考研数学一试题及答案解析
2020年考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2020年考研数学一真题及答案解析
(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1
2023年考研数学一真题及答案
2023年考研数学一真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A. B.C. D.【答案】B.【解析】由已知,则,,所以斜渐近线为.故选B.2.若的通解在上有界,则().A. B.C. D.【答案】D. 【解析】微分方程的特征方程为.若,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若,则,通解为,在上有界.时,若,则,通解为,在上无界. 综上可得,.3. 设函数由参数方程确定,则( ).A .连续,不存在 B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续..时,;时,;时,,故在连续.,,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得绝对收玫; 设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,,记矩阵的秩分别为,则( )A. B. C. D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故. 综上,比较可得B正确.6. 下列矩阵不能相似对角化的是( )A. B.C. D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化. 选D.7. 已知向量,,,,若既可由线性表示,也可由线性表示,则( ) A . B.C. D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,,解得,故.8.设服从参数为1的泊松分布,则().A. B. C. D.【答案】C.【解析】方法一由已知可得,,,故,故选C.方法二由于,于是,因此. 由已知可得,,故,故选C. 9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,,,,则( )A. B.C. D.【答案】D.【解析】由两样本相互独立可得与相互独立,且,,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,,为来自总体的简单随机样本,且为的无偏估计,则( ).A. B. C. D.【答案】A.【解析】由与,为来自总体的简单随机样本,,相互独立,且,,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,,即,解得,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当时,与是等价无穷小,则.【答案】【解析】由题意可知,,于是,即,从而.12.曲面在处的切平面方程为_ .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则.【答案】【解析】由题意知,于是.14.设连续函数满足,,则.【答案】【解析】.15.已知向量,若,则.【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则. 答案】【解析】.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,. 令,解得唯一驻点,,故.18.(本题满分12分)求函数的极值.【解】由已知可得,,由解得驻点为.又,,.在处,,,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,,,,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,,,,两式相减可得,所以,即.21.(本题满分12分)设二次型,,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得..令,则,即时,规范形为.令,则时,规范形为.故可得时化为,可逆变换,其中. (2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故合同但不相似,故不存在可逆矩阵使得.若存在正交矩阵,当时,,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,,,故.(2)由(1)可知,,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故。
2020年考研数学(一)真题及解析
2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。
1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。
2020考研数学(一)答案解析
π
1
2
π
E ( XY ) E ( X sin X )2π
x sin x
dx
02x sin xdx
π
π
2
2
π
2
π
π
02xd cos x
x cos x|0202cos xdx
π
π
2
sin x|
π
2
.
02
π
π
9
故 cov( X , Y )2π0π2.
三、解答题
(15)(本题满分10分)
f ( x) 0.
x
x
综上,
f ( x )d x
f ( x ) af ( x)
lim
f
( x ) af ( x )
f (0) af (0)
am n.
0
0
x
2f
12.f(x,y)0xyext2dt,则
.
x y
(1,1)
(12)【答案】4e.
【解析】因为
2f
2f
,又
f
ex xy2xxex3y2,
x y
y x
x , y0,0x2y2
x , y0,0
x2y2
(4) 设R为幂级数anxn的收敛半径,r是实数,则
(
)
n1
(A)anrn发散时,
r
R.
n 1
(B)anrn发散时,
r
R.
n 1
(C)
r
R时,anrn发散.
n 1
(D)
r
R时,anrn发散.
n 1
(4)【答案】(A).
【解析】若anrn发散,则
考研数学一真题及答案解析参考
考研数学⼀真题及答案解析参考2019年考研数学⼀真题⼀、选择题,1~8⼩题,每⼩题4分,共32分.下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的.1.当0→x 时,若x x tan -与k x 是同阶⽆穷⼩,则=k . . ..2.设函数>≤=,0,ln ,0,)(x x x x x x x f 则0=x 是)(x f 的A.可导点,极值点.B.不可导点,极值点.C.可导点,⾮极值点.D.不可导点,⾮极值点.3.设{}n u 是单调增加的有界数列,则下列级数中收敛的是A..1∑∞=n n nu B.nn nu 1)1(1∑∞=-. C.∑∞=+-111n n n u u . D.()∑∞=+-1221n n n u u . 4.设函数2),(y xy x Q =,如果对上半平⾯(0>y )内的任意有向光滑封闭曲线C 都有?=+Cdy y x Q dx y x P 0),(),(,那么函数),(y x P 可取为A.32y x y -.B.321yx y -. C.yx 11-. D.yx 1-. 5.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则⼆次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+. C.232221y y y --.D.232221y y y ---.6.如图所⽰,有3张平⾯两两相交,交线相互平⾏,它们的⽅程组成的线性⽅程组的系数矩阵和增⼴矩阵分别记为A A ,,则A..3)(,2)(==A r A rB..2)(,2)(==A r A rC..2)(,1)(==A r A rD..1)(,1)(==A r A r7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是 A.).()()(B P A P B A P +=Y B.).()()(B P A P AB P = C.).()(A B P B A P =D.).()(B A P AB P =8.设随机变量X 与Y 相互独⽴,且都服从正态分布),(2σµN ,则{}1<-Y X P A.与µ⽆关,⽽与2σ有关. B.与µ有关,⽽与2σ⽆关.C.与2,σµ都有关.D.与2,σµ都⽆关.⼆、填空题:9~14⼩题,每⼩题4分,共24分. 9. 设函数)(u f 可导,,)sin (sin xy x y f z +-=则yz cosy x z cosx +11=. 10. 微分⽅程02'22=--y y y 满⾜条件1)0(=y 的特解=y .11. 幂级数nn n x n ∑∞=-0)!2()1(在)0∞+,(内的和函数=)(x S .12. 设∑为曲⾯)0(44222≥=++z z y x 的上侧,则dxdy z x z--2244=.13. 设),,(321αααA =为3阶矩阵.若21αα,线性⽆关,且2132ααα+-=,则线性⽅程组0=x A 的通解为.14. 设随机变量X 的概率密度为<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )(. 三、解答题:15~23⼩题,共94分.解答应写出⽂字说明、证明过程或演算步骤.15.(本题满分10分)设函数)(x y 是微分⽅程2'2x e xy y -=+满⾜条件0)0(=y 的特解.(1)求)(x y ;(2)求曲线)(x y y =的凹凸区间及拐点. 16.(本题满分10分)设b a ,为实数,函数222by ax z ++=在点(3,4)处的⽅向导数中,沿⽅向j i l 43--=的⽅向导数最⼤,最⼤值为10.(1)求b a ,;(2)求曲⾯222by ax z ++=(0≥z )的⾯积. 17.求曲线)0(sin ≥=-x x e y x 与x 轴之间图形的⾯积. 18.设dx x x a n n ?-=1 021,n =(0,1,2…)(1)证明数列{}n a 单调减少,且221-+-=n n a n n a (n =2,3…)(2)求1lim-∞→n nn a a .19.设Ω是锥⾯())10()1(2222≤≤-=-+z z y x 与平⾯0=z 围成的锥体,求Ω的形⼼坐标.20.设向量组TT T a )3,,1(,)2,3,1(,)1,2,1(321===ααα,为3R 的⼀个基,T)1,1,1(=β在这个基下的坐标为Tc b )1,,(.(1)求c b a ,,.(2)证明32,a a ,β为3R 的⼀个基,并求,,32a a β到321,,a a a 的过度矩阵.21.已知矩阵----=20022122x A 与-=y B 00010012相似(1)求y x ,.(2)求可可逆矩阵P ,使得.1B AP P =-22.设随机变量X 与Y 相互独⽴,X 服从参数为1的指数分布,Y 的概率分布为{}{}),10(,11,1<<-===-=p p Y P p Y P 令XY Z =(1)求z 的概率密度.(2)p 为何值时,X 与Z 不相关. (3)X 与Z 是否相互独⽴?23.(本题满分11分)设总体X 的概率密度为其中µ是已知参数,0>σ是未知参数,A 是常数,n X …X X ,,21来⾃总体X 的简单随机样本.(1)求A ;(2)求2σ的最⼤似然估计量2019年全国硕⼠研究⽣⼊学统⼀考试数学试题解析(数学⼀)9.yxx y cos cos + 10.23-x e 11.x cos 12.332 13. ,T )1,2,1(-k k 为任意常数. 14. 解:(1))()()(2 222c x ec dx e ee x y x xdxx xdx+=+??=---?,⼜0)0(=y ,故0=c ,因此.)(221x xe x y -=(2)22221221221)1(x x x ex ex ey ----=-=',22222122132121)3()3()1(2x x x x ex x e x x xex xey -----=-=---='',令0=''y 得3,0±=x所以,曲线)(x y y =的凹区间为)0,3(-和),3(+∞,凸区间为)3,(--∞和)3,0(,拐点为)0,0(,)3,3(2 3---e ,)3,3(23-e .15. 解:(1))2,2(by ax z =grad ,)8,6()4,3(b a z =grad ,由题设可得,4836-=-ba ,即b a =,⼜()()108622=+=b a z grad ,所以,.1-==b a(2)dxdy y z x z S y x ??≤+??+??+=22222)()(1=dxdy y x y x ??≤+-+-+22222)2()2(1 =dxdy y x y x ??≤+++22222441=ρρρθπd d ??2241=20232)41(12 12ρπ+?= .313π19.由对称性,2,0==y x ,--===ΩΩ102102101)1()1(dz z dz z z dxdy dz dxdy zdz dv zdv z zzD D ππ=.4131121)1()1(1212==--??dz z dz z z20.(1)123=b c βααα++即11112311231b c a ???????? ? ? ? ?++= ? ? ? ? ? ? ? ?????????,解得322a b c =??=??=-?.(2)()23111111=331011231001ααβ→-,,,所以()233r ααβ=,,,则23ααβ,,可为3R 的⼀个基.则()()1231231101=0121002P ααβααα-??=-??,,,,. 21.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+??-=-?,解得3 2x y =??=-?(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α?? ?- ? ;2=1λ-,22=10α-?? ? ? ???;3=2λ-,31=24α-??. 所以存在()1123=P ααα,,,使得111212P AP -??=Λ=-??-. B 的特征值与对应的特征向量分别为1=2λ,11=00ξ?? ? ?;2=1λ-,21=30ξ?? ?- ? ;3=2λ-,30=01ξ??. 所以存在()2123=P ξξξ,,,使得122212P AP -??=Λ=-??-. 所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --??==--. 22.解:(I )Z 的分布函数(){}{}{}{}(){},1,11F z P XY z P XY z Y P XY z Y pP X z p P X z =≤=≤=-+≤==≥-+-≤从⽽当0z ≤时,()z F z pe =;当0z >时,()()()()1111z z F z p p e p e --=+--=--则Z 的概率密度为()(),01,0z zpez f z p e z -. (II )由条件可得()()()()()()()()()22E XZ E X E Z E X E Y E X E Y D X E Y -=-=,⼜()()1,12D X E Y p ==-,从⽽当12p =时,(),0Cov X Z =,即,X Z 不相关.(III )由上知当12p ≠时,,X Z 相关,从⽽不独⽴;当12p =时,121111111111,,,,2222222222112P X Z P X XY P X X P X X F e -≤≤=≤≤=≤≥-+≤≤???==- ?⽽12112P X e -??≤=-,121111112222222P Z P X P X e -≤=≤+≥-=-?????? ?????????,显然1111,2222P X Z P X P Z≤≤≠≤≤,即,X Z 不独⽴.从⽽,X Z 不独⽴.23.解:(I )由()2221x Aedx µσµσ--+∞=?t =201t e dt +∞-==?,从⽽A =(II )构造似然函数()()22112212,,1,2,,,,,,0,ni i n x i n A e x i n L x x x µσµσσ=--?∑≥= ?=? L L 其他,当,1,2,,i x i nµ≥=L 时,取对数得()22211ln ln ln 22ni i n L n A x σµσ==---∑,求导并令其为零,可得()22241ln 1022nii d L n x d µσσσ==-+-=∑,解得2σ的最⼤似然估计量为()211n ii x n µ=-∑.。
2024年考研数学一真题及解析
2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。
下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。
2022年考研数学一真题解析
2022年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知()f x 满足1()lim1ln x f x x→=,则()(A )(1)0f =.(B )1lim ()0x f x →=.(C )(1)1f '=.(D )1lim ()1x f x →'=.【答案】(B ).【解析】11()lim ()lim ln 0ln x x f x f x x x →→⎡⎤=⋅=⎢⎥⎣⎦,(B )正确,但()f x 连续性未知,故(1)f 未知,其他三项均错.(2)已知()yz xyf x=,且()f u 可导,2(ln ln )z zxy y y x x y∂∂+=-∂∂,则()(A )1(1),(1)02f f '==.(B )1(1)0,(1)2f f '==.(C )1(1),(1)12f f '==.(D )(1)0,(1)1f f '==.【答案】(B ).【解析】21z z y y y y y xy x yf xyf y xf xyf x y x x x x x x ∂∂⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''+=+-++ ⎪ ⎪⎪ ⎪⎢⎥⎢⎥∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦212ln ln ()ln ,22y y y yy xyf y f f u u u x x x x x ⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪⎝⎭⎝⎭1111(1)0,(1)ln 222u f f u =⎛⎫'∴==+=⎪⎝⎭,选(B ).(3)设有数列{}n x ,其中n x 满足ππ22n x -,则()(A )若lim cos(sin )n n x →∞存在,则lim n n x →∞存在.(B )若lim sin(cos )n n x →∞存在,则n n x ∞→lim 存在.(C )若)cos(sin lim n n x ∞→存在,则n n x sin lim ∞→存在,但n n x ∞→lim 不一定存在.(D )若)sin(cos lim n n x ∞→存在,则n n x cos lim ∞→存在,但n n x ∞→lim 不一定存在.【答案】(D ).【解析】取π(1)2nn x =-,则(A )、(B )、(C )均错,且(D )的“lim n n x →∞不一定存在”是正确的;(D )的“lim cos n n x →∞存在”的原因:当ππ22n x - 时,0cos 1n x ,而sin x 在[0,1]上单调,故lim cos n n x →∞存在.(4)已知110d 2(1cos )x I x x =+⎰,120ln(1)d 1cos x I x x +=+⎰,1302d 1sin xI x x=+⎰,则()(A )321I I I <<.(B )312I I I <<.(C )231I I I <<.(D )123I I I <<.【答案】(A ).【解析】令()ln(1)2x f x x =-+,111()212(1)x f x x x -'=-=++,当01x <<时,()0f x '<,所以()f x 在[0,1]上单调递减,当01x <<时()(0)0f x f <=,所以ln(1)2x x <+,ln(1)2(1cos )1cos x x x x +<++,12I I <;又01x 时,ln(1)2111cos 1cos 11sin sin 22x x x x xx x xx +<=++++ ,故23I I <,选(A ).(5)下列4个条件中,3阶矩阵A 可以相似对角化的一个充分但不必要条件为()(A )A 有3个不相等的特征值.(B )A 有3个线性无关的特征向量.(C )A 有3个两两线性无关的特征向量.(D )A 的属于不同特征值的特征向量相互正交.【答案】(A ).【解析】选项(A ):A 有3个互不相同特征值,则A 可对角化,但是A 可相似对角化,A 的特征值可能有重根,正确;选项(B ):A 有3个线性无关的特征向量是A 可对角化的充要条件;选项(C ):3个特征向量两两线性无关,不能保证整体线性无关,故不能推出A 可对角化;选项(D ):实对称矩阵不同特征值的特征向量正交,可对角化的矩阵不一定是实对称矩阵.(6)设A ,B 均为n 阶矩阵,若方程组=0Ax 与x =0B 同解,则()(A )方程组⎛⎫=⎪⎝⎭0A O y E B 只有零解.(B )方程组⎛⎫=⎪⎝⎭0EA y OAB 只有零解.(C )方程组⎛⎫=⎪⎝⎭0A B y O B 与⎛⎫=⎪⎝⎭0BA y OA 同解.(D )方程组⎛⎫=⎪⎝⎭0ABB y OA 与⎛⎫= ⎪⎝⎭0BA A y O B 同解.【答案】(C).【解析】由,A B 为n 阶实矩阵,0=Ax 与0Bx =同解,则⎛⎫==⎪⎝⎭()()A r A r B r B ,即,A B 行向量组等价.由⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 行行A B A O B A B O O B O B OA O A ,则0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫= ⎪⎝⎭A O y O B 同解,0⎛⎫=⎪⎝⎭BA y O A 与0⎛⎫= ⎪⎝⎭B O y O A 同解,令12⎛⎫= ⎪⎝⎭y y y ,12,y y 均为n 维向量,则12000⎧⎛⎫=⇔⎨⎪⎝=⎭⎩=By Ay A O y O B ,12000⎧⎛⎫=⇔⎨ ⎪⎝=⎭⎩=Ay By B O y O A .由1100==,By Ay 同解,2200==,By Ay 通解,故0⎛⎫=⎪⎝⎭A B y O B 与0⎛⎫=⎪⎝⎭BA y O A 同解.故选(C).(7)设向量组123241111111λλλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,αααα,若向量组123,,ααα与412,,ααα等价,则λ可取()(A )01{,}.(B )2λλλ∈≠-R {|,}.(C )12λλλλ∈≠-≠-{|,,}R .(D )1λλλ∈≠-{|,}R .【答案】(C).【解析】记123ααα=(,,)A ,142ααα=(,,)B ,由222211λλλ==+--||()(),||()A B ,当21λλ≠-≠±,时,00≠≠,||||B A ,即3==()()r A r B ,则123,,ααα与412,,ααα均为3R 的基,故等价;当1λ=-时,33=<(),()r A r B ,故123,,ααα与412,,ααα不等价;当2λ=-时,33<=(),()r A r B ,故123,,ααα与412,,ααα不等价;当1λ=时,1===()()(,)r A r B r A B ,故123ααα,,,124ααα,,等价;故选(C).(8)设随机变量(0,3)X U ,随机变量Y 服从参数为2的泊松分布,且X 与Y 协方差为1-,则(21)D X Y -+=()(A )1.(B )5.(C )9.(D )12.【答案】(C ).【解析】(21)4()()4(,)D X Y D X D Y Cov X Y -+=+-由(0,3)X U ,2(30)3()124D X -==;(2)Y P ,()2D Y =所以(21)4()()4(,)9D X Y D X D Y Cov X Y -+=+-=,选(C ).(9)设随机变量1234,,,X X X X 独立同分布,且1X 的4阶矩存在.设1(),1,2,3,4kk E X k μ==,则由切比雪夫不等式,对于任意的0ε>,有2211n i i P X n με=⎧⎫-⎨⎬⎩⎭∑ ()(A )2422n μμε-.(B2.(C )2212n μμε-.(D2.【答案】(A ).【解析】记211n i i X Y n ==∑,显然可得2()E Y μ=;则22211()n i i D Y P X n μεε=⎧⎫-⎨⎬⎩⎭∑ ;又22422211142211111()()[()()]()n i i D Y D X D X E X E X n nn n μμ=⎛⎫===-=- ⎪⎝⎭∑所以22422211n i i P X n n μμμεε=⎧⎫--⎨⎬⎩⎭∑ ,选(A ).(10)设随机变量(0,1)X N ,在X x =条件下随机变量(,1)Y N x ,则X 与Y 的相关系数为()(A )14.(B )12.(C)3.(D)2.【答案】(D ).【解析】由题意22(),xf x x -=-∞<<+∞且2()2(),,y x Y X f y x y --=-∞<<+∞所以22()21(,)()()e ,,2x y x X Y X f x y f x f y x x y +--==-∞<<+∞π又22()22()(,)d d d d xy x E XY xyf x y x y xx yy---+∞+∞+∞+∞-∞-∞-∞-∞==⎰⎰⎰⎰222d 1xxx -+∞-∞==⎰又因为222222()2211()(,)d ed eed 22y x xyyx xy Y f y f x y x x x+---+∞+∞+∞---∞-∞-∞===ππ⎰⎰⎰222()4241eed ,2yy yx x y ----+∞-∞==-∞<<+∞π⎰故(0,2),()2Y N D Y = ;所以2XY ρ--==,选(D ).二、填空题:11~16小题,每小题5分,共30分.(11)函数22(,)2f x y x y =+在点(0,1)的最大方向导数为_______.【答案】4.【解析】(,)f x y 在某一点处的最大方向导数是其梯度的模,(0,1)(0,1)20f xx∂==∂,(0,1)(0,1)44f yy∂==∂4=.(12)2e 1x =⎰_______.【答案】4.【解析】2e 1x⎰2e1ln 2d t t t t⋅e 14ln d t t =⎰e14(ln )4t t t =-=(13)当0,0x y 时,22e x yx k y ++ 恒成立,则k 的取值范围是_______.【答案】)24e ,-⎡+∞⎣.【解析】原不等式即22()(0,0)e ,,x y k y y x x -++ 令22()(,))(0,0,e ,x y x y f x y y x -+=+ 当0,0x y >>时,直接求驻点,22()22()(2)e 0(2)e 0x y x y x y f x x y f y x y -+-+''=--==--=,,解得1x y ==,且2(1,1)2e f -=.当0x =时,2e (0()),yf y yg y -==,2()2e e 0,0y y g y y y y --'=-==或2,且2(0)0,(2)4e g g -==.当0y =时,同理解得2(0,0)0,(2,0)4e f f -==.比较可得,(,)f x y 的最大值为2(0,2)(2,0)4e f f -==.于是24e k - .(14)已知级数1!e nnxn n n-=∞∑的收敛域为(),a +∞,则a =_______.【答案】1-.【解析】令e xt -=,11!!e nx nn n n n n n t n n ∞-∞===∑∑,1(1)!11(1)!(1)e1lim lim lim 1n n nn n n nn n n n n n n n +→∞→∞→∞++===+⎛⎫+ ⎪⎝⎭,于是1!n nnn t n =∞∑的收敛区间为e e t -<<,那么e e e x--<<,解得1x >-,于是1a =-.(15)已知矩阵A 和-E A 可逆,其中E 为单位矩阵,若矩阵B 满足1---=(())E E A B A ,则-=_____B A .【答案】-E .【解析】由1---=(())E E A B A ⇒1----=()()E A E A E B A⇒2-=-AB A A ⇒-=-B E A ⇒-=-B A E .(16)设,,A B C 随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立.若1()()()3P A P B P C ===,则()P B C A B C =【答案】58.【解析】因为B 与C 相互独立,有)()()(C P B P BC P ==111339= .又因A 与B 互不相容,A 与C 互不相容,有()()()0P AB P AC P ABC ===.[()()]()(|)()()P B C A B C P B C P B C A B C P A B C P A B C ==()()()()()()()()()()P B P C P BC P A P B P C P AB P BC P AC P ABC +-=++---+1115339111180003339+-==++---+.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设函数()y x是微分方程2y y '=+的满足()13y =的解,求曲线()y y x =的渐近线.【答案】斜渐近线2y x =.【解析】(e2ed xxy x C -⎡⎤=++⎢⎥⎢⎥⎣⎦⎰2e x C =+.将()13y =代入可得e C =,即()12e0y x x =+>.由函数解析式可知,曲线没有垂直渐近线;又由于()(12e lim lim x x y x x →+∞→+∞+==+∞,曲线没有水平渐近线;又()1limlim 2e 2x x y x k xx x→+∞→+∞=+==,()()1lim lim 20e 2x x b y x kx x x →+∞→+∞=-==⎡⎤⎣⎦+-,故曲线有斜渐近线2y x =.(18)(本题满分12分)已知平面区域{}(,)22D x y y x y =- ,计算222()d d Dx y I x y x y -=+⎰⎰.【答案】2(π1)-.【解析】将积分区域D 分为两部分12D D D =+,其中:1{(,)2,20,02}D x y y x x y =+- ,222{(,)4,0,0}D x y x y x y =+ ,故1222122222()()d d d d =+D D x y x y I x y x y I I x y x y --=+++⎰⎰⎰⎰记.其中:()()()2ππ22sin cos ππ12222=d cos sin d cos sin d πsin cos I r r θθθθθθθθθθ-⋅-=-⋅=-⎰⎰⎰,()()()πππ22222220=d cos sin d 2cos sin d 21sin 2d π2I r r θθθθθθθθ⋅-=-=-=-⎰⎰⎰⎰---故:()π2π2π1I =-+=-.(19)(本题满分12分)L 是曲面∑:22241x y z ++=,0,0,0x y z 的边界,曲面方向朝上,已知曲线L 的方向和曲面的方向符合右手法则,求()()22cos d 2d 2sin d LI yzz x xz y xyz x z z=-+++⎰ 【答案】0.【解析】由斯托克斯公式可得:()222d d d d d d 2d d d d cos 22sin y zz x x yI xz y z z x yx y z yz zxz xyz x z∑∑∂∂∂==-+∂∂∂-+⎰⎰⎰⎰令1∑:2241,0,0x y x y + ,指向z 轴负向,2∑:2241,0,0x z x z + ,指向y 轴负向,3∑:221,0,0y z y z + ,指向x 轴负向,则()()1231222d d d d 2d d d d I xz y z z x y xz y z z x y ∑+∑+∑+∑∑=-+--+⎰⎰⎰⎰ ()()23222d d d d 2d d d d xz y z z x y xz y z z x y ∑∑--+--+⎰⎰⎰⎰(22)d d d 0000z z x y z Ω=----=⎰⎰⎰.(20)(本题满分12分)设()f x 在()-∞+∞,有二阶连续导数,证明:0()f x '' 的充要条件为对不同实数,a b ()1(d 2b a a b f f x x b a+-⎰ .【证明】()21()()()((22222a b a b a b a b f x f f x f x ξ++++'''=+-+-,ξ介于x 与2a b+之间,()21()d (()(()d 22222bbaa a ba b a b a b f x x f f x f x xξ++++⎡⎤'''=+-+-⎢⎥⎣⎦⎰⎰()21()(d 222b a a b a b f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰必要性:若()0f x '' ,则()0f ξ'' ,有()d (()2baf x x a b f b a +-⎰ .充分性:若存在0x 使得0()0f x ''<,因为()f x 有二阶连续导数,故存在0δ>使得()f x ''在[]00,x x δδ-+内恒小于零,记00,a x b x δδ=-=+,此时()21()d ()()()d 222bb aa ab a b f x x f b a f x xξ++⎡⎤''=-+-⎢⎥⎣⎦⎰⎰()()2a bf b a +<-,矛盾!故()0f x '' .综上,充分性必要性均得证.(21)(本题满分12分)已知二次型3312311(,,)iji j f x x x ij x x===⋅∑∑.(1)写出123(,,)f x x x 对应的矩阵;(2)求正交变换x =Qy ,将123(,,)f x x x 化为标准形;(3)求123(,,)0f x x x =的解.【答案】(1)123246369⎛⎫ ⎪⎪ ⎪⎝⎭;(2)令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,化为标准形2314f y =;(3)12231605c c --⎛⎫⎛⎫ ⎪ ⎪=+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭x ,(12,c c 为任意常数)【解析】(1)3312311(,,)iji j f x x x ij x x===⋅∑∑22211213212233132323246369x x x x x x x x x x x x x x x =++++++++222123121323494612x x x x x x x x x =+++++112323123(,,)246369x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭.(2)123246369----=------E A λλλλ2(14)0=-=λλ得1230,14===λλλ;1230000000r⎛⎫ ⎪-−−→ ⎪ ⎪⎝⎭E A ,解得12231,001αα--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;153********r-⎛⎫ ⎪-−−→- ⎪ ⎪⎝⎭E A ,解得3123α⎛⎫ ⎪= ⎪ ⎪⎝⎭;将12,αα进行施密特正交化可得211221123(,)11,6(,)505αβββαβββ--⎛⎫⎛⎫⎪⎪==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;将123(,,)ββα单位化,可得123,,,0γγγ⎛⎛⎪=== ⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭令正交矩阵0⎛⎝Q =,利用正交变换x =Qy ,将123(,,)f x x x 化为标准形2314f y =;(3)令21233(,,)140f x x x y ==,则112230y k y k y =⎧⎪=⎨⎪=⎩,12kk⎛⎛⎫⎪⎪⎪⎝⎭⎝x=Qy=1212231605k k c c⎛⎛---⎛⎫⎛⎫⎪ ⎪ ⎪=+-=+-⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪ ⎪⎝⎭⎝⎭,(12,c c为任意常数)(22)(本题满分12分)设12,,,nX X X来自均值为θ的指数分布总体的简单随机样本,设12,,,mY Y Y来自均值为2θ的指数分布总体的简单随机样本,且两样本相互独立,其中()0θθ>为未知数,利用样本1212,,,,,,,n mX X X Y Y Y,求θ的最大似然估计量θ∧,并求()Dθ∧.【答案】(1)1122ˆ2()2()θ==++==++∑∑n mi ji jX YnX mYm n m n;(2)2m nθ+.【解析】(1)由题意知12,,,nX X X的总体X服从1Eθ⎛⎫⎪⎝⎭,12,,,mY Y Y的总体Y服从12θ⎛⎫⎪⎝⎭E,从而X的概率密度为1e,0,()0,其他.θθ-⎧>⎪=⎨⎪⎩xXxf x,Y的概率密度为21e,0,()20,其他.θθ-⎧>⎪=⎨⎪⎩yYyf y构造最大似然函数为()1111211e e(2)θθθθθ==--∑∑=⋅mnjijiyxn mL,()1111ln ln ln(2)2θθθθθ===----∑∑n mi ji jL n x m y()2211d ln 110d 2θθθθθθ===-+-+=∑∑n mi j i j L n m x y 1122ˆ2()2()θ==++==++∑∑nmi ji j X Y nX mYm n m n (2)221ˆ()(2)2()4()nX mY D D D nX mY m n m n θ⎡⎤+==+⎢++⎣⎦;2222222221144()()44()4()n D X m D Y n m m n m n n m m nθθθ⎡⎤⎡⎤=+=⋅+⋅=⎢⎥⎣⎦+++⎣⎦。
考研数学一真题及答案(全)
全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析)
考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(08年)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是A.y”‘+y”一4y’一4y=0.B.y”‘+y”+4y’+4y=0.C.y”‘一y”一4y’+4y=0.D.y”‘一y”+4y’一4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i则其特征方程为(ρ一1)(ρ2+4)=0,故所求方程应为y”‘一y”+4y’一4y=0故(D).知识模块:高等数学2.(15年)设y=是二阶常系数非齐次线性微分方程y”+ay’+by=cex的一个特解,则A.a=一3,b=2,c=一1.B.a=3,b=2,c=一1.C.a=一3,b=2,c=1.D.a=3,b=2,c=1.正确答案:A解析:由是方程y”+ay’+by=cex的一个特解可知,y1=e2x,y2=ex是齐次方程的两个线性无关的解,y*=xex是非齐次方程的一个解.1和2是齐次方程的特征方程的两个根,特征方程为(ρ一1)(ρ一2)=0即ρ2—3ρ+2=0则a=一3,b=2将y=xex代入方程y”一3y’+2y=cex得c=一1.故(A).知识模块:高等数学3.(16年)若y=(1+x2)2一是微分方程y’+p(x)y=q(x)的两个解,则q(x)= A.3x(1+x2).B.一3x(1+x2).C.D.正确答案:A解析:利用线性微分方程解的性质与结构.由是微分程y’+p(x)y=q(x)的两个解,知y1=y2是y’+p(x)y=0的解.故(y1—y2)’+p(x)(y1一y2)=0,即从而得p(x)=又是微分方程y’+p(x)y=q(x)的解,代入方程,有[(1+x2)2]’+p(x)(1+x2)2=q(x),解得q(x)=3x(1+x2).因此(A).知识模块:高等数学4.(96年)4阶行列式的值等于A.a1a2a3a4一b1b2b3b4B.a1a2a3a4+b1b2b3b4C.(a1a2-b1b2)(a3a4-b3b4)D.(a2a3一b2b3)(a1a4一b1b4)正确答案:D解析:按第1行展开所求行列式D4,得=(a2a3一b2b3)(a1a4一b1b4).知识模块:线性代数5.(14年)行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:按第1列展开,得所求行列式D等于=一ad(ad一bc)+be(ad一bc)=一(ad一bc)2 知识模块:线性代数6.(87年)设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A*|等于A.aB.C.an+1D.an正确答案:C解析:由AA*=|A|E两端取行列式,得|A||A*|=|A|n,因|A|=a≠0,得|A*|=|A|n-1=an-1.知识模块:线性代数7.(91年)设n阶方程A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有A.ACB=EB.CBA=EC.BAC=ED.BCA=E正确答案:D解析:因为ABC=E,即A(BC)=E,故方阵A与BC互为逆矩阵,从而有(BC)A=E,即BCA=E.知识模块:线性代数填空题8.(06年)微分方程的通解是______.正确答案:y=Cxe-x.解析:ln|y|=ln|x|—x=ln|x|+lne-x=ln|x|e-x则y=Cxe-x.知识模块:高等数学9.(07年)二阶常系数非齐次线性微分方程y”一4y’+3y=2e2x的通解为y=________.正确答案:y=C1e2+C2e3x一2e2x.解析:齐次方程特征方程为ρ2—4ρ+3=0解得ρ1=1,ρ2=3,则齐次方程通解为y=C1ex+C2e3x设非齐方程特解为代入原方程得A=一2,则原方程通解为y=C1ex+C2e3x一2e2x 知识模块:高等数学10.(08年)微分方程xy’+y=0满足条件y(1)=1的解是y=______.正确答案:解析:方程xy’+y=0是一个变量可分离方程,原方程可改写为知识模块:高等数学11.(09年)若二阶常系数线性齐次微分方程y”+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y”+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_______.正确答案:y=一xex+x+2.解析:由于y=(C1+C2x)ex是方程y”+ay’+by=0的通解,则该方程的两个特征根为λ1=λ2=1,故a=一2,b=1.设非齐次方程y”一2y’+y=x的特解为y’=Ax+B代入方程得A=1,B=2,则其通解为y=(C1+C2x)ex+x+2由y(0)=2,y’(0)=0得,C1=0,C2=一1.所以y=一xex+x+2 知识模块:高等数学12.(11年)微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.正确答案:e-xsinx.解析:由一阶线性方程的通解公式得y=e-∫dx[∫e-xcosx.e∫dxdx+C]=e-x[∫cosxdx+C]=e-x[sinx+C]由y(0)=0知,C=0,则y=e-xsinx 知识模块:高等数学13.(12年)若函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex,则f(x)=_______。
2020年考研数学一真题详细答案解析
一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。
3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。
CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。
ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。
2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。
1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。
2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。
J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。
2021年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内持续,其中二阶导数()''f x 的图形如下图,那么曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出此刻二阶导数等于0,或二阶导数不存在的点,而且在这点的左右双侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.应选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,那么 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确信微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是依照二阶线性微分方程解的性质和结构来求解,也确实是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,因此2,1为特点方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变成32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.应选(A )(3) 假设级数1∞=∑nn a条件收敛,那么=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2020考研数学一真题及答案解析
f
(12)设函数
x, y
xy ext2 dt
0
,则
2 f xy
1,1
.
【答案】 4e
a 0 1 1
0 a 1 1 1 1 a 0
(13)行列式 1 1 0 a
.
【答案】 a4 4a2 .
(14)已知随机变量
X
服从区间
2
,
2
上的均匀分布, Y
sin
X
,则 Cov X ,Y
.
2 【答案】 .
y2 8xy 4x2 (4x2 y2)2
,
P (4x2 y 2 ) 2y(4x y) y 2 8xy 4x2 ,
y
(4x2 y 2)2
(4x2 y 2)2
I
=
L1
4x 4x2
y y2
dx
x y 4x2 y2
dy
=
1 2
(4x
y)dx
(x
y)dy
L1
1 2
1
1
(1) dxdy
(B) n1
收敛,则
r
R
(D) r R ,则 n1 a2n x2n 收敛
(5)若矩阵 A 由初等列变换为矩阵 B ,则()
(A)存在矩阵 P ,使 PA B ;
(B)存在矩阵 P ,使 BP A ;
(C)存在矩阵 P ,使 PB A ;
(D)方程组 AX 0 与 BX =0 同解;
【答案】(B).
2020 年全国硕士研究生入学统一考试
数学(一)试题
一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求
的.请将所选项前的字母填在答.题.纸.指定位置上.
2023考研数学一真题试卷+详细答案解析
2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2001年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设12(sin cos )xy e C x C x =+(12,C C 为任意常数)为某二阶常系数线性齐次微分方程の通解,则该方程为_____________.(2)设222z y x r++=,则div (grad r ))2,2,1(-=_____________.(3)交换二次积分の积分次序:⎰⎰--0112),(y dx y x f dy =_____________.(4)设矩阵A 满足240A A E +-=,其中E 为单位矩阵,则1()A E --=_____________. (5)设随机变量X の方差是2,则根据切比雪夫不等式有估计≤≥-}2)({X E X P_____________.二、选择题(本题共5小题,每小题3分,满分15分.) (1)设函数)(x f 在定义域内可导,)(x f y =の图形如右图所示,则)(x f y'=の图形为(2)设),(y x f 在点(0,0)附近有定义,且1)0,0(,3)0,0(='='y x f f ,则(A ) (0,0)|3z d dx dy =+. (B ) 曲面),(y x f z=在(0,0,(0,0))f 处の法向量为{3,1,1}.(C ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处の切向量为{1,0,3}.(D ) 曲线⎩⎨⎧==0),(y y x f z 在(0,0,(0,0))f 处の切向量为{3,0,1}.(3)设0)0(=f ,则)(x f 在x =0处可导の充要条件为(A ) 201lim (1cosh)h f h →-存在.(B )01lim(1)h h f e h →-存在. (C ) 201lim (sinh)h f h h→-存在.(D ) 01lim [(2)()]h f h f h h →-存在.(4)设1111400011110000,,111100001111000A B ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦则A 与B (A ) 合同且相似. (B ) 合同但不相似. (C ) 不合同但相似.(D ) 不合同且不相似.(5)将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上の次数, 则X 和Y の相关系数等于(A )-1.(B ) 0.(C )12. (D ) 1.三、(本题满分6分)求dx e e xx⎰2arctan . 四、(本题满分6分) 设函数),(y x f z=在点(1,1)处可微,且(1,1)1f =,(1,1)|2fx∂=∂,(1,1)|3f y ∂=∂,()(,x f x ϕ=(,))f x x .求13)(=x x dxd ϕ.五、(本题满分8分)设)(x f =210,arctan ,0,1,x x x x x +⎧≠⎨=⎩将)(x f 展开成x の幂级数,并求级数∑∞=--1241)1(n nn の和. 六、(本题满分7分) 计算dz y x dy x z dx z y I L)3()2()(222222-+-+-=⎰,其中L 是平面2=++z y x 与柱面1=+y x の交线,从Z 轴正向看去,L 为逆时针方向.七、(本题满分7分)设)(x f 在(1,1)-内具有二阶连续导数且0)(≠''x f ,试证:(1)对于(1,1)-内の任一0x ≠,存在惟一の)1,0()(∈x θ,使)(x f =)0(f +))((x x f x θ'成立; (2)01lim ()2x x θ→=.八、(本题满分8分)设有一高度为()h t (t 为时间)の雪堆在融化过程,其侧面满足方程)()(2)(22t h y x t h z +-=(设长度单位为厘米,时间单位为小时),已知体积减少の速率与侧面积成正比(比例系数为0.9),问高度为130(厘米)の雪堆全部融化需多少小时?九、(本题满分6分)设s ααα,,,21Λ为线性方程组0Ax =の一个基础解系,11122t t βαα=+,21223,t t βαα=+L ,121s s t t βαα=+,其中21,t t 为实常数.试问21,t t 满足什么条件时,s βββ,,,21Λ也为0Ax =の一个基础解系.十、(本题满分8分) 已知3阶矩阵A 与三维向量x ,使得向量组2,,x Ax A x 线性无关,且满足x A Ax x A 2323-=.(1)记P =(x A Ax x 2,,),求3阶矩阵B ,使1-=PBP A ;(2)计算行列式E A +.十一、(本题满分7分)设某班车起点站上客人数X 服从参数为λ(0λ>)の泊松分布,每位乘客在中途下车の概率为p (01p <<),且中途下车与否相互独立.以Y 表示在中途下车の人数,求:(1)在发车时有n 个乘客の条件下,中途有m 人下车の概率; (2)二维随机变量(,)X Y の概率分布. 十二、(本题满分7分)设总体X 服从正态分布2(,)N μσ(0σ>),从该总体中抽取简单随机样本12,X X ,L ,2n X (2n ≥),其样本均值为∑==ni i X n X 2121,求统计量∑=+-+=ni i n i X X X Y 12)2(の数学期望()E Y .2001年考研数学一试题答案与解析一、填空题(1)【分析】 由通解の形式可知特征方程の两个根是12,1r r i =±,从而得知特征方程为22121212()()()220r r r r r r r r r r r r --=-++=-+=.由此,所求微分方程为'''220y y y -+=. (2)【分析】 先求grad r .grad r=,,,,r r r x y z x y z r r r ∂∂∂⎧⎫⎧⎫=⎨⎬⎨⎬∂∂∂⎩⎭⎩⎭. 再求 div grad r=()()()x y zx r y r z r∂∂∂++∂∂∂=222222333311132()()()x y z x y z r r r r r r r r r++-+-+-=-=. 于是div grad r|(1,2,2)-=(1,2,2)22|3r -=. (3)【分析】 这个二次积分不是二重积分の累次积分,因为10y -≤≤时12y -≤.由此看出二次积分0211(,)ydy f x y dx --⎰⎰是二重积分の一个累次积分,它与原式只差一个符号.先把此累次积分表为0211(,)(,)yDdy f x y dx f x y dxdy --=⎰⎰⎰⎰.由累次积分の内外层积分限可确定积分区域D :10,12y y x -≤≤-≤≤.见图.现可交换积分次序原式=02202111111(,)(,)(,)xyxdy f x y dx dx f x y dy dx f x y dy -----=-=⎰⎰⎰⎰⎰⎰.(4)【分析】 矩阵A の元素没有给出,因此用伴随矩阵、用初等行变换求逆の路均堵塞.应当考虑用定义法.因为2()(2)240A E A E E A A E -+-=+-=,故()(2)2A E A E E -+=,即 2()2A EA E E +-⋅=. 按定义知11()(2)2A E A E --=+.(5)【分析】 根据切比雪夫不等式2(){()}D x P X E X εε-≥≤,于是2()1{()2}22D x P XE X -≥≤=.二、选择题(1)【分析】 当0x <时,()f x 单调增'()0f x ⇒≥,(A ),(C )不对;当0x >时,()f x :增——减——增'()f x ⇒:正——负——正,(B )不对,(D )对. 应选(D ).(2)【分析】 我们逐一分析.关于(A ),涉及可微与可偏导の关系.由(,)f x y 在(0,0)存在两个偏导数⇒(,)f x y 在(0,0)处可微.因此(A )不一定成立.关于(B )只能假设(,)f x y 在(0,0)存在偏导数(0,0)(0,0),f f x y∂∂∂∂,不保证曲面(,)z f x y =在 (0,0,(0,0))f 存在切平面.若存在时,法向量n=(0,0)(0,0)1f f x y ⎫∂∂⎧±-=±⎨⎬∂∂⎩⎭,,{3,1,-1}与{3,1,1}不共线,因而(B )不成立.关于(C ),该曲线の参数方程为,0,(,0),x t y z f t =⎧⎪=⎨⎪=⎩它在点(0,0,(0,0))f 处の切向量为'0{',0,(,0)}|{1,0,(0,0)}{1,0,3}t x dt f t f dt===. 因此,(C )成立.(3)【分析】 当(0)0f =时,'0()(0)limx f x f x →=∃00()()lim lim x x f x f x x x→+→-⇔=∃.关于(A ):220001(1cos )1cos 1()lim (1cos )lim 1cos lim1cos 2h h t f h h f t f h t h h h h t→→→+---=⋅=--, 由此可知 201lim (1cos )h f h h→-∃ ⇔ '(0)f + ∃.若()f x 在0x =可导⇒(A )成立,反之若(A )成立⇒'(0)f + ∃⇒'(0)f ∃.如()||f x x =满足(A ),但'(0)f 不∃. 关于(D ):若()f x 在0x =可导,⇒''001(2)()lim [(2)()]lim[2]2(0)(0)2h h f h f h f h f h f f h h h→→-=-=-.⇒(D )成立.反之(D )成立0lim((2)())0h f h f h →⇒-=⇒()f x 在0x =连续,⇒()f x 在0x =可导.如21,0()0,0x x f x x +≠⎧=⎨=⎩ 满足(D ),但()f x 在0x =处不连续,因而'(0)f 也不∃.再看(C ):2220001sin (sin )sin ()lim(sin )lim lim sin h h h h h f h h h h f t f h h h h h h h t→→→----=⋅=⋅-(当它们都∃时). 注意,易求得20sin lim 0h h h h→-=.因而,若'(0)f ∃⇒(C )成立.反之若(C )成立⇒0()lim t f t t →(即 '(0)f ∃).因为只要()f t t有界,任有(C )成立,如()||f x x =满足(C ),但'(0)f 不∃.因此,只能选(B ).(4)【分析】 由 43||40E A λλλ-=-=,知矩阵A の特征值是4,0,0,0.又因A 是实对称矩阵,A 必能相似对角化,所以A 与对角矩阵B 相似.作为实对称矩阵,当A B :时,知A 与B 有相同の特征值,从而二次型T x Ax 与T x Bx 有相同の正负惯性指数,因此A 与B 合同.所以本题应当选(A ).注意,实对称矩阵合同时,它们不一定相似,但相似时一定合同.例如1002A ⎡⎤=⎢⎥⎣⎦与1003B ⎡⎤=⎢⎥⎣⎦, 它们の特征值不同,故A 与B 不相似,但它们の正惯性指数均为2,负惯性指数均为0.所以A 与B 合同.(5)【分析】 解本题の关键是明确X 和Y の关系:XY n +=,即Y n X =-,在此基础上利用性质:相关系数XY ρの绝对值等于1の充要条件是随机变量X 与Y 之间存在线性关系,即YaX b =+(其中,a b 是常数),且当0a >时,1XY ρ=;当0a <时,1XY ρ=-,由此便知1XY ρ=-,应选(A ).事实上,(,)(,)Cov X Y Cov X n X DX =-=-,()DY D n X DX =-=,由此由相关系数の定义式有1XY ρ===-.三、【解】 原式=222211arctan ()[arctan ]22(1)x x x x xxx de e d e e e e e ---=--+⎰⎰=2221(arctan )21x x x xx xde de e e e e ---++⎰⎰=21(arctan arctan )2xx x x e e e e C ---+++. 四、【解】 先求(1)(1,(1,1))(1,1)1f f f ϕ===. 求 32''1()|3(1)(1)3(1)x d x dxϕϕϕϕ===,归结为求'(1)ϕ.由复合函数求导法 '''12()(,(,))(,(,))(,)dx f x f x x f x f x x f x x dxϕ=+,'''''1212(1)(1,1)(1,1)[(1,1)(1,1)]f f f f ϕ=++.注意'1(1,1)(1,1)2f f x∂==∂,'2(1,1)(1,1)3f f y ∂==∂. 因此'(1)23(23)17ϕ=++=,31()|31751x d x dxϕ==⨯=. 五、【分析与求解】 关键是将arctan x 展成幂级数,然后约去因子x ,再乘上21x +并化简即可.直接将arctan x 展开办不到,但'(arctan )x 易展开,即'221(arctan )(1),||11n nn x x x x ∞===-<+∑, ①积分得 '2210000(1)arctan (arctan )(1)21n xx nnn n n x t dt t dt x n ∞∞+==-==-=+∑∑⎰⎰,[1,1]x ∈-. ②因为右端积分在1x =±时均收敛,又arctan x 在1x =±连续,所以展开式在收敛区间端点1x =±成立.现将②式两边同乘以21x x+得=12200(1)(1)2121n n n nn n x x n n -∞∞==--++-∑∑=21111(1)()2121n n n x n n ∞=+--+-∑221(1)2114n nn x n∞=-=+-∑ ,[1,1]x ∈-,0x ≠上式右端当0x =时取值为1,于是221(1)2()1,[1,1]14n nn f x x x n ∞=-=+∈--∑. 上式中令1x =21(1)111[(1)1](21)1422442n n f nππ∞=-⇒=-=⨯-=--∑. 六、【解】 用斯托克斯公式来计算.记S 为平面2x y z ++=上L 所为围部分.由L の定向,按右手法则S 取上侧,S の单位法向量(cos ,cos ,cos )3n αβγ==r .于是由斯托克斯公式得=[(24(26(22]333Sy z z x x y dS ----+--⎰⎰=(423)(2)(6)33S Sx y z dS x y z x y dS ++++=+-利用. 于是'2'211113x y Z Z ++=++=按第一类曲面积分化为二重积分得(6)32(6)3D DI x y dxdy x y dxdy =+-=-+-⎰⎰, 其中D 围S 在xy 平面上の投影区域||||1x y +≤(图).由D 关于,x y 轴の对称性及被积函数の奇偶性得()0Dx y dxdy -=⎰⎰⇒21212(2)24DI dxdy =-=-=-⎰⎰.七、【证明】 (1)由拉格朗日中值定理,(1,1)x ∀∈-,0,(0,1)x θ≠∃∈,使 (θ与x 有关);又由''()f x 连续而''()0f x ≠,''()f x 在(1,1)-不变号,'()f x 在(1,1)-严格单调,θ唯一.(2)对'()f x θ使用''(0)f の定义.由题(1)中の式子先解出'()f x θ,则有'()(0)()f x f f x xθ-=.再改写成'''()(0)(0)()(0)f x f xf f x f x θ---=.'''2()(0)()(0)(0)f x f f x f xf x x θθθ---⋅=,解出θ,令0x →取极限得'''''2''0001(0)()(0)(0)()(0)12lim lim /lim (0)2x x x f f x f xf f x f x x f θθθ→→→---===. 八、【解】 (1)设t 时刻雪堆の体积为()V t ,侧面积为()S t .t 时刻雪堆形状如图所示先求()S t 与()V t .侧面方程是222222()()()((,):)()2xy x y h t z h t x y D x y h t +=-∈+≤. ⇒44,()()z x z yx h t y h t ∂∂=-=-∂∂. ⇒()xyxyD D S t dxdy ==⎰⎰.作极坐标变换:cos ,sin x r y r θθ==,则:02,0()xy D r t θπ≤≤≤≤. 用先二后一の积分顺序求三重积分()()()h t D x V t dzdxdy =⎰⎰⎰,其中222()():()()()x y D z h t z t h t +≤-,即2221[()()]2x y h t h t z +≤-. ⇒()233301()[()()][()()]()2224h t V t h t h t z dz h t h t h t πππ=-=-=⎰.(2)按题意列出微分方程与初始条件.体积减少の速度是dV dt -,它与侧面积成正比(比例系数0.9),即 0.9dVS dt=- 将()V t 与()S t の表达式代入得 22133()0.9()412dh h t h t dt ππ=-,即1310dh dt =-.①(0)130h =.②(3)解①得13()10h t t C =-+. 由②得130C =,即13()13010h t t =-+. 令()0h t =,得100t=.因此,高度为130厘米の雪堆全部融化所需时间为100小时.九、【解】 由于(1,2)i i s β=L 是12,,s αααL 线性组合,又12,,s αααL 是0Ax =の解,所以根据齐次线性方程组解の性质知(1,2)i i s β=L 均为0Ax =の解. 从12,,s αααL是0Ax =の基础解系,知()s n r A =-.下面来分析12,,s βββL 线性无关の条件.设11220s s k k k βββ++=L L ,即11212112222133211()()()()0s s s s t k t k t k t k t k t k t k t k αααα-++++++++=L .由于 12,,s αααL 线性无关,因此有112211222132110,0,0,0.s s s t k t k t k t k t k t k t k t k -+=⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩L(*)因为系数行列式12211211221000000000(1)000s s s t t t t t t t t t t +=+-L L L M M M M M L ,所以当112(1)0ss st t ++-≠时,方程组(*)只有零解120s k k k ====L .从而12,,s βββL 线性无关.十、【解】 (1)由于AP PB = ,即2000(,,)103012x Ax A x ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, 所以000103012B ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦. (2)由(1)知A B :,那么A E B E ++:,从而100||||1134011A EB E +=+==--.十一、【解】 (1){|}(1),0,0,1,2,m m n m n P Y m X n C p p m n n -===-≤≤=L . (2){,}P X n Y m ==={}{|}P X n P Y m X n ====(1),0,0,1,2,.!nm m n m n e C p p m n n n λλ--⋅-≤≤=L十二、【解】 易见随机变量11()n X X ++,22()n X X ++,2,()n n X X +L 相互独立都服从正态分布2(2,2)N μσ.因此可以将它们看作是取自总体2(2,2)N μσの一个容量为n の简单随机样本.其样本均值为 21111()2n ni n i i i i X X X X n n +==+==∑∑, 样本方差为2111(2)11n i n i i X X X Y n n +=+-=--∑. 因样本方差是总体方差の无偏估计,故21()21E Y n σ=-,即2()2(1)E Y n σ=-.。