波节板吸收式热泵

合集下载

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理吸收式热泵是一种利用吸收剂对低温热源进行吸热并释放热能的装置,通过循环往复的工作过程,实现对热源的吸热和热能的释放,从而实现制冷或者供热的目的。

下面将详细介绍吸收式热泵的工作原理。

1. 工作原理概述吸收式热泵的工作原理基于吸收剂的吸收和析出过程。

吸收剂是一种具有亲和力的物质,它可以吸收和释放热量。

吸收剂通常由两种物质组成,一种是吸收剂本身,另一种是工作物质。

吸收式热泵的循环过程包括吸收、脱吸收、析出和脱析出四个阶段。

在吸收阶段,工作物质从蒸发器中吸收热量,使其蒸发成为气体,同时与吸收剂发生化学反应生成复合物。

在脱吸收阶段,通过加热吸收剂,使复合物分解为吸收剂和工作物质。

在析出阶段,工作物质经过冷凝器冷却并凝结成液体,同时释放出热量。

在脱析出阶段,通过加热析出器,将吸收剂从工作物质中分离出来,使其再次回到吸收器中。

2. 吸收器吸收器是吸收式热泵的核心组件之一,其作用是将工作物质与吸收剂接触并进行吸收反应。

吸收器通常由吸收剂和换热管组成。

吸收剂通过换热管与工作物质接触,吸收工作物质释放的热量,并与工作物质发生化学反应生成复合物。

3. 蒸发器蒸发器是吸收式热泵的另一个重要组件,其作用是将工作物质蒸发成气体,并吸收低温热源释放的热量。

蒸发器通常由蒸发管和换热管组成。

工作物质通过蒸发管进入蒸发器,在与低温热源接触的过程中吸收热量,并蒸发成气体。

4. 冷凝器冷凝器是吸收式热泵的另一个关键组件,其作用是将工作物质冷却并凝结成液体,并释放热量。

冷凝器通常由冷凝管和换热管组成。

工作物质通过冷凝管进入冷凝器,在与冷却介质接触的过程中冷却并凝结成液体,同时释放热量。

5. 析出器析出器是吸收式热泵的另一个重要组件,其作用是将复合物中的吸收剂从工作物质中分离出来。

析出器通常由析出管和换热管组成。

通过加热析出器,可以使复合物分解为吸收剂和工作物质,从而实现吸收剂的再生。

6. 工作过程吸收式热泵的工作过程可以简单概括为:在吸收器中,工作物质与吸收剂发生化学反应生成复合物,并释放热量。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理吸收式热泵是一种利用热能来提供制冷和供暖的设备。

它通过吸收剂和工质之间的化学反应来实现热能的转换。

下面我们将详细介绍吸收式热泵的工作原理。

1. 吸收剂和工质吸收式热泵中的两个关键组成部份是吸收剂和工质。

吸收剂通常是一种液体,它具有吸收工质的能力。

而工质是一种易于蒸发和凝结的物质,它在蒸发时吸收热能,而在凝结时释放热能。

2. 主要循环过程吸收式热泵的主要循环过程包括蒸发、吸收、冷凝和解吸四个阶段。

- 蒸发:在蒸发器中,工质从液态转变为气态,吸收剂吸收工质的热能,使工质蒸发并吸收环境中的热量。

- 吸收:蒸发后的工质气体进入吸收器,与吸收剂发生化学反应,形成一个稳定的复合物。

这个反应释放出一定的热量。

- 冷凝:复合物进入冷凝器,通过冷却和压缩,使复合物转变为液体,并释放出热量。

- 解吸:液态复合物进入解吸器,在低压下,吸收剂从复合物中分离出来,回到吸收器中,准备重新吸收工质。

3. 热能转换过程吸收式热泵利用吸收剂和工质之间的化学反应来实现热能的转换。

在蒸发器中,工质吸收环境中的热量,从而实现制冷效果。

而在冷凝器中,工质释放热量,从而实现供暖效果。

4. 能量消耗和效率吸收式热泵需要一定的能量来驱动化学反应和循环过程。

通常情况下,吸收式热泵需要外部的热源来提供能量。

这个热源可以是太阳能、天然气、燃油等。

吸收式热泵的效率可以通过制冷系数(COP)来衡量,COP越高,表示单位能量输入所产生的制冷效果越好。

5. 应用领域吸收式热泵在工业和民用领域都有广泛的应用。

在工业领域,吸收式热泵可以用于制冷、供暖和热水供应。

在民用领域,吸收式热泵可以用于家庭供暖、中央空调和热水供应等。

总结:吸收式热泵通过吸收剂和工质之间的化学反应来实现热能的转换,从而提供制冷和供暖服务。

它的工作原理包括蒸发、吸收、冷凝和解吸等过程。

吸收式热泵的效率可以通过制冷系数(COP)来衡量,它在工业和民用领域都有广泛的应用。

吸收式热泵机组结构

吸收式热泵机组结构

吸收式热泵机组结构
吸收式热泵机组属于一种全恒温式热泵机组,其原理是使用外界可利
用的温度差,将低温端的热量转移到高温端,从而满足用户需求的热能量。

主要由吸收式热泵主机、冷凝器、膨胀阀、太阳能热水箱和电控自动控制
系统组成。

吸收式热泵主机由蒸气机组、吸收冷凝器和气液机组三部分组成,可
实现低温热源的温度升高,热量的抽取,传输储存。

蒸气机组为压缩机,
由压缩机、润滑系统、冷却系统和驱动机构等部件组成,负责抽取和压缩
低温热源处的低温蒸汽温度,转变为高温蒸汽,并压缩到高压状态。

吸收冷凝器的工作原理是将被压缩的高温蒸汽经过冷凝器冷凝改变成
水汽,同时发生热量抽取过程,当水汽中的热量被抽取后,这种常温下却
可以液化的气态,被称为吸收剂。

气液机组由气液热交换器、气液再热器、吸收器和卸压阀组成,它将
高温的气态吸收剂蒸发成低温液态,同时吸收剂也会吸收到其他补充能源,如太阳能,从而提升热能转换效率,满足用户需求的热量。

膨胀阀是为热泵机组提供压力控制的执行机构,可自动调节热水或热
气压力,使其稳定在一定压力下工作。

吸收式热泵原理介绍

吸收式热泵原理介绍

整体系统原理图
图1 上湾热电厂2×150MW基于吸收式循环的热电联产供热系统在电厂内安装余热回收专用机组,其原理主要基于吸收式热泵,以部分汽轮机采暖抽汽为驱动能源,回收汽轮机乏汽余热(凝汽余热),比例为1:0.7。

得到的有用热量(热网供热量)为消耗的蒸汽热量与回收的凝汽余热量之和。

对热力站进行改造,安装吸收式换热机组,大幅度降低该热力站支路的回水温度,使得一次网返厂回水温度降至41℃左右。

将41℃的一次网返厂回水“温度对口”地一级加热达到85℃左右后,再利用尖峰热网加热器二级加热至120℃。

常规吸收式(热驱动)热泵余热回收机组原理
吸收式热泵常以溴化锂溶液作为工质,对环境没有污染,不破坏大气臭氧层,而且具有高效节能的特点。

图2单效溴化锂吸收式制冷机工作原理
图2即为单效溴化锂吸收式热泵的工作原理:蒸发器连续地产生冷效应,从低位热源吸热,吸收器和冷凝器连续地产生热效应,将热水(中温热源)加热。

热水在吸收器和冷凝器中的吸热量等于驱动热源和低位热源在热泵中的放热量之和。

热力站原理
本改造工程新增设备中,吸收式换热机组安装于热力站。

在具备改造条件的部分小区热力站内安装吸收式换热机组,降低该热力站支路的回水温度至30℃左右,考虑有部分热力站采用直供形式,混合后一次网返回电厂的回水温度约为40℃。

吸收式机组与原有换热设备的连接系统图如图3。

图3 吸收式换热机组与原换热装置的连接关系。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理吸收式热泵是一种利用吸收剂对低温热源进行吸收和释放热量的装置。

它可以将低温热源的热量转移到高温热源,实现热能的转换和利用。

下面将详细介绍吸收式热泵的工作原理。

1. 吸收剂的选择和循环吸收式热泵中的关键组成部分是吸收剂,它通常由两种物质组成:吸收剂和工质。

常用的吸收剂有水和溴化锂,而工质则是蒸发和冷凝的介质。

吸收剂的选择要考虑其吸收和释放热量的能力,以及其在不同温度下的性质变化。

2. 蒸发器和冷凝器吸收式热泵中的蒸发器和冷凝器是实现热能转换的关键部分。

蒸发器中的低温热源通过与工质接触,使工质蒸发并吸收热量。

蒸发后的工质蒸汽进入冷凝器,在与高温热源接触的过程中,释放出吸收的热量,从而使工质冷凝成液体。

这样,热量就从低温热源转移到高温热源。

3. 吸收和解吸过程吸收式热泵中的吸收和解吸过程是实现热能转换的关键步骤。

在吸收过程中,工质蒸汽进入吸收器与吸收剂发生反应,形成吸收剂溶液。

这个过程中释放出的热量被吸收剂吸收。

在解吸过程中,加热吸收剂溶液,使其释放出工质蒸汽,并与工质蒸汽一起进入冷凝器。

4. 泵和换热器吸收式热泵中还包括泵和换热器。

泵用于循环吸收剂溶液,使其在吸收器和解吸器之间流动。

换热器用于实现吸收剂和工质之间的热量交换。

通过泵和换热器的作用,吸收剂和工质之间的热量传递得以实现,从而完成热能的转换。

5. 控制系统吸收式热泵中的控制系统用于控制各个组件的工作状态,以实现热能的高效转换。

控制系统可以根据不同的工况和需求,自动调节各个组件的工作参数,以提高热泵的效率和性能。

总结:吸收式热泵通过吸收剂对低温热源进行吸收和释放热量,实现热能的转换和利用。

其工作原理主要包括吸收剂的选择和循环、蒸发器和冷凝器的热能转换、吸收和解吸过程、泵和换热器的作用,以及控制系统的调节。

通过这些组成部分的协同工作,吸收式热泵可以高效地将低温热源的热量转移到高温热源,实现能源的有效利用。

吸收式热泵的工作原理课件

吸收式热泵的工作原理课件
吸收式热泵在这些领域的应用可以有效地提高能源利用效率,降低能源消耗和环 境污染,同时还可以提供更为高效和便捷的服务。
05
吸收式热泵的发展趋势与 未来展望
吸收式热泵的技术创新与改进
高效传热和热力循环
新型吸收剂的开发
通过改进热力循环和传热过程,提高热泵 的能效比和性能系数,降低能耗和运行成 本。
研究新型吸收剂,提高吸收效率,降低吸 收剂的用量和成本,同时减少对环境的污 染。
技术创新推动产业发展
吸收式热泵技术的不断创新和改进,将推动产业的发展和升级,提高 产品的市场竞争力。
政策支持助力市场拓展
政府对节能减排和可再生能源的支持政策,将为吸收式热泵的市场拓 展提供有力支持。
国际合作与交流加强
加强国际合作与交流,引进国外先进技术和管理经验,提高吸收式热 泵的国际竞争力。
感谢您的观看
吸收式热泵在制冷领域的应用
吸收式热泵在制冷领域的应用主要利用热力学原理,通过 制冷剂蒸发吸热和冷凝放热的循环过程,实现制冷和降温 的目的。
吸收式热泵在制冷领域的应用可以有效地降低能源消耗和 减少环境污染,同时还可以提供更为舒适和健康的室内环 境。
吸收式热泵在其他领域的应用
吸收式热泵在其他领域的应用主要包括工业余热回收、农业温室供暖、游泳池加 热等领域。
04
在蒸发器中,液态吸收剂吸收低温热源的 热量,重新蒸发成蒸汽。
蒸汽被吸收剂从蒸发器顶部抽出,输送到 吸收器顶部。
05
06
在吸收器中,蒸汽被吸收剂吸收,释放出 热量,并被冷却和液化。
吸收式热泵的工作原理图解
• 请见附图1:吸收式热泵的工作原理图解
03
吸收式热泵的优点与局限 性
吸收式热泵的优点

吸收式热泵

吸收式热泵
1
主要内容
吸收式热泵简介 热电厂的余热利用潜力 吸收式热泵冷热联供 节能性与经济性讨论
2
吸收式热泵简介
热泵的定义
热泵是靠高品位能驱动,使热量由低温热源(物体)传递给高温热源(物 体)的装置。 吸收式热泵是靠高品位热能驱动,使热量由低温热源(物体)传递给高温 热源(物体)的装置。
遵循热力学第一定律和第二定律
吸收式热泵简介
第Ⅰ类吸收式热泵实际工艺流程图
发生器
9
吸收式热泵简介
第Ⅱ类溴化锂吸收式热泵工作原理
第Ⅱ类吸收式热泵循环的基本过程 是:在吸收器4中,溴化锂浓溶液吸 收来自蒸发器3的水蒸汽,被稀释成 为稀溶液,放出吸收热;在发生器1 中,稀溶液被加热浓缩成为浓溶液 ,这时,释放出来的水蒸汽进入冷 凝器2,而浓溶液则经溶液泵7送回 吸收器4,溶液的压力从冷凝压力相 应地提高到蒸发压力;来自发生器1 的水蒸汽在冷凝器2中放出凝结热, 热量被冷却水带走,本身被冷凝成 水;水经过溶液泵6后,进入蒸发器 3蒸发,产生水蒸汽:水蒸汽进入吸 收器4,再被浓溶液吸收;就这样构 成往复循环。
不同点
驱动热源条件不同: 第Ⅰ类吸收式热泵的驱动热源高温热源;而第Ⅱ类吸收式热泵的驱 动热源是中温热源。
12
吸收式热泵简介
评价吸收式热泵性能的主要指标
1 性能系数COP(热力学第一定律,量的评价)
COPAHP
Qa Qk Qg
COPAHT
Qa Qk 1 Qg Qc Qg Qc
开启V1、V3、V5、V7、V9、V11 冬季制热: 关闭V2、V4、V6、V8、V10、V12
冬:45℃ 冬季给水换热器回水 办公楼回水 夏:12℃ 餐厅回水 原有系统的循环水泵及补水装置

吸收式热泵课件天大马教授

吸收式热泵课件天大马教授
,即余热回收与利用无法保持同步。

例如,余热锅炉,为提高回收效果常采取两
种方法。一种是把余热锅炉作为辅助锅炉来使用
,用主锅炉来进行调节。

第二讲
❖电厂余热利用技术介绍
❖(吸收式热泵在电厂余热利用中的应用)
❖ 一、电厂余热种类
❖ 1.锅炉排烟余热
❖ 一般温度在140-160℃,占锅炉输入燃料热的
5-12%。
吸收;就这样构成往复循环。
第Ⅱ类吸收式热泵实际工艺流程图
三、第Ⅰ和第Ⅱ类吸收式热泵的比较
三、第Ⅰ和第Ⅱ类吸收式热泵的比较
第Ⅰ类和第Ⅱ类吸收式热泵的异同点
❖(一)相同点
❖ 1.两类吸收式热泵均由发生器、吸收器、蒸发器
、冷凝器及节流阀、溶液泵等部分组成。
❖ 2.两类吸收式热泵都是利用工质的吸收循环来实
出吸收热;在发生器1中,稀溶液被加热
浓缩成为浓溶液,这时,释放出来的水
蒸汽进入冷凝器2,而浓溶液则经溶液泵
7送回吸收器4,溶液的压力从冷凝压力
相应地提高到蒸发压力;来自发生器1的
水蒸汽在冷凝器2中放出凝结热,热量被
冷却水带走,本身被冷凝成水;水经过
溶液泵6后,进入蒸发器3蒸发,产生水
蒸汽:水蒸汽进入吸收器4,再被浓溶液

通常把余热用于生产工艺本身比较合适。这一方面是
回收措施比较简单,投资较少;另一方面在余热供需之间
便于协调和平衡,容易稳定运行。

例如,锅炉高温烟气用于加热锅炉本体的燃料(煤、
油、气)、预热空气或者加热锅炉给水时,只要锅炉正常
运行,余热回收就不会停止,余热利用就连续进行,锅炉
回收装置就可稳定地工作,当锅炉停止运行时,余热的回

吸收式热泵的工作原理_图文

吸收式热泵的工作原理_图文
再吸收式热泵:压比小,制热系数小。 两级吸收式热泵:压力差大时,不需
提高高位热源温度实现热泵循环;或在较低的高 温热源温度下实现单级无法实现的循环。
绝热吸收式热泵:有效利用大量的把
温度较低的废热,变废为宝。
3.1.2 吸收式热泵的分类
吸收式热泵的种类繁多,可以按其工质对 、驱动热源及其利用方式、制热目的、溶液循 环流程以及机组结构等进行分类。 1.按工质对划分 (1)水-溴化锂热泵 水为制冷剂,溴化锂为 吸收剂。 (2)氨-水热泵 氨为制冷剂,水为吸收剂。
3.按驱动热源的利用方式划分
(1)单效热泵 驱动热源在机组内被直接利用 一次。
(2)双效热泵 驱动热源在机组内被直接和间 接地利用两次。
(3)多效热泵 驱动热源在机组内被直接和间 接地利用多次。
(4)多级热泵 驱动热源在多个压力不同的发 生器内依次被直接利用。
4.按制热目的划分
(1)第一类吸收式热泵 也称增热型热泵, 是 利用少量的高温热源热能,产生大量的中温有 用热能。即利用高温热能驱动, 把低温热源的 热能提高到中温,从而提高热能的利用效率。
3.4 溴化锂吸收式热泵机组
3.4.1 单效溴化锂吸收式热泵机组的结构 3.4.2 双效溴化锂吸收式热泵机组的结构
返回首页
3.4.1 单效溴化锂吸收式热泵机组的结构
溴化锂吸收式热泵机组是由各种换热器,并 辅以屏蔽泵、真空阀门、管道、抽气装置、控制 装置等组合而成。按照各换热器的布置方式分为 单筒型、双筒型或三筒型结构。
(2)第二类吸收式热泵 也称升温型热泵, 是 利用大量的中温热源热能产生少量的高温有用 热能。即利用中低温热能驱动, 用大量中温热 源和低温热源的热势差,制取热量少于但温度 高于中温热源的热量,将部分中低热能转移到 更高温的品位上,从而提高了热能的利用品位 。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理
标签:吸收式热泵高温热能驱动能源利用率吸收式热泵
吸收循环按用途不同可以分为制冷、热泵、热变换器三类,其中后两者都可以称为吸收式热泵。

通常所说吸收式热泵(Absorpt ion heat pumps,简称AHP)指的是第一类吸收式热泵,利用高温热能驱动,回收低温热量,提高能源利用率;第二类吸收式热泵又称吸收式热变换器(Absorption heat transformer,简称AHT),AHT利用中低温废热驱动,将部分废热能量转移到更高温位加以利用。

无论是哪一类吸收式热泵,其节能的方法都是充分利用了低级能源,从而减少了高级能源的消耗。

因此,利用吸收式热泵回收余热等低级能源,可提高一次能源利用率,同时还可以减少因燃料燃烧产生SO2、NO2、烟尘等所造成的环境污染。

吸收式热泵的工作原理与制冷机相同,都是按照逆卡诺循环工作的,所不同的只是工作温度范围不一样。

热泵在工作时,它本身消耗一部分能量,把环境介质中储存的能量加以挖掘,通过传热工质循环系统提高温度进行利用,而整个热泵装置所消耗的功仅为输出功中的一小部分,因此,采用热泵技术可以节约大量高品位能源。

水从高处流向低处,热由高温物体传递到低温物体,这是自然规律。

然而,在现实生活中,为了农业灌溉、生活用水等的需要,人们利用水泵将水从低处送到高处。

同样,在能源日益
紧张的今天,为了回收通常排到大气中的低温热气、排到河川中的低温热水等中的热量,热泵被用来将低温物体中的热能传送至高温物体,然后高温物体来加热水或采暖,使热量得到充分利用。

所以热泵实质上是一种热量提升装置,热泵的作用是从周围环境中吸取热量,并把它传递给被加热的对象(温度较高的物体)。

浅谈吸收式热泵

浅谈吸收式热泵

浅谈吸收式热泵热泵按其工作原理可以分为以下几类:蒸汽压缩式热泵、吸收式热泵、吸附式热泵、喷射式热泵、热电式热泵以及基于磁热泵、声波热泵及其他各种化学热泵。

最常见的就是蒸汽压缩式热泵。

而对于吸收式热泵,很多人也只是听过其名却不懂其原理。

那么笔者今天就为大家揭开吸收式热泵的神秘面纱。

吸收式热泵是一种利用低品位热源,实现将热量从低温热源向高温热源泵送的循环系统。

是回收利用低品位热能的有效装置,具有节约能源、保护环境的双重作用。

其系统主要由5-吸收器、7-水泵、1-发生器、减压阀、2-冷凝器、3-节流阀、4-蒸发器、精馏器、分凝器、过冷器、回热器等组成。

吸收式热泵原理图如下图1所示:图1 吸收式热泵原理图吸收器/发生器中装有不同沸点的两种物质混合溶液作为工质对,主要有两种:氨水溶液(氨为制冷剂,水为吸收剂)和溴化锂水溶液(水为制冷剂,溴化锂为吸收剂),后者被广泛应用于空调热泵中。

由原理图不难看出,吸收式热泵与蒸汽压缩式热泵最大的区别在于吸收式热泵用吸收发生装置取代了压缩机,用热能(蒸汽、燃料、热水等)驱动代替电力驱动,因此对于能源的回收与节约有很大意义。

吸收式热泵按制热目的可以分为两类。

两类热泵应用目的不同,工作方式也不同。

但都是工作于三热源之间,三个热源温度的变化对热泵循环会产生直接影响。

第一类吸收式热泵,也称增热型热泵,是利用少量的高温热源,产生大量的中温有用热能。

即利用高温热能驱动,把低温热源的热能提高到中温,从而提高了热能的利用效率。

第一类吸收式热泵的性能系数大于1,一般在1.5-2.5之间。

从工作原理上来看,第一类吸收式热泵与吸收式制冷机的工作原理是一致的。

其原理图如下图2所示:图2 增热型热泵原理图其热收支图如下图3所示:图3 增热型热泵热收支图其内部工作流程为:高温驱动热源加热发生器,制冷剂蒸汽从发生器内的溶液中蒸发出来,在冷凝器中放热加热热水,节流后进入蒸发器吸收低品位热源的热量,变成蒸汽进入吸收器;发生器中变浓的溶液经热交换器进入吸收器,吸收来自蒸发器的制冷剂蒸汽,放出热量加热热水,而吸收器中变稀的溶液又通过热交换器进入发生器,完成循环。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理吸收式热泵是一种利用吸收剂对工质进行吸收和释放热量的热泵系统。

它通过吸收剂的循环流动来实现热量的转移和传递,从而实现冷热能的转换。

下面将详细介绍吸收式热泵的工作原理。

一、吸收式热泵的基本构成吸收式热泵主要由吸收器、发生器、冷凝器、蒸发器和泵组成。

吸收器和发生器是吸收剂和工质之间的主要热交换装置,冷凝器和蒸发器则是工质与外界环境之间的热交换装置。

泵则用于维持吸收剂的循环流动。

二、吸收式热泵的工作过程1. 吸收器:吸收器中的吸收剂与工质发生吸收反应,将工质中的低温热量吸收到吸收剂中。

这个过程中,吸收剂从弱溶液转变为浓溶液,释放出热量。

2. 发生器:发生器中的吸收剂与浓溶液发生反应,将吸收剂中的热量释放出来,使其变为弱溶液。

这个过程中,吸收剂释放的热量被外部加热源提供。

3. 冷凝器:工质在发生器中被加热后,进入冷凝器。

在冷凝器中,工质释放出热量,从而冷凝成液体。

这个过程中,冷凝器通过外部冷却介质(如水)吸收工质释放的热量。

4. 蒸发器:在蒸发器中,工质通过蒸发吸收外界的热量,从而变成蒸汽。

这个过程中,蒸发器通过外部热源(如空气、水等)提供热量。

5. 泵:泵用于维持吸收剂的循环流动,将吸收剂从吸收器送往发生器,实现吸收剂的再生。

三、吸收式热泵的工作原理吸收式热泵的工作原理基于吸收剂和工质之间的吸收和释放热量的反应。

在吸收器中,工质中的低温热量被吸收剂吸收并释放出热量。

吸收剂从弱溶液转变为浓溶液,释放的热量通过外部加热源提供。

然后,浓溶液进入发生器,与吸收剂反应,释放吸收剂中的热量。

吸收剂从浓溶液转变为弱溶液,释放的热量被外部冷却介质吸收。

接下来,工质进入冷凝器,在外部冷却介质的作用下,释放热量并冷凝成液体。

最后,液体工质进入蒸发器,在外部热源的作用下蒸发吸收热量,变成蒸汽。

吸收式热泵通过泵将吸收剂从吸收器送往发生器,实现吸收剂的再生,从而完成一个工作循环。

四、吸收式热泵的优点1. 适用范围广:吸收式热泵适用于各种能源形式,如燃气、电能、太阳能等,具有很好的适应性。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理吸收式热泵是一种利用吸收剂对低温热量进行吸收和释放的热泵系统。

它通过循环过程将低温热量转化为高温热量,从而实现热能的转移和利用。

1. 工作原理概述吸收式热泵系统主要由吸收器、发生器、冷凝器、蒸发器和泵等组成。

其中,吸收器和发生器是吸收剂的核心部分,冷凝器和蒸发器则是热量传递的关键组件。

2. 吸收器吸收器是吸收剂和工作介质(一般为水)接触的地方。

在吸收器中,吸收剂(一般为氨)与工作介质发生吸收反应,将工作介质中的水蒸汽吸收到吸收剂中,形成稀溶液。

3. 发生器发生器是吸收剂和工作介质分离的地方。

通过加热吸收剂和稀溶液混合物,使其分离并释放出吸收的水蒸汽。

吸收剂在发生器中被再次回收,形成浓溶液。

4. 冷凝器冷凝器是将吸收剂中的水蒸汽冷凝成液体的部分。

在冷凝器中,通过外界冷却介质(一般为水)的冷却作用,将吸收剂中的水蒸汽冷凝成液体,释放出大量的热量。

5. 蒸发器蒸发器是将工作介质中的液体蒸发成蒸汽的部分。

在蒸发器中,通过外界低温热源(一般为空气或水)的热量传递作用,使工作介质中的液体蒸发成蒸汽,吸收外界低温热量。

6. 泵泵是用来循环吸收剂和工作介质的装置。

它将吸收剂和工作介质从吸收器和发生器中抽出,并通过管道输送到冷凝器和蒸发器,以完成热量的转移和循环。

7. 工作循环吸收式热泵的工作循环主要包括吸收、发生、冷凝和蒸发四个过程。

在吸收过程中,吸收剂吸收工作介质中的水蒸汽;在发生过程中,通过加热使吸收剂和工作介质分离;在冷凝过程中,吸收剂中的水蒸汽被冷凝成液体;在蒸发过程中,工作介质中的液体被蒸发成蒸汽。

8. 热能转移吸收式热泵通过吸收剂的吸收和释放过程,实现了热能的转移和利用。

在吸收过程中,吸收剂吸收外界低温热量;在发生过程中,通过加热将吸收的低温热量释放出来,同时吸收剂被再次回收;在冷凝过程中,吸收剂释放出大量的热量;在蒸发过程中,工作介质吸收外界低温热量,并将其转化为高温热量。

9. 应用领域吸收式热泵广泛应用于工业生产、建筑供热、制冷空调等领域。

吸收式热泵的工作原理

吸收式热泵的工作原理

吸收式热泵的工作原理引言概述:吸收式热泵是一种能够高效利用热能的设备,它能够将低温热能转化为高温热能,实现能源的有效利用。

本文将详细介绍吸收式热泵的工作原理,包括吸收循环、蒸发器、冷凝器、蒸发器和发生器等五个部分。

一、吸收循环1.1 吸收器:吸收器是吸收式热泵中的重要部件之一,其主要功能是将低温低压的工质吸收剂与高温高压的溶剂相接触,实现工质的吸收过程。

1.2 蒸发器:蒸发器是吸收式热泵中的热交换器,其内部充满了工质吸收剂,通过与外界低温热源接触,使得工质吸收剂蒸发,从而吸收热能。

1.3 发生器:发生器是吸收式热泵中的核心部件,其内部通过加热使得工质吸收剂与溶剂分离,实现工质的脱附过程,并释放出高温热能。

二、蒸发器2.1 蒸发器工作原理:当工质吸收剂从发生器中进入蒸发器时,由于蒸发器内部的低温热源,工质吸收剂会发生蒸发,从而吸收大量的热能。

2.2 蒸发器设计考虑因素:蒸发器的设计需要考虑到热交换效率、流体阻力、材料选择等因素,以确保蒸发器能够有效地吸收热能。

2.3 蒸发器的优化:为了提高蒸发器的效率,可以采用增加蒸发器的表面积、改善流体流动方式等方法进行优化。

三、冷凝器3.1 冷凝器工作原理:在冷凝器中,高温高压的工质吸收剂会通过热交换的方式与冷却介质接触,从而释放出热能。

3.2 冷凝器的设计考虑因素:冷凝器的设计需要考虑到热交换效率、冷却介质的选择、冷却介质的流量等因素,以确保冷凝器能够有效地释放热能。

3.3 冷凝器的优化:为了提高冷凝器的效率,可以采用增加冷凝器的表面积、改善冷却介质的流动方式等方法进行优化。

四、蒸发器和发生器4.1 蒸发器和发生器的热量传递:蒸发器和发生器之间的热量传递是吸收式热泵中最重要的过程之一,通过热量传递,工质吸收剂能够在两者之间进行循环。

4.2 蒸发器和发生器的工作原理:蒸发器和发生器通过热交换的方式,使得工质吸收剂在蒸发器中吸收热能,在发生器中释放热能,从而实现热能的转化。

波节板补偿式热泵

波节板补偿式热泵

波节板补偿式热泵
波节板补偿式热泵是一种能够有效利用地下地热能的热泵系统。

它利用地下存储的热能来供暖和制冷,同时通过波节板的补偿设计,实现热泵系统的高效运行。

波节板补偿式热泵系统包括地下热交换器、热泵主机和室内通风系统。

地下热交换器通过埋设在地下的地热管道与地下热能进行热交换。

热泵主机则负责将地下的热能转移到室内供暖或制冷使用。

室内通风系统则负责调节室内空气温度。

波节板的补偿设计是此热泵系统的关键特点之一。

波节板的作用是对系统中的压力和温度变化进行补偿,保证热泵系统在不同工作条件下的高效运行。

波节板可以有效减少能源消耗,并提高热泵系统的性能和寿命。

另外,波节板补偿式热泵系统还具有环保、节能和可持续发展的特点。

它利用地下的热能资源,并且能够有效减少传统能源的消耗。

此外,热泵系统使用的制冷剂也是环保的,对环境影响较小。

总之,波节板补偿式热泵是一种高效利用地下地热能的热泵系统,具有环保、节能和可持续发展的特点。

它可以为建筑提供舒适的室内温度,并减少对传统能源的依赖。

波节板补偿式热泵

波节板补偿式热泵

波节板补偿式热泵
波节板补偿式热泵是一种利用空气能进行加热和制冷的设备。

它采用了波节板作为热泵的补偿装置,能够提高热泵的热效率和运行稳定性。

波节板是一种具有良好弹性的材料,可以通过弯曲和伸缩的方式进行形变。

在波节板补偿式热泵中,波节板的一个端部与室外空气相连,另一个端部与室内空气相连。

当环境温度变化时,室外空气的温度变化会导致波节板的形变,进而改变热泵的工作状态。

当环境温度较高时,波节板会伸长,拉开室内和室外空气之间的距离,减小室内空气的加热量,从而提高热泵的制冷效果。

当环境温度较低时,波节板会收缩,缩小室内和室外空气之间的距离,增大室内空气的加热量,从而提高热泵的加热效果。

波节板补偿式热泵具有以下优点:
1. 热效率高:通过波节板的形变调节工作状态,使热泵在不同环境温度下都能达到最佳工作效果,提高了能源利用率。

2. 运行稳定:波节板的形变可以实时调整热泵的工作状态,使其能够适应环境温度的变化,提高了系统的稳定性和可靠性。

3. 安装方便:波节板与室内和室外空气之间无需额外的连接管道,减少了安装的复杂程度和成本。

总之,波节板补偿式热泵是一种高效、稳定且方便安装的空气能热泵设备,可以广泛应用于家庭、商业和工业等各个领域。

吸收式热泵PPT学习教案

吸收式热泵PPT学习教案

根据热力学第一定律:
Qg Q0 Qa Qc
COP的定义
COPH
QC Qa Qg
COP Tg T0 • Tc Tg Tc T0
第18页/共73页
Qg
W
Qa
p
T
Qc Tg
可逆热泵
Ta Tc
Qe
可逆热机
T0
S
COP Tg T0 • Tc Tg Tc T0
第19页/共73页
第一类吸收式热泵的热力学计算
能量平衡 蒸发器
冷凝器 再生器
吸收器 泵
第25页/共73页
由于泵消耗的功率与其他单元的热传递速率相比很小, 所以,在进行过程热力学分析时,可以将其忽略。
吸收热泵的性能系数 远低于压缩式热泵
(7~9)
如果将这套装置用于制冷,则性能系数为
大约
Coefficient Of Performance
第26页/共73页
第7页/共73页
第二类吸收式热泵(Type Ⅱ Absorption Heat Pump)或称为热变换器(Heat Transformer)则 靠输入中温热能(通常是废热)驱动系统运行,将其中 一部分热能的温位提高,即吸收过程放出的热量,送 至用户,而另一部分热能则排放到环境中。
废热
第8页/共73页
吸收式热泵特 有的
第14页/共73页
P-T
第 一 类 吸 收 式 热 泵 在
图 上 的 表 示
第15页/共73页
第一类吸收式热泵的热力学计算
热力学系数/制热系 数(COP)
Qg
Qc
COPH
Qc Qa Qg
与Qg比,数量很
W
Qa
Qe
小,可以忽略
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波节板吸收式热泵
波节板吸收式热泵:波节板吸收式热泵(Wave-plate Absorption Heat Pump)是一种能够利用低品位能源(如废热、太阳能、地热等)提供制冷或供暖的设备。

该技术利用吸收剂对于氨水、锂溴等工质与吸收过程中释放出来的热量进行换热,从而实现制冷或加热。

波节板吸收式热泵利用波状金属板等材料增加表面积,提高换热效率。

相较于传统的压缩式热泵,波节板吸收式热泵不需要使用电能作为动力源,因此具有更低的运行成本和更高的能量利用率。

同时,该装置还能够减少二氧化碳排放,有利于环境保护和节能减排。

相关文档
最新文档