的方程为:2x+y﹣8=0,∴E(x,8﹣2x),|DF|=x,|DE|=8﹣2x﹣x2,|CF|=8﹣x2,直角梯形CEDF的面积为S(x)=x[(8﹣2x﹣x2)+(8﹣x2)]=﹣x3﹣x2+8x,x∈(0,2),求导得S′(x)=﹣3x2﹣2x+8,令S′(x)=0,解得x=或x=﹣2(不合题意,舍去);当x∈(0,)时,S(x)单调递增,x∈(,2)时,S(x)单调递减,∴x=时,S(x)取得最大值是S ()=﹣﹣+8×=;∴科技园区面积S 的最大值为.20.已知椭圆C :的右顶点A (2,0),且过点(Ⅰ)求椭圆C 的方程;(Ⅱ)过点B (1,0)且斜率为k 1(k 1≠0)的直线l 于椭圆C 相交于E ,F 两点,直线AE ,AF 分别交直线x=3于M ,N 两点,线段MN 的中点为P ,记直线PB 的斜率为k 2,求证:k 1•k 2为定值. 【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得a=2,代入点,解方程可得椭圆方程;(Ⅱ)设过点B (1,0)的直线l 方程为:y=k (x ﹣1),由,可得(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,由已知条件利用韦达定理推导出直线PB 的斜率k 2=﹣,由此能证明k •k ′为定值﹣.【解答】解:(Ⅰ)由题意可得a=2, +=1,a 2﹣b 2=c 2, 解得b=1,即有椭圆方程为+y 2=1;(Ⅱ)证明:设过点B (1,0)的直线l 方程为:y=k 1(x ﹣1), 由,可得:(4k 12+1)x 2﹣8k 12x+4k 12﹣4=0,因为点B (1,0)在椭圆内,所以直线l 和椭圆都相交, 即△>0恒成立.设点E (x 1,y 1),F (x 2,y 2),则x 1+x 2=,x 1x 2=.因为直线AE 的方程为:y=(x ﹣2),直线AF的方程为:y=(x﹣2),令x=3,得M(3,),N(3,),所以点P的坐标(3,(+)).直线PB的斜率为k2==(+)=•=•=•=﹣.所以k1•k2为定值﹣.21.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x﹣1(Ⅰ)求a的值(Ⅱ)若,证明:当x>1时,(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x,使得:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出f(x)的导数,可得切线的斜率和切点,解方程可得a的值;(Ⅱ)求出f(x)=lnx+x,要证原不等式成立,即证xlnx+x﹣k(x﹣3)>0,可令g(x)=xlnx+x﹣k(x ﹣3),求出导数,判断符号,可得单调性,即可得证;(Ⅲ)对于在(0,1)中的任意一个常数b,假设存在正数x,使得:.运用转化思想可令H(x)=(x+1)•e﹣x+x2﹣1,求出导数判断单调性,可得最小值,即可得到结论.【解答】解:(Ⅰ)函数f(x)=lnx+ax的导数为f′(x)=+a,在点(t,f(t))处切线方程为y=2x﹣1,可得f′(t)=+a=2,f(t)=2t﹣1=lnt+at,解得a=t=1;(Ⅱ)证明:由(Ⅰ)可得f (x )=lnx+x ,要证当x >1时,,即证lnx >k (1﹣)﹣1(x >1), 即为xlnx+x ﹣k (x ﹣3)>0,可令g (x )=xlnx+x ﹣k (x ﹣3),g ′(x )=2+lnx ﹣k ,由,x >1,可得lnx >0,2﹣k ≥0,即有g ′(x )>0,g (x )在(1,+∞)递增, 可得g (x )>g (1)=1+2k ≥0,故当x >1时,恒成立;(Ⅲ)对于在(0,1)中的任意一个常数b ,假设存在正数x 0,使得:.由e f (x0+1)﹣2x0﹣1+x 02=e ln (x0+1)﹣x0+x 02=(x 0+1)•e ﹣x0+x 02.即对于b ∈(0,1),存在正数x 0,使得(x 0+1)•e ﹣x0+x 02﹣1<0, 从而存在正数x 0,使得上式成立,只需上式的最小值小于0即可.令H (x )=(x+1)•e ﹣x +x 2﹣1,H ′(x )=e ﹣x ﹣(x+1)•e ﹣x +bx=x (b ﹣e ﹣x ), 令H ′(x )>0,解得x >﹣lnb ,令H ′(x )<0,解得0<x <﹣lnb , 则x=﹣lnb 为函数H (x )的极小值点,即为最小值点.故H (x )的最小值为H (﹣lnb )=(﹣lnb+1)e lnb +ln 2b ﹣1=ln 2b ﹣blnb+b ﹣1,再令G (x )=ln 2x ﹣xlnx+x ﹣1,(0<x <1),G ′(x )=(ln 2x+2lnx )﹣(1+lnx )+1=ln 2x >0,则G (x )在(0,1)递增,可得G (x )<G (1)=0,则H (﹣lnb )<0.故存在正数x 0=﹣lnb ,使得.。
2019-2020年高三上学期期末数学试卷含解析
2019-2020年高三上学期期末数学试卷含解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B=.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为.4.根据如图所示的伪代码,则输出S的值为.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.8.若函数的最小正周期为,则的值为.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为.11.若实数x,y满足,则的最小值为.12.已知非零向量满足,则与夹角的余弦值为.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.16.(14分)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD 为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.17.(14分)如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?18.(16分)在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.19.(16分)已知函数,,(1)解关于x(x∈R)的不等式f(x)≤0;(2)证明:f(x)≥g(x);(3)是否存在常数a,b,使得f(x)≥ax+b≥g(x)对任意的x>0恒成立?若存在,求出a,b的值;若不存在,请说明理由.20.(16分)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1)+1=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.[选修4-2:矩阵与变换](本小题满分0分)22.已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b 的值.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t为参数).当圆心C到直线l的距离为时,求m的值.[选修4-5:不等式选讲](本小题满分0分)24.已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B 题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).26.已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.xx江苏省苏北四市(徐州、淮安、连云港、宿迁)联考高三(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合A={﹣2,0},B={﹣2,3},则A∪B={﹣2,0,3} .【考点】并集及其运算.【分析】利用并集定义直接求解.【解答】解:∵集合A={﹣2,0},B={﹣2,3},∴A∪B={﹣2,0,3}.故答案为:{﹣2,0,3}.【点评】本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.2.已知复数z满足(1﹣i)z=2i,其中i为虚数单位,则z的模为.【考点】复数代数形式的乘除运算.【分析】由(1﹣i)z=2i,得,然后利用复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由(1﹣i)z=2i,得=,则z的模为:.故答案为:.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下4个分数的方差为14.【考点】茎叶图.【分析】求出剩下的4个分数平均数,代入方差公式,求出方差即可.【解答】解:剩下的4个分数是:42,44,46,52,平均数是:46,故方差是:(16+4+0+36)=14,故答案为:14.【点评】本题考查了读茎叶图问题,考查求平均数以及方差问题,是一道基础题.4.根据如图所示的伪代码,则输出S的值为20.【考点】程序框图.【分析】根据条件进行模拟计算即可.【解答】解:第一次I=1,满足条件I≤5,I=1+1=2,S=0+2=2,第二次I=2,满足条件I≤5,I=2+1=3,S=2+3=5,第三次I=3,满足条件I≤5,I=3+1=4,S=5+4=9,第四次I=4,满足条件I≤5,I=4+1=5,S=9+5=14,第五次I=5,满足条件I≤5,I=5+1=6,S=14+6=20,第六次I=6不满足条件I≤5,查询终止,输出S=20,故答案为:20【点评】本题主要考查程序框图的识别和应用,根据条件进行模拟计算是解决本题的关键.5.从1,2,3,4,5,6这六个数中一次随机地取2个数,则所取2个数的和能被3整除的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】基本事件总数n=,再用列举法求出所取2个数的和能被3整除包含的基本事件个数,由此能求出所取2个数的和能被3整除的概率.【解答】解:从1,2,3,4,5,6这六个数中一次随机地取2个数,基本事件总数n=,所取2个数的和能被3整除包含的基本事件有:(1,2),(1,5),(2,4),(3,6),(4,5),共有5个,∴所取2个数的和能被3整除的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.6.若抛物线y2=8x的焦点恰好是双曲线的右焦点,则实数a的值为1.【考点】双曲线的简单性质.【分析】求得抛物线的焦点,双曲线的右焦点,由题意可得方程,解方程即可得到a的值.【解答】解:抛物线y2=8x的焦点为(2,0),双曲线的右焦点为(,0),由题意可得为=2,解得a=1.故答案为:1.【点评】本题考查双曲线的方程和性质,同时考查抛物线的焦点,考查运算能力,属于基础题.7.已知圆锥的底面直径与高都是2,则该圆锥的侧面积为.【考点】旋转体(圆柱、圆锥、圆台).【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的侧面积公式代入求出即可.【解答】解:∵圆锥的底面直径与高都是2,∴母线长为:=,∴圆锥的侧面积为:πrl=.故答案为:.【点评】本题考查了圆锥的侧面积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.8.若函数的最小正周期为,则的值为﹣.【考点】正弦函数的图象.【分析】利用正弦函数的周期性求得ω,再利用诱导公式求得的值.【解答】解:∵函数的最小正周期为=,∴ω=10,则=sin(10π•﹣)=sin=sin=﹣sin=﹣,故答案为:.【点评】本题主要考查正弦函数的周期性,利用诱导公式求三角函数的值,属于基础题.9.已知等比数列{a n}的前n项和为S n,若S2=2a2+3,S3=2a3+3,则公比q的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式与求和公式即可得出.【解答】解:∵S2=2a2+3,S3=2a3+3,∴a1=a1q+3,a1(1+q)=+3,∴q2﹣2q=0,q≠0.则公比q=2.故答案为:2.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.已知函数f(x)是定义R在上的奇函数,当x>0时,f(x)=2x﹣3,则不等式f(x)≤﹣5的解集为(﹣∞,﹣3] .【考点】函数奇偶性的性质.【分析】根据函数奇偶性的性质求出当x<0的解析式,讨论x>0,x<0,x=0,解不等式即可.【解答】解:若x<0,则﹣x>0,∵当x>0时,f(x)=2x﹣3,∴当﹣x>0时,f(﹣x)=2﹣x﹣3,∵f(x)是定义在R上的奇函数,∴f(﹣x)=2﹣x﹣3=﹣f(x),则f(x)=﹣2﹣x+3,x<0,当x>0时,不等式f(x)≤﹣5等价为2x﹣3≤﹣5即2x≤﹣2,无解,不成立;当x<0时,不等式f(x)≤﹣5等价为﹣2﹣x+3≤﹣5即2﹣x≥8,得﹣x≥3,即x≤﹣3;当x=0时,f(0)=0,不等式f(x)≤﹣5不成立,综上,不等式的解为x≤﹣3.故不等式的解集为(﹣∞,﹣3].故答案为:(﹣∞,﹣3].【点评】本题主要考查不等式的解集的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.11.若实数x,y满足,则的最小值为8.【考点】基本不等式.【分析】实数x,y满足,可得x=∈,解得y>3.则=y+3+=y﹣3++6,利用基本不等式的性质即可得出.【解答】解:∵实数x,y满足,∴x=∈,解得y>3.则=y+3+=y﹣3++6≥+6=8,当且仅当y=4(x=)时取等号.故答案为:8.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.12.已知非零向量满足,则与夹角的余弦值为.【考点】平面向量数量积的运算.【分析】利用两个向量的加减法的法则,以及其几何意义,余弦定理,数形结合求得与夹角的余弦值.【解答】解:非零向量满足,不妨设=1,设与夹角为θ,如图所示:设=,=,=+,则OA=0B=0C=1,设=2=2,则=2﹣,∠ODA即为θ,△OAC和△OBC都是边长等于3的等边三角形.利用余弦定理可得BD==,cosθ==,故答案为:.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,余弦定理的应用,属于中档题.13.已知A,B是圆上的动点,,P是圆上的动点,则的取值范围为[7,13] .【考点】圆与圆的位置关系及其判定.【分析】求出AB的中点的轨迹方程,即可求出的取值范围.【解答】解:取AB的中点C,则=2||,C的轨迹方程是x2+y2=,|C1C2|=5由题意,||最大值为5+1+=,最小值为5﹣1﹣=.∴的取值范围为[7,13],故答案为[:7,13].【点评】本题考查圆与圆的位置关系,考查学生的计算能力,正确转化是关键.14.已知函数,若函数f(x)的图象与直线y=x 有三个不同的公共点,则实数a的取值集合为[﹣20,﹣16] .【考点】分段函数的应用.【分析】因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,只需g(x)=x3﹣9x2+24x+a (x≥1)与x轴有3个交点即可,【解答】解:因为y=sinx (x<1)与y=x无交点,故只需函数f(x)=x3﹣9x2+25x+a (x≥1)的图象与直线y=x有三个不同的公共点即可,令g(x)=x3﹣9x2+24x+a(x≥1),g′(x)=3x2﹣18x+24=3(x2﹣6x+8)=2(x﹣2)(x﹣4),当x∈(1,2),(4,+∞)时g(x)单调递增,当x∈(2,4)时g(x)单调递减,依题意只需g(x)=x3﹣9x2+24x+a(x≥1)与x轴有3个交点即可,及g(1)=16+a≤0,g(2)=20+a≥0,∴﹣20≤a≤﹣16.故答案为[﹣20,﹣16]【点评】题主要考查函数的图象的交点以及数形结合方法,数形结合是数学解题中常用的思想方法,属于基础题.二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明或演算步骤)15.(14分)(xx秋•淮安期末)在△ABC中,角A,B,C的对边分别为a,b,c.已知2cosA(bcosC+ccosB)=a.(1)求角A的值;(2)若,求sin(B﹣C)的值.【考点】正弦定理;余弦定理.【分析】(1)由正弦定理化简已知等式可得2cosAsinA=sinA,结合sinA≠0,可求,结合范围A∈(0,π),可求A的值.(2)由已知利用同角三角函数基本关系式可求sinB,利用倍角公式可求sin2B,cos2B,由sin(B﹣C)=sin(2B﹣),利用两角差的正弦函数公式即可计算得解.【解答】(本题满分为14分)解:(1)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,…(2分)即2cosAsinA=sinA,因为A∈(0,π),所以sinA≠0,所以2cosA=1,即,…(4分)又A∈(0,π),所以.…(6分)(2)因为,B∈(0,π),所以,…(8分)所以,,…(10分)所以=…(12分)==.…(14分)【点评】本题主要考查了正弦定理,同角三角函数基本关系式,倍角公式,两角差的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16.(14分)(xx秋•淮安期末)如图,在四棱锥E﹣ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取BE中点F,连结CF,MF,证明四边形MNCF是平行四边形,所以MN∥CF,即可证明直线MN∥平面EBC;(2)证明BC⊥平面EAB,得到BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,即可证明直线EA⊥平面EBC.【解答】证明:(1)取BE中点F,连结CF,MF,又M是AE的中点,所以MF=AB,又N是矩形ABCD边CD的中点,所以NC=AB,所以MF平行且等于NC,所以四边形MNCF是平行四边形,…(4分)所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.…(7分)(2)在矩形ABCD中,BC⊥AB,又平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,…(10分)又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.…(14分)【点评】本题考查线面平行、线面垂直的证明,考查学生分析解决问题的能力,属于中档题.17.(14分)(xx秋•淮安期末)如图,已知A,B两镇分别位于东西湖岸MN 的A处和湖中小岛的B处,点C在A的正西方向1km处,tan∠BAN=,∠BCN=,现计划铺设一条电缆联通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元∕km、4万元∕km.(1)求A,B两镇间的距离;(2)应该如何铺设,使总铺设费用最低?【考点】导数在最大值、最小值问题中的应用.【分析】(1)由tan∠BAN=,∠BCN=,得到|AD|,|DB|、|AB|间的关系,然后利用直角三角形的性质求解;(2)方案①:总铺设费用为5×4=20(万元).方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,则总铺设费用为.设,则,,求出函数的极小值,即函数的最小值得答案.【解答】解:(1)过B作MN的垂线,垂足为D,如图示:在Rt△ABD中,,所以,在Rt△BCD中,,所以CD=BD.则,即BD=3,所以CD=3,AD=4,由勾股定理得,(km).所以A,B两镇间的距离为5km.…(4分)(2)方案①:沿线段AB在水下铺设时,总铺设费用为5×4=20(万元).…(6分)方案②:设∠BPD=θ,则,其中θ0=∠BAN,在Rt△BDP中,,,所以.则总铺设费用为.…(8分)设,则,令f'(θ)=0,得,列表如下:所以f(θ)的最小值为.所以方案②的总铺设费用最小为(万元),此时.…(12分)而,所以应选择方案②进行铺设,点P选在A的正西方向km处,总铺设费用最低.…(14分)【点评】本题考查了简单的数学建模思想方法,考查了利用导数求函数的最值,是中档题18.(16分)(xx秋•淮安期末)在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为,且右焦点F到左准线的距离为6.(1)求椭圆C的标准方程;(2)设A为椭圆C的左顶点,P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.(i)当直线PA的斜率为时,求△MFN的外接圆的方程;(ii)设直线AN交椭圆C于另一点Q,求△PAQ的面积的最大值.【考点】椭圆的简单性质.【分析】(1)由题意可知:离心率e==,则a=c,右焦点F到左准线的距离c+=6,即可求得c和a的值,则b2=a2﹣c2=8,即可求得椭圆方程;(2)(i)设直线方程为:y=(x+4),求得M点,即可求得NF的方程和N的坐标,则丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9;(ii)设直线方程为:y=k(x+4),代入椭圆方程,求得P点坐标,求得直线PF 方程,则求得N点坐标,则直线AN:y=﹣﹣,代入椭圆方程,求得M点坐标,求得丨AM丨,△PAQ的面积S===≤=10.【解答】解:(1)由题意可知:椭圆C: +=1(a>b>0)焦点在x轴上,由离心率e==,则a=c,由右焦点F到左准线的距离c+=6,解得:c=2,则a=4,由b2=a2﹣c2=8,∴椭圆的标准方程为:;(2)(i)由(1)可知:椭圆的左顶点(﹣4,0),F(2,0),设直线方程为:y=(x+4),即y=x+2,则M(2,0),k MF==﹣,则k NF=,直线NF:y=(x﹣2)=﹣4,则N(0,﹣4),丨MN丨=6,则以MN为圆心(0,﹣1),半径为3,即x2+(y+1)2=9,(ii)设直线方程为:y=k(x+4),∴,整理得:(1+2k2)x2+16k2x+32k2﹣16=0,解得:x1=4,x2=,则y2=,则P(,),∴k MF==﹣k,由M(0,4k),F(2,0),∴k NF=,则NF:y=(x﹣2),则N(0,﹣),则直线AN:y=﹣﹣,代入椭圆方程:整理得:(1+)x2+x+﹣16=0,解得:x1=4,x2=,则y2=,则Q(,),∴k PQ=,直线PQ:y﹣=(x﹣),则x M=﹣=,∴丨AM丨=+4=,△PAQ的面积S==••=,=≤=10,当且仅当2k=,即k=时,取最大值,△PAQ的面积的最大值10.【点评】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考三角形的面积公式的应用,考查基本不等式的综合应用,属于难题.19.(16分)已知函数,,(1)解关于x(x∈R)的不等式f(x)≤0;(2)证明:f(x)≥g(x);(3)是否存在常数a,b,使得f(x)≥ax+b≥g(x)对任意的x>0恒成立?若存在,求出a,b的值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)通过讨论a的范围,求出不等式的解集即可;(2)设h(x)=f(x)﹣g(x),求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值,证出结论即可;(3)假设存在,得到对任意的x>0恒成立,根据函数的单调性判断即可.【解答】解:(1)当a=0时,,所以f(x)≤0的解集为{0};当a≠0时,,若a>0,则f(x)≤0的解集为[0,2ea];若a<0,则f(x)≤0的解集为[2ea,0].综上所述,当a=0时,f(x)≤0的解集为{0};当a>0时,f(x)≤0的解集为[0,2ea];当a<0时,f(x)≤0的解集为[2ea,0].…(4分)(2)设,则.令h'(x)=0,得,列表如下:所以函数h(x)的最小值为,所以,即f(x)≥g(x).…(8分)(3)假设存在常数a,b使得f(x)≥ax+b≥g(x)对任意的x>0恒成立,即对任意的x>0恒成立.而当时,,所以,所以,则,所以恒成立,①当a≤0时,,所以(*)式在(0,+∞)上不恒成立;②当a>0时,则,即,所以,则.…(12分)令,则,令φ'(x)=0,得,当时,φ'(x)>0,φ(x)在上单调增;当时,φ'(x)<0,φ(x)在上单调减.所以φ(x)的最大值.所以恒成立.所以存在,符合题意.…(16分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.20.(16分)(xx秋•淮安期末)已知正项数列{a n}的前n项和为S n,且a1=a,(a n+1)(a n+1+1)=6(S n+n),n∈N*.(1)求数列{a n}的通项公式;(2)若对于∀n∈N*,都有S n≤n(3n+1)成立,求实数a取值范围;(3)当a=2时,将数列{a n}中的部分项按原来的顺序构成数列{b n},且b1=a2,证明:存在无数个满足条件的无穷等比数列{b n}.【考点】数列的求和;等比数列的通项公式.【分析】(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),可得(a n+1)(a n+1﹣a n﹣1)=6(a n+1),因此a n+1﹣a n﹣1=6,分奇数偶数即可得出.(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,利用单调性即可得出.当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,即可得出.(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),可得5×4m(n﹣1)=5×[3(1+4+42+...+4k﹣1)+1],=3[5(1+4+42+ (4)﹣1)+2]﹣1,….因为5(1+4+42+…+4k﹣1)+2为正整数,可得数列{b n}是数列{a n}中包含的无穷等比数列,进而证明结论.解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,n≥2时,,可得k n是正整数,因此以数列{b n}是数列{a n}中包含的无穷等比数列,即可证明.【解答】解:(1)当n=1时,(a1+1)(a2+1)=6(S1+1),故a2=5;当n≥2时,(a n﹣1+1)(a n+1)=6(S n﹣1+n﹣1),所以(a n+1)(a n+1+1)﹣(a n﹣1+1)(a n+1)=6(S n+n)﹣6(S n﹣1+n﹣1),即(a n+1)(a n+1﹣a n﹣1)=6(a n+1),又a n>0,所以a n+1﹣a n﹣1=6,…(3分)所以a2k﹣1=a+6(k﹣1)=6k+a﹣6,a2k=5+6(k﹣1)=6k﹣1,k∈N*,故…(2)当n为奇数时,,由S n≤n(3n+1)得,恒成立,令,则,所以a≤f(1)=4.…(8分)当n为偶数时,,由S n≤n(3n+1)得,a≤3(n+1)恒成立,所以a≤9.又a1=a>0,所以实数a的取值范围是(0,4].…(10分)(3)证明:当a=2时,若n为奇数,则a n=3n﹣1,所以a n=3n﹣1.解法1:令等比数列{b n}的公比q=4m(m∈N*),则.设k=m(n﹣1),因为,所以5×4m(n﹣1)=5×[3(1+4+42+…+4k﹣1)+1],=3[5(1+4+42+…+4k﹣1)+2]﹣1,…(14分)因为5(1+4+42+…+4k﹣1)+2为正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=4m(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)解法2:设,所以公比.因为等比数列{b n}的各项为整数,所以q为整数,取,则q=3m+1,故,由得,,而当n≥2时,,即,…(14分)又因为k1=2,5m(3m+1)n﹣2都是正整数,所以k n也都是正整数,所以数列{b n}是数列{a n}中包含的无穷等比数列,因为公比q=3m+1(m∈N*)有无数个不同的取值,对应着不同的等比数列,故无穷等比数列{b n}有无数个.…(16分)【点评】本题考查了构造方法、等差数列与等比数列的通项公式及其求和公式,考查了分类讨论方法、推理能力与计算能力,属于难题.附加题[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分0分)21.(xx秋•淮安期末)如图,AB为半圆O的直径,D为弧BC的中点,E为BC 的中点,求证:AB•BC=2AD•BD.【考点】与圆有关的比例线段.【分析】证明△ABD∽△BDE,即可证明结论.【解答】证明:因为D为弧BC的中点,所以∠DBC=∠DAB,DC=DB,因为AB为半圆O的直径,所以∠ADB=90°,又E为BC的中点,所以EC=EB,所以DE⊥BC,所以△ABD∽△BDE,所以,所以AB•BC=2AD•BD.…(10分)【点评】本题考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题.[选修4-2:矩阵与变换](本小题满分0分)22.(xx秋•淮安期末)已知矩阵A=的一个特征值为2,其对应的一个特征向量为a=,求实数a,b的值.【考点】特征向量的定义.【分析】由条件知,Aα=2α,从而,由此能求出a,b的值.【解答】解:∵矩阵A=的一个特征值为2,其对应的一个特征向量为a=,∴由条件知,Aα=2α,即,即,…(6分)∴,解得∴a,b的值分别为2,4.…(10分)【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意特征向量的性质的合理运用.[选修4-4:坐标系与参数方程](本小题满分0分)23.(xx秋•淮安期末)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.直线l:ρsin(θ﹣)=m(m∈R),圆C的参数方程为(t 为参数).当圆心C到直线l的距离为时,求m的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】根据极坐标方程,参数方程与普通方程的关系求出曲线的普通方程,利用点到hi直线的距离公式进行求解即可.【解答】解:由ρsin(θ﹣)=m得ρsinθcos﹣ρcosθsin=m,即x﹣y+m=0,即直线l的直角坐标方程为x﹣y+m=0,圆C的普通方程为(x﹣1)2+(y+2)2=9,圆心C到直线l的距离,解得m=﹣1或m=﹣5.【点评】本题主要考查参数方程,极坐标方程与普通方程的关系,结合点到直线的距离公式解决本题的关键.[选修4-5:不等式选讲](本小题满分0分)24.(xx秋•淮安期末)已知a,b,c为正实数, +++27abc的最小值为m,解关于x的不等式|x+l|﹣2x<m.【考点】绝对值不等式的解法.【分析】根据基本不等式的性质求出m的值,从而解不等式即可.【解答】解:因为a,b,c>0,所以=,当且仅当时,取“=”,所以m=18.…(6分)所以不等式|x+1|﹣2x<m即|x+1|<2x+18,所以﹣2x﹣18<x+1<2x+18,解得,所以原不等式的解集为.…(10分)【点评】本题考查了基本不等式的性质,考查解不等式问题,是一道基础题.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(xx秋•淮安期末)甲、乙、丙分别从A,B,C,D四道题中独立地选做两道题,其中甲必选B题.(1)求甲选做D题,且乙、丙都不选做D题的概率;(2)设随机变量X表示D题被甲、乙、丙选做的次数,求X的概率分布和数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)利用古典概率计算公式、相互独立事件概率计算公式即可得出.(2)利用互斥事件概率计算公式、相互独立事件概率计算公式即可得出.【解答】解:(1)设“甲选做D题,且乙、丙都不选做D题”为事件E.甲选做D题的概率为,乙,丙不选做D题的概率都是.则.答:甲选做D题,且乙、丙都不选做D题的概率为.(2)X的所有可能取值为0,1,2,3.,,,.所以X的概率分布为X的数学期望.【点评】本题考查了古典概率计算公式、互斥事件概率计算公式、相互独立事件概率计算公式及其数学期望计算公式,考查了推理能力与计算能力,属于中档题.26.(xx秋•淮安期末)已知等式(1+x)2n﹣1=(1+x)n﹣1(1+x)n.(1)求(1+x)2n﹣1的展开式中含x n的项的系数,并化简:++…+;(2)证明:()2+2()2+…+n()2=n.【考点】二项式定理的应用;二项式系数的性质.【分析】(1)(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.即可证明.(2)当k∈N*时,=.即可证明.【解答】(1)解:(1+x)2n﹣1的展开式中含x n的项的系数为,由可知,(1+x)n﹣1(1+x)n的展开式中含x n的项的系数为.所以.(2)证明:当k∈N*时,=.所以=.由(1)知,即,所以.【点评】本题考查了二项式定理的性质、组合数的性质,考查了推理能力与计算能力,属于中档题.。
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案
2019-2020年高三上学期期末教学质量检测数学(文)试题 含答案一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 2. 已知集合,,则 .3. 已知等差数列的首项为3,公差为4,则该数列的前项和 .4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答).5. 不等式的解集是 .6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 .8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 .9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示).11. 若,是一二次方程的两根,则 .12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 13. 已知实数、满足,则的取值范围是 .14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D.16. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件17. 则表示复数的点是( )18. A. 1个 B. 4个三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2在锐角中,、、分别为内角、(1)求的大小;(2)若,的面积,求的值.B120.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式.21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由;(2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由.23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中)(1)求;(2)求数列的通项公式;(3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由.静安区xx第一学期期末教学质量检测高三年级数学(文科)试卷答案(试卷满分150分 考试时间120分钟) xx.12一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 计算: . 解:.2. 已知集合,,则 . 解:.3. 已知等差数列的首项为3,公差为4,则该数列的前项和 . 解:.4. 一个不透明袋中有10个不同颜色的同样大小的球,从中任意摸出2个,共有 种不同结果(用数值作答). 解:45.5. 不等式的解集是 . 解:.6. 设8780178(1)x a a x a x a x -=++++,则0178||||||||a a a a ++++= .解:256.7. 已知圆锥底面的半径为1,侧面展开图是一个圆心角为的扇形,则该圆锥的侧面积是 . 解:.8. 已知角的顶点与直角坐标系的原点重合,始边在轴的正半轴上,终边在射线()上,则 . 解:.9. 已知两个向量,的夹角为,,为单位向量,,若,则 . 解:-2.10. 已知两条直线的方程分别为:和:,则这两条直线的夹角大小为 (结果用反三角函数值表示). 解:(或或).11. 若,是一二次方程的两根,则 . 解:-3.12. 直线经过点且点到直线的距离等于1,则直线的方程是 . 解:或.13. 已知实数、满足,则的取值范围是 . 解:.14. 一个无穷等比数列的首项为2,公比为负数,各项和为,则的取值范围是 . 解:.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 在下列幂函数中,是偶函数且在上是增函数的是( )A. B. C. D. 解:D.B 116. 已知直线:与直线:,记3D k =A. 充分非必要条件C. 充要条件解:B.17. 则表示复数的点是( )解:D.18. A. 1个 B. 4个解:C.三、解答题(本大题满分74定区域内写出必要的步骤.19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在锐角中,、、分别为内角、、所对的边长,且满足. (1)求的大小;(2)若,的面积,求的值. 解:(1)由正弦定理:,得,∴ ,(4分) 又由为锐角,得.(6分)(2),又∵ ,∴ ,(8分)根据余弦定理:2222cos 7310b a c ac B =+-=+=,(12分) ∴ 222()216a c a c ac +=++=,从而.(14分)20.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.上海出租车的价格规定:起步费14元,可行3公里,3公里以后按每公里2.4元计算,可再行7公里;超过10公里按每公里3.6元计算,假设不考虑堵车和红绿灯等所引起的费用,也不考虑实际收取费用去掉不足一元的零头等实际情况,即每一次乘车的车费由行车里程唯一确定.(1)小明乘出租车从学校到家,共8公里,请问他应付出租车费多少元?(本小题只需要回答最后结果)(2)求车费(元)与行车里程(公里)之间的函数关系式. 解:(1)他应付出出租车费26元.(4分)(2)14,03() 2.4 6.8,3103.6 5.2,10x f x x x x x <≤⎧⎪=+<≤⎨⎪->⎩ . 21.(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题满分6分.如图,正方体的棱长为2,点为面的对角线的中点.平面交与,于.(1)求异面直线与所成角的大小;(结果可用反三角函数值表示)(2)求三棱锥的体积.解:(1)∵ 点为面的对角线的中点,且平面,∴ 为的中位线,得,又∵ ,∴ 22MN ND MD ===(2分) ∵ 在底面中,,,∴ ,又∵ ,为异面直线与所成角,(6分) 在中,为直角,,∴ .即异面直线与所成角的大小为.(8分) (2),(9分)1132P BMN V PM MN BN -=⋅⋅⋅⋅,(12分)22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.已知函数(其中).(1)判断函数的奇偶性,并说明理由; (2)求函数的反函数;(3)若两个函数与在闭区间上恒满足,则称函数与在闭区间上是分离的.试判断函数与在闭区间上是否分离?若分离,求出实数的取值范围;若不分离,请说明理由. 解:(1)∵ ,∴ 函数的定义域为,(1分)又∵ ()()log )log )0a a f x f x x x +-=+=,∴ 函数是奇函数.(4分) (2)由,且当时,, 当时,,得的值域为实数集. 解得,.(8分)(3)在区间上恒成立,即, 即在区间上恒成立,(11分) 令,∵ ,∴ , 在上单调递增,∴ , 解得,∴ .(16分)23.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分.在数列中,已知,前项和为,且.(其中) (1)求;(2)求数列的通项公式; (3)设,问是否存在正整数、(其中),使得、、成等比数列?若存在,求出所有满足条件的数组;否则,说明理由. 解:(1)∵ ,令,得,∴ ,(3分)或者令,得,∴ .(2)当时,1111(1)()(1)22n n n n a a n a S ++++-+==,∴ 111(1)22n nn n n n a na a S S ++++=-=-,∴ , 推得,又∵ ,∴ ,∴ ,当时也成立,∴ ().(9分) (3)假设存在正整数、,使得、、成等比数列,则、、成等差数列,故(**)(11分) 由于右边大于,则,即, 考查数列的单调性,∵ ,∴ 数列为单调递减数列.(14分) 当时,,代入(**)式得,解得; 当时,(舍).综上得:满足条件的正整数组为.(16分)(说明:从不定方程以具体值代入求解也可参照上面步骤给分)温馨提示:最好仔细阅读后才下载使用,万分感谢!。
19-20学年上学期期末高三数学(理)答案
一、选择题:
数学(理科)答案
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 D A B A B D B A A C D C
二、填空题:
13、 y x
三、解答题:
14、 8
12
15、
13
16、2559
17、(本小题满分 12 分)
解:(I)由 a1 a5 22 ,得 a3 11,所以 d a4 a3 4 ,…………………………………2 分
则 B(
2, 0, 0), A1(0, 0, 2), D(
2, 2
2 , 2),C(0, 2
2, 0) , … … … … … … … … … … … … … 6 分
高三数学(理)答案 第 2 页 共 5 页
设 M (0,t, 0) (0 t
2) ,则, BA1 (
2, 0, 2), A1D (
| ab | 1 (| a | | b |) (| a | 1)(| b | 1) 0 , ……………………………………9 分
故 | ab | 1 | a | | b | .
…………………………………………………………10 分
注:以上各题其它解法相应给分
高三数学(理)答案 第 5 页 共 5 页
S1 S2 Sn (2 1) (22 1) (2n 1) … … … … … … … … … … … … … … … 1 0 分
(2 22 2n ) n 2n1 n 2 .
………………………………………12 分
18、(本小题满分 12 分)
解:(I)由 A 2B ,知 sin A sin 2B 2sin B cos B ,…………………………………………2 分
2019-2020年高三上学期期末考试数学试卷 含解析
2019-2020年高三上学期期末考试数学试卷 含解析考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸。
一、选择题:本大题共10小题,每小题4分,共40分。
1.已知集合,,则 ( )A .B .C .D .2.若复数,其中为虚数单位,则 = ( )A .1−B .1+C .−1+D .−1−3. “一条直线与平面内无数条直线异面”是“这条直线与平面平行”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4. 二项式的展开式中常数项为 ( )A .B .C .D .5.若向量(sin 2,cos ),(1,cos )a b ααα==,且,则的值是 ( )A .B .C .D .26.点P 为直线上任一点,,则下列结论正确的是 ( )A .B .C .D .以上都有可能7.设函数,若关于x 的方程恰有三个不同的实数根,则实数a 的取值范围是 ( )A .B .C .D .8.已知数列的首项,前n 项和为,且满足,则满足的n 的最大值是 ( )A .8B .9C .10D .119.在中,点A 在OM 上,点B 在ON 上,且,,若,则终点P 落在四边形ABNM 内(含边界)时,的取值范围是 ( )A .B .C .D .10.点P 为棱长是2的正方体的内切球O 球面上的动点,点M 为的中点,若满足,则动点P 的轨迹的长度为 ( )A .B .C .D .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
11.某几何体的三视图是如图所示的直角三角形、半圆和等腰三角形,各边的长度如图所示,则此几何体的体积是______,表面积是____________.12.袋中有3个大小、质量相同的小球,每个小球上分别写有数字,随机摸出一个将其上的数字记为,然后放回袋中,再次随机摸出一个,将其上的数字记为,依次下去,第n 次随机摸出一个,将其上的数字记为记,则(1)随机变量的期望是_______;(2)当时的概率是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高三上期末数学试卷及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分。
考试用时120分钟。
一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只有一项是符合题目要求的)1、已知全集U ={1,2,3,4,5,6,7,8},A ={3,4,5},B ={1,3,6},那么集合M ={2,7,8}是A .A ∪B B .A ∩BC .U A ∪U BD .U A ∩U B 2、在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5等于( ) A .16 B .27 C .36 D .-273、设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB → -AC →)=0,则△ABC 的形状是( )A 直角三角形B 等腰三角形C 等腰直角三角形D 等边三角形 4、某班40人随即平均分为两组,两组学生一次考试的成绩如下表:则全班的平均成绩和标准差为 ( )A 、80,5B 、90,5C 、85,5D 、85,515、我们知道,若点P (x 0, y 0)是抛物线y 2=4x 上的点,则直线y 0y =2(x +x 0)与抛物线切于点P .现已知点P ((x 0, y 0)满足条件y 02<4x 0,则直线y 0y =2(x +x 0)与抛物线的公共点的个数为 A 、0 B 、1 C 、2 D 、不确定6、若函数y =sinx +f (x ),在区间[-π4,3π4]内单调递增,则f (x )可能是 ( )A 、1B 、-cosxC 、sinxD 、cosx 7、若log a 2<log b 2<0,则( )A .0<a <b <1B .a >b >1C .0<b <a <1D .b >a >18、已知函数f (x )是R 上增函数,且它的图象过点A (0,-2),B (3,2),则不等式|f (x +1)|≥2的解为( )A 、(-∞,-1)∪[2,+∞)B 、[2,+∞)C 、(-∞,-1]D 、[3,+∞) 9、过原点作直线xcos θ+ysin θ+1=0垂线,垂足为M ,则M 点的轨迹方程是( ) A .y =xtan θ B .xsin θ-ycos θ=0 C .x 2+y 2=1 D .x 2cos θ+y 2sin θ=1 10、如图,在四棱锥S —ABCD 中,为了推出AB ⊥BC ,还需从下述条件:SCD①SB ⊥面ABCD ②SC ⊥CD ③CD ∥面SAB ④BC ⊥CD 中选出部分条件来,这些条件可能是( )A 、②③B 、①④C 、②④D 、①③④11、函数f (x )对于任意的实数x 都有f (x )<f (x +1)成立,则( )A 、f (x )一定是定义域上的增函数B 、f (x )一定只有单调增区间C 、f (x )可能存在单调减区间D 、f (x )一定不存在单调减区间12、设命题p :关于x 的不等式a 1x 2+b 1x +c 1>0与a 2x 2+b 2x +c 2>0的解集相同;命题q :a 1a 2=b 1b 2=c 1c 2.那么p 是q 的( )条件。
A 、充分不必要 B 、必要不充分 C 、充要 D 、不充分也不必要 二、填空题(本大题共4小题,每小题4分,共16分。
把答案填在题中横线上)13、将一张画有直角坐标系的图纸折叠一次,使得点A (0,2)与B (4,0)重合。
若此时点C (7,3)与点D (m ,n )重合,则m +n 的值是 。
14、设f (x )=(2x +5)6,则导函数f ’(x )中的x 3的系数是15、如图,A (1,0),B (0,1),C (23,45),目标函数t =ax -y 的可行域为四边形OACB ,若当且仅当x =23,y =45时目标函数t 取得最小值,则实数a 的取值范围是 。
16、若一个四面体的三个面是直角三角形,下列三角形①直角三角形②锐角三角形③钝角三角形。
其中能成为这个四面体的第四个面的序号是________________(把你认为正确的序号都填上)三、解答题(本大题共6小题,共74分。
解答应写出文字说明、证明过程或演算步骤)17、(本题满分12分)同时抛掷15枚均匀的硬币一次 (1)试求至多有1枚正面向上的概率;(2)试问出现正面向上为奇数枚的概率与出现正面向上为偶数枚的概率是否相等?请说明理由。
18、(本题满分12分) 设三角函数f (x )=asin (kx 5+π3)(其中a ≠0,k ≠0);BO(1)写出f(x)的最大值M,最小值m和最小正周期T;(2)试求最小正整数k,使得当自变量x在任意两个奇数间(包括奇数本身)变化时,函数f(x)至少有一个值是M与一个值是m;(3)若a=1,根据(2)得到的k值,用“五点法”作出此函数f(x)的图像(作一周期的图像)。
19、(本题满分12分)已知向量a,b,c,d及实数x,y,且|a|=1,|b|=1,c=a+(x2-3)b,d=-y a+x b,如果a⊥b,c⊥d,|c|≤10。
(1)求x,y的函数关系式y=f(x)及定义域;(2)判断f(x)的单调性,指出单调区间,并求出函数的最大值、最小值。
20、(本题满分12分)如图所示,正四棱锥P-ABCD中,侧棱P A与底面ABCD所成角的正切值为6 2.(1)求侧面P AD与底面ABCD所成二面角的大小.(2)若E是PB的中点,求异面直线PD与AE所成角的正切值.(3)在侧面P AD上寻找一点F,使EF⊥侧面PBC,试确定F点的位置,并加以证明21、(本题满分14分)已知函数f(x)=a0+a1x+a2x2+a3x3+…+a n x n(n∈N+),且y=f(x)的图象经过点(1,n2),数列{a n}(n∈N+)为等差数列。
(1)求数列{a n}的通项公式;(2)当n 为奇函数时,设g (x )=12[f (x )-f (-x )] ,是否存在自然数m 和M ,使不等式m <g (12)<M 恒成立,若存在,求出M -m 的最小值;若不存在,说明理由。
22、(本题满分14分)已知曲线C :x 2-y 2=1及直线l :y =kx -1,曲线C '与C 关于直线l 对称。
(1)当k =1时,求曲线C '的方程;(2)k 为何值时,曲线C 上存在不同两点P 、Q 关于直线l 对称; (3)求证:不论实数k 为何值,C 与C '恒有公共点。
江苏省西亭高级中学高三数学模拟试卷答案一、选择题D B B D A ,B C A C D , C D二、填空题:13、345 14、24000 15、(-125,-310) 16、①②③三、解答题:17、解:(1) (2)相等。
18.[解] (1)T =10π|k |当a >0时,M =a ,m = -a 。
当a <0时,M = -a ,m = a 。
(2)即要周期10π|k |≤2,得|k |≥5π。
∴最小正整数k =16。
(3)略。
19、解:(1)∵a ⊥b ∴ab =0 ∵|c |≤10 ∴c 2≤10c 2=[a +(x 2-3)b ]2=a 2+2(x 2-3)ab +(x 2-3)2b 2=1+(x 2-3)2≤10 ∵c ⊥d ∴cd =-y a 2+(x 2-3)x b 2+(x -y (x 2-3))ab =-y +(x 2-3)x =0 ∴y =(x 2-3)x =x 3-3x (-6≤x ≤6)(2)f ,(x )=3x -3 则可得-6<x <-1或1<x <6; f ,(x )<0可得-1<x <1 ∴f (x )的单调递增区间为(-6,-1)或(1,6);f (x )的单调递减区间为(-1,1) 可以求出当x =6时f (x )的最大值为36;当x =-6时f (x )的最小值为-36 20解:1)取AD 中点M ,设PO ⊥面ABCD ,连MO ,PM ,则∠PMO 为二面角的平面角, ∠P AO 为侧棱与底面ABCD 所成的角,tan ∠P AO =62设AB =a ,AO =22a ,PO =AOtan ∠P AO =32a , tan ∠PMO =POMO=3∴∠PMO =60º2)连OE ,OE ∥PD ,∠OEA 为异面直线PD 与AE 所成的角。
∵AO ⊥BD AO ⊥PO ∴AO ⊥面PBD ∴AO ⊥OE在Rt △AOE 中,OE =12PD =54a ,∴tan ∠OEA =AO EO =2105。
3)延长MO 交BC 于N ,取PN 中点G ,连EG ,MG 。
∵BC ⊥MN , BC ⊥PN ∴BC ⊥面PMN ,∴面PMN ⊥面PBC又PM =PN ,∠PMN =60º,∴△PMN 为正三角形。
∴MG ⊥PN 面PMN ∩面PBC =PN ,∴MG ⊥面PBC 取AM 中点F ,∵EG ∥MF ,MF =12MA =EG∴EF ∥MG ,∴EF ⊥侧面PBC21、(1)据题意:f (1)=n 2 即a 0+a 1+a 2+……+a n =n 2令n =1 则a 0+a 1=1,a 1=1-a 0令n =2 则a 0+a 1+a 2=22,a 2=4-(a 0+a 1)=4-1=3 令n =3 则a 0+a 1+a 2+a 3=32,a 3=9-(a 0+a 1+a 2)=9-4=5 ∵{an }为等差数列 ∴d =a 3-a 2=5-3=2a 1=3-2=1 a 0=0 a n =1+(n -1)·2=2n -1 (2)由(1)得:f (x )=a 1x +a 2x 2+a 3x 3+…+a n x nn 为奇数时,f (-x )=-a 1x +a 2x 2-a 3x 3+…+a n -1x n -1-a n x ng (x )= 12[f (x )-f (-x )] =a 1x +a 3x 3+a 5x 5+…+a n x ng (12)=1(12)+5(12)3+9(12)5+…+(2n -1)(12)n 14 g (12)=1(12)3+5(12)5+9(12)7+…+(2n -1)(12)n +2 相减得: g (12)=149-139(12)n -23n (12)n可证g (12)为n 的增函数,当n =1时,g (12)=12149-139(12)n -23n (12)n <149∴使m <g (12)<M 恒成立的自然m 的最大值为0,M 最小值为2。
M -m 的最小值为2。
22、(1)解:设曲线C '上任意一点(x 、y )关于l 的对称点P '(x 0,y 0) 求得C '方程为(y +1)2-(x -1)2=1(2)解:由已知条件设PQ 所在直线方程为:y =-1kx +b (k ≠0)(显然k =0时不合题意)则有:⎩⎪⎨⎪⎧y =-1k x +bx 2-y 2=1 消去y 求得:△=4(b 2+1-1k2)>0设PQ 中点为M (x m ,y m ) ,则x m =-2bk2(1-1k 2)=kb 1-k 2,y m =-bk 21-k 2代入l 方程得k 2>1或0<k 2<15即k ∈(-∞,-1)∪(-55,0)∪(0,55)∪(1,+∞) (3)证明:①若C 与l 有公共点P ,则C 与C '有公共点且在l 上∴ ⎩⎨⎧y =kx -1x 2-y 2=1有实数解.∴ 方程x 2-(kx -1)2=1 即 (1-k 2)x 2+2kx -2=0有实数解 当k 2=1,即k =±1时,x =±1,C 与l 有两公共点. k 2≠1时,即k ≠±1时,△=4k 2+8(1-k 2)≥0 解得-2≤k ≤2,且k ≠±1.∴当-2≤k ≤2时,C 与C '有公共点且在l 上;②若C 与C '有公共点P 且不在l 上时,则P 关于l 的对称点Q 也是C 与C '的公共点,所以P 、Q 两点均在C 上,则C 上有不同两点P 、Q 关于l 对称,由②知此时k ∈(-∞,-1)∪(-55,0)∪(0,55)∪(1,+∞) 综合①、②知,无论k 为何值C 与C '恒有公共点。