初中数学无理数知识点总结

合集下载

数学初中知识点总结归纳

数学初中知识点总结归纳

数学初中知识点总结归纳初中数学是一个重要的基础阶段,为高中及以后的数学学习打下了坚实的基础。

以下是对初中数学知识点的总结归纳。

一、数与式1、有理数有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。

有理数的运算有加、减、乘、除、乘方。

加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0。

减法法则:减去一个数,等于加上这个数的相反数。

乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。

除法法则:除以一个不为 0 的数,等于乘以这个数的倒数;0 除以任何一个不为 0 的数都得 0。

乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

2、无理数无限不循环小数叫做无理数,如π、√2 等。

3、实数有理数和无理数统称为实数。

实数的运算与有理数的运算类似。

4、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

5、整式单项式和多项式统称为整式。

单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

多项式里,次数最高项的次数,叫做这个多项式的次数。

6、整式的加减同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变;括号前是“”号,把括号和它前面的“”号去掉后,原括号里各项的符号都要改变。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结初中数学是一门重要的基础学科,它为我们进一步学习数学和其他科学知识奠定了坚实的基础。

以下是对初中数学知识点的全面总结。

一、数与代数1、有理数有理数包括整数和分数。

整数又分为正整数、零和负整数;分数分为正分数和负分数。

有理数的运算包括加、减、乘、除、乘方。

加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。

减法法则:减去一个数,等于加上这个数的相反数。

乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。

除法法则:除以一个不为 0 的数,等于乘这个数的倒数;0 除以任何一个不为 0 的数都得 0。

乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

2、实数实数包括有理数和无理数。

无理数是无限不循环小数,如π、√2 等。

平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。

算术平方根:一个正数的正的平方根叫做它的算术平方根。

立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。

正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。

实数的运算:实数的运算顺序与有理数相同,先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里的。

3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

整式:单项式和多项式统称为整式。

单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

整式的加减:合并同类项,去括号。

整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。

整式的除法:单项式除以单项式,多项式除以单项式。

因式分解:把一个多项式化成几个整式的积的形式。

人教版初中数学知识点总结【完整版】

人教版初中数学知识点总结【完整版】

人教版初中数学知识点全总结第一章有理数1、有理数:无限不循环小数和开根开不尽的数叫无理数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;有理数: 零、负整数、负分数、正分数、正整数2、数轴是规定了原点、正方向、单位长度的一条直线.3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)相反数的和为 0 a+b=0 a、b 互为相反数.4、绝对值:绝对值和我们学过的加、减、乘、除一样,是一种运算,运算符号通常用||表示。

这种运算的意义是:一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数。

总之,一个数的绝对值是非负数。

用代数式表示为:|a|=a(a>0) |a|=-a(a<0) |a|=0(a=0)在数轴上,一个数的绝对值表示为代表这个数的点到原点的距离。

如:|-5|表示在数轴上代表-5 的点与原点的距离,即|-5|=5。

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0 小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a≠0,那么 a 的倒数是1 ;若 ab=1 a、 ab 互为倒数;若ab=-1 a、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义 .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an 或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:这是一种记数的方法。

初中数学知识点总结速记

初中数学知识点总结速记

初中数学知识点总结速记一、数与代数1. 整数和有理数- 整数包括正整数、负整数和零。

- 有理数是整数和分数的统称,可以表示为两个整数的比。

2. 实数- 实数包括有理数和无理数,无理数是不能表示为分数的无限不循环小数。

3. 代数表达式- 单项式:只含有乘法运算的代数式,如 $2x^3$。

- 多项式:由若干个单项式相加或相减组成的代数式,如 $3x^2 + 2x - 5$。

4. 等式与不等式- 等式:表示两个量相等的数学符号,如 $a + b = c$。

- 不等式:表示两个量大小关系的数学符号,如 $a < b$。

5. 方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程,如 $ax + b = 0$。

- 二元一次方程组:含有两个未知数的方程组,如 $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$。

6. 函数- 函数是描述两个变量间依赖关系的数学对象,通常用 $y =f(x)$ 表示。

- 函数的图像是平面直角坐标系上的曲线或直线。

二、几何1. 平面几何- 点、线、面的基本性质。

- 角:两条射线的夹角,包括锐角、直角和钝角。

- 三角形:按边分类有等边三角形、等腰三角形和普通三角形;按角分类有锐角三角形、直角三角形和钝角三角形。

2. 圆的基本性质- 圆心、半径、直径、弦、弧、切线等概念。

- 圆周角定理和垂径定理。

3. 空间几何- 立体图形的表面积和体积计算,包括长方体、正方体、圆柱、圆锥和球体。

4. 几何变换- 平移:图形沿直线移动。

- 旋转:图形绕一点转动一定角度。

- 轴对称:图形关于某条直线对称。

三、统计与概率1. 统计- 数据的收集、整理和描述。

- 频数分布表和频数分布直方图。

- 平均数、中位数和众数的概念和计算。

2. 概率- 随机事件的概率。

- 概率的加法原理和乘法原理。

- 条件概率和独立事件的概念。

初中数学知识点总结加例题

初中数学知识点总结加例题

初中数学知识点总结加例题一、数与代数。

(一)有理数。

1. 概念。

- 有理数包括整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 数轴:规定了原点、正方向和单位长度的直线。

- 相反数:绝对值相等,符号相反的两个数。

例如,3和 - 3互为相反数。

- 绝对值:一个数在数轴上所对应的点与原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

2. 有理数的运算。

- 加法:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

- 减法:减去一个数等于加上这个数的相反数。

- 乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法:除以一个不等于0的数,等于乘这个数的倒数。

例题1:计算:(-2)+3 - (-5)解析:- 根据有理数的减法法则,(-2)+3 - (-5)=(-2)+3 + 5。

- 然后,按照有理数的加法法则,先计算(-2)+3 = 1。

- 计算1 + 5=6。

(二)实数。

1. 无理数:无限不循环小数,如√(2)、π等。

2. 实数的运算:实数的运算顺序是先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

例题2:计算:√(4)+3 - π(精确到0.1)解析:- 先计算√(4)=2。

- 然后计算2 + 3-π=5-π。

- 因为π≈3.14,所以5 - π≈5 - 3.14 = 1.86≈1.9。

(三)代数式。

1. 整式。

- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

- 多项式:几个单项式的和叫做多项式。

- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。

2. 整式的乘除。

- 同底数幂相乘,底数不变,指数相加,即a^m· a^n=a^m + n。

初中数学知识点总结(含题)

初中数学知识点总结(含题)

目:“先化简下式,再求值:a+21-2a+a 其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+21-2a+a = a+(1-a)=1,小芳的解答:原式= a+(a -1)=2a -1=2×9-1=17 ⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质: ________4、计算:20012002(2-3)(2+3)5、我国1990年的人口出生数为23784659人。

保留三个有效数字的近似值是 人。

六、综合应用1、 已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c满足a 2-6a+9+4|5|0b c -+-=,试判断△ABC 的形状.2、数轴上的点并不都表示有理数,如图l -2-2中数轴上的点P 所表示的数是2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换无法C .数形结合D .分类讨论 3、(开放题)如图l -2-3所示的网格纸,每个小格均为正方形,且小正方形的边长为1,请在小网格纸上画出一个腰长为无理数的等腰三角形.4、如图1-2-4所示,在△ABC 中,∠B=90○,点P 从点B 开始沿BA 边向点A 以 1厘米/秒的宽度移动;同时,点Q 也从点B 开始沿 BC 边向点C 以 2厘米/秒的速度移动,问几秒后,△PBQ 的面积为36平方厘米?5、观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a 、b 、c 的值分别为 A .20、29、30 B .18、30、26 C .18、20、26 D .18、30、28专题二 整式 一、考点扫描1、代数式的有关概念. (1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代人 2、整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式. (2)多项式:几个单项式的和,叫做多项式 (3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷. 3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

初中数学知识点精讲精析 无理数

初中数学知识点精讲精析 无理数

1 无理数学习目标1. 理解并掌握无理数的概念。

2. 能利用概念辨别无理数。

知识详解1.无理数的概念无限不循环小数叫做无理数。

2.无理数的常见类型判断一个数是不是无理数,关键就是看它能不能写成无限不循环的小数,无理数常见的形式主要有三种:(1)一般的无限不循环小数,如1.414 213 56…是无理数。

看似循环而实质不循环的小数,如0.101 001 0001…(相邻两个1之间0的个数逐次增加1)是无理数。

(2)圆周率π以及含π的数,如π,2π,π+5,都是无理数。

(3)开方开不尽的数π与3.141 592 7的区别:3.141 592 7属于有限小数,不是π,要注意区分。

【典型例题】例1:请你写一个>2且<3的无理数【解析】由于无理数就是无限不循环小数.所以根据无理数的概念即可求解.本题主要比较无理数的大小只要被开方数大于4而小于9即可。

例2:请你在横线上写一个负无理数【答案】例3:两个不相等的无理数,它们的乘积为有理数,这两个数可以是【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可求解。

【误区警示】易错点1:无理数定义1. 1,2,3…,100这100个自然数的算术平方根和立方根中,无理数的个数有个.【答案】186【解析】分别找出1,2,3…,100这100个自然数的算术平方根和立方根中,有理数的个数,然后即可得出无理数的个数.易错点2:无理数应用2.写出两个和为1的无理数(只写一组即可).【答案】1【解析】由于两个和为1的无理数,相差为1,由此即可求解.【综合提升】针对训练1.在下列实数中,无理数是()A.1 3B.πCD.22 72.写出一个大于3且小于4的无理数3.写出一个比-4大的负无理数1. 【答案】B【解析】∵π是无限不循环小数,∴π是无理数,其它的数都是有理数。

2.【答案】π【解析】根据无理数是无限不循环小数进行解答,由于π≈3.14…,故π符合题意。

初二上册数学知识点总结归纳

初二上册数学知识点总结归纳

初二上册数学知识点总结归纳初二上册数学知识点总结第一章勾股定理1、探索勾股定理①勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c 分别表示直角三角形的两直角边和斜边,那么a2+b2=c22、一定是直角三角形吗①如果三角形的三边长a b c满足a2+b2=c2 ,那么这个三角形一定是直角三角形3、勾股定理的应用第二章实数1、认识无理数①有理数:总是可以用有限小数和无限循环小数表示②无理数:无限不循环小数2、平方根①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根②特别地,我们规定:0的算数平方根是0③平方根:一般地,如果一个数x的平方等于a,即x2=a。

那么这个数x就叫做a的平方根,也叫做二次方根④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数3、立方根①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数4、估算①估算,一般结果是相对复杂的小数,估算有精确位数5、用计算机开平方6、实数①实数:有理数和无理数的统称②实数也可以分为正实数、0、负实数③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大7、二次根式①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数②=(a≥0,b≥0),=(a≥0,b>0)③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式第三章位置与坐标1、确定位置①在平面内,确定一个物体的位置一般需要两个数据2、平面直角坐标系①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。

【初中数学】初二数学无理数知识点总结

【初中数学】初二数学无理数知识点总结

【初中数学】初二数学无理数知识点总结【—无理数】知识要领:无理数,即非有理数之实数,不能写作两整数之比。

若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

无理数概念无理数就是无穷不循环小数。

例如圆周率、√2(根号2)等。

有理数是由所有分数,整数组成,它们都可以化成有限小数,或无限循环小数。

如22/7等。

实数(realnumber)分成有理数和无理数(irrationalnumber)。

有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数);也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。

除了无穷不循环小数以外的实数泛称有理数。

无理数与有理数的区别区别1把有理数和无理数都译成小数形式时,有理数能够译成整数、小数或无穷循环小数,比如说4=4.0,4/5=0.8,1/3=0.33333……。

而无理数就可以译成无穷不循环小数,比如说√2=1.414213562…………。

根据这一点,人们把无理数定义为无穷不循环小数。

区别2无理数无法译成两整数之比。

利用有理数和无理数的主要区别,可以证明√2是无理数。

证明:假设√2。

”他闻听此言,便品乐版柴禾南渡地中海至泰勒斯门下去念书。

毕达哥拉斯本来就极精明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。

其中,他证明了三角形的内角和等同于180度;能算出来你若会用瓷砖砌地,则只有用也已三角、正四角、正六角三种正多角砖就可以刚好将地铺八十;还证明了世界上只有五种正多面体,即为:正4、6、8、12、20面体。

他还辨认出了奇数、偶数、三角数、四角数、全然数、友数,直至毕达哥拉斯数。

然而他最了不起的成就就是辨认出了后来以他的名字命名的毕达哥拉斯定理(搓股弦定理),即为:直角三角形两直角边为边长的正方形的面积之和等同于以斜边为边长的正方形的面积。

据传,这就是当时毕达哥拉斯在寺庙里见到工匠们用方砖砌地,经常必须排序面积,于是便发明者了此法。

毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。

人教版初中数学知识点全总结(完美打印版)

人教版初中数学知识点全总结(完美打印版)

初中数学知识点总结基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

数学初中知识点总结归纳

数学初中知识点总结归纳

数学初中知识点总结归纳一、数与代数。

1. 有理数。

- 有理数的定义:整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

任何一个有理数都可以用数轴上的一个点来表示。

- 相反数:绝对值相等,符号相反的两个数叫做互为相反数。

0的相反数是0。

- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a≥0) -a(a<0)- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。

- 减法法则:减去一个数,等于加上这个数的相反数。

- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

- 除法法则:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

a^n 中,a叫做底数,n叫做指数。

2. 实数。

- 无理数:无限不循环小数叫做无理数,如√(2)、π等。

- 实数的定义:有理数和无理数统称为实数。

- 实数与数轴:实数与数轴上的点一一对应。

- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。

3. 代数式。

- 代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或者一个字母也是代数式。

- 整式:单项式和多项式统称为整式。

单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。

- 整式的加减:实质是合并同类项,同类项是所含字母相同,并且相同字母的指数也相同的项。

初中数学重点知识点归纳总结

初中数学重点知识点归纳总结

初中数学重点知识点归纳总结初中数学知识点有哪些大家知道吗?本内容由小编为大家带来的初中数学知识点总结归纳,欢迎大家学习!㈠、数与代数a、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a 叫底数,n叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。

②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。

立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。

初中数学知识点归纳总结(精华版)

初中数学知识点归纳总结(精华版)

初中数学知识点归纳总结(精华版)一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:,+8,sin60o。

第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如是6次单项式。

考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“”表示,1度记作“1”,n 度记作“n”。

北师大版初中数学知识点总结(最新最全)

北师大版初中数学知识点总结(最新最全)

初中数学知识点总结第一章 实数考点一、实数的概念及分类 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数:如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根:如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根:如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

初中数学知识点归纳总结

初中数学知识点归纳总结

初中数学知识点归纳总结有理数:包括整数(正整数、0、负整数)和分数(正分数、负分数)。

在数轴上,任何一个有理数都可以用一个点来表示,正数大于0,负数小于0,正数大于负数。

另外,两个数如果只有符号不同,那么它们互为相反数。

乘积为1的两个有理数互为倒数。

实数与无理数:实数包括有理数和无理数。

无理数是无限不循环小数,如π。

对于一个正数A,如果有一个正数X的平方等于A,那么X就是A的算术平方根。

求一个数的平方根的运算叫做开平方,其中A叫做被开方数。

整式的加减:整式包括单项式和多项式。

单项式是由数字和字母乘积组成的式子,而多项式是几个单项式的和。

单项式的系数是指单项式中的数字因数,次数是指单项式中所有字母的指数的和。

整式的除法与因式分解:在整式的除法中,单项式相除,把系数、同底数幂分别相除后,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式则是把一个多项式化成几个整式的积的形式,常用的方法有提公因式法、运用公式法、分组分解法、十字相乘法等。

分式:分式是整式A除以整式B,如果除式B中含有分母,那么这就是分式。

对于任何一个分式,分母不为0。

分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

方程与不等式:一元一次方程的根的情况可以通过判别式△=b²-4ac来判断。

当△>0时,方程有2个不相等的实数根;当△=0时,方程有2个相同的实数根;当△<0时,方程没有实数根。

此外,还有平行四边形、菱形、矩形、正方形等几何图形的性质和判定条件,以及函数的基础知识等。

以上只是初中数学的一部分知识点,实际上初中数学还包括很多其他的内容,需要同学们系统学习和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学无理数知识点总结
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希
望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。

反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。

因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解
①确定公因式。

②确定商式③公因式与商式写成积的形式。

①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。

相关文档
最新文档