立体几何总复习 PPT
合集下载
高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离
高中数学立体几何知识点总结及例题下PPT课件
• 设O点在平面D1AP上的射影是H,求证:D1H⊥AP;
D1 ·O
A1 ·H
D
A
C1 B1
P C B
第10页/共23页
• 3 如图,在四棱锥 ABCD, PB于点F。 (I)证明 (II)证明
中,底面ABCD是正方形,侧棱
,E是PC的中点,
作
平面 EDB
;
平面EFD;
底面 交
第11页/共23页
• 4、如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F 是棱CD上的动点.
平面AAB1BD;C A1B1C1
• (II)求证A:B 2 AA平1面AB1D。
BC1 //
A1C
A1
D
C1 B1
C
A
B
第19页/共23页
• 预测(3) 线线垂直+线面平行
• 如图,在四棱锥
, AD AB, A;D DC 1 AB, BC PC.
• (I)试确定点F的位置,使得D1E⊥平面AB1F;
第12页/共23页
• 5、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD 和CC1的中点,O1为下底面正方形的中心。
• (Ⅰ)证明:AF⊥平面FD1B1;
D E A
C B
F
D1 O1 A1
C1 H B1
第13页/共23页
• (Ⅰ)求证:
平面PDC;
PAD
PA PD • (II)已知E为棱AB的中点,问在棱PD上是否存在一点Q,使EQ平行于平面 PBC?若存在,写出点Q的位置,并证明你的结论;若不存在,试说明理由。
PA
第21页/共23页
D1 ·O
A1 ·H
D
A
C1 B1
P C B
第10页/共23页
• 3 如图,在四棱锥 ABCD, PB于点F。 (I)证明 (II)证明
中,底面ABCD是正方形,侧棱
,E是PC的中点,
作
平面 EDB
;
平面EFD;
底面 交
第11页/共23页
• 4、如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F 是棱CD上的动点.
平面AAB1BD;C A1B1C1
• (II)求证A:B 2 AA平1面AB1D。
BC1 //
A1C
A1
D
C1 B1
C
A
B
第19页/共23页
• 预测(3) 线线垂直+线面平行
• 如图,在四棱锥
, AD AB, A;D DC 1 AB, BC PC.
• (I)试确定点F的位置,使得D1E⊥平面AB1F;
第12页/共23页
• 5、已知长方体ABCD—A1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD 和CC1的中点,O1为下底面正方形的中心。
• (Ⅰ)证明:AF⊥平面FD1B1;
D E A
C B
F
D1 O1 A1
C1 H B1
第13页/共23页
• (Ⅰ)求证:
平面PDC;
PAD
PA PD • (II)已知E为棱AB的中点,问在棱PD上是否存在一点Q,使EQ平行于平面 PBC?若存在,写出点Q的位置,并证明你的结论;若不存在,试说明理由。
PA
第21页/共23页
立体几何复习课 ppt课件
一个平面平行,则这两个平面平行。
•
符号表示:a ,b ,a b P ,a /, / b // //
•
(2)性质定理:如果两个平行平面同时和第三个
平面相交,那么它们的交线平行。
符号表示: // , a , b a /b /。
立体几何复习课
13
5.直线、平面垂直的判定与性质
• 直线与平面垂直
• (2)直线与平面相交--有且只有一个公共点
• (3)直线与平面平行----没有公共点
立体几何复习课
11
平面与平面之间的位置关系
• (1)两个平面平行---没有公共点 • (2)两个平面相交---有一条公共直线
立体几何复习课
12
4.直线、平面平行的判定与性质
(1)直线与平面平行
•
(1)判定定理:平面外一条直线与此平面内的一条
• ①证明 BC⊥侧面 PAB; • ②证明侧面PAD⊥侧面PAB; • ③求侧棱PC与底面ABCD所成角的大小;
• ④求平面 PAB与平面 PCD所成二面角余弦值
立体几何复习课
19
如图8,在矩形ABCD中,AB=2,AD=1,E是 CD边上的中点,以AE为折痕将 △DAE向上折起, 使D为D
• (1)求证:AD⊥ EB;
D. 1 2
立体几何复习课
6
• 例2. 一水平放置的平面图形,用斜二测 画法画出了它的直观图,此直观图恰好是 一个边长为2的正方形,如图3则原平面图 形的面积为( )
• A.4 3 • B.4 2 • C.8 3
• D.8 2
立体几何复习课
7
体积与表面积
立体几何复习课
8
3.点、线、面之间的位置关系
立体图形的复习整理PPT
等体积法
对于涉及体积计算的立体几何问题,可以采用等体积法。 通过将立体图形分成若干部分,利用体积守恒定律,将问 题转化为求解平面图形面积的问题。
分割法
对于复杂的立体图形,可以采用分割法。将复杂的立体图 形分割成若干个简单的立体图形,分别求解后再进行综合 。
常见题型解析
求体积和表面积
求角度和距离
这类问题需要利用体积和表面积的计算公 式,结合题目的具体条件进行求解。
分类
01
02
03
平面图形
由直线段构成的二维图形, 如三角形、四边形等。
曲面图形
由曲面构成的立体图形, 如球体、圆柱体等。
立体图形
由平面和曲面构成的立体 图形,如长方体、圆锥体 等。
立体图形的特点
占据三维空间
立体图形存在于三维空间中,具有长、 宽、高三个维度。
具有大小和形状
立体图形具有确定的大小和形状,可 以通过测量和计算得到其面积、体积 等几何量。
分解
将一个复杂的立体图形分解成若干个简单的小立体图形,有助于理 解和分析其结构。
应用
组合与分解在几何学、建筑学、机械工程等领域有广泛应用,如建 筑设计、机械零件的组装与拆卸等。
立体图形的创意设计
创意设计
01
通过运用几何学原理和美学原则,可以设计出各种具有创意的
立体图形。
实例
02
建筑设计中的立体造型、雕塑艺术中的立体造型、玩具设计中
立体图形的对称性
对称轴
有些立体图形具有对称性,可以通过对称轴进行对称。对称 轴是穿过立体图形中心的一条直线,将立体图形分成两个完 全相同的部分。
对称面
有些立体图形具有对称面,可以通过对称面进行对称。对称 面是一个平面,将立体图形分成两个完全相同或镜像的部分 。
高中数学总复习考点知识讲解课件13立体几何
【解析】 (1)证明:过点B1作平面AOB的垂线,垂足为C,如图,则C是OB 的中点,所以BC=1.
π 又∠OBB1= 3 ,所以BB1=2. 连接OB1,因为BB1=OB=2, 所以△OBB1为等边三角形. 因为点M为BB1的中点,所以BB1⊥OM. 因为平面AA1O1O⊥平面BB1O1O,平面AA1O1O∩平面BB1O1O=OO1,且 AO⊥OO1,AO⊂平面AA1O1O,
命题规律: (1)直线和平面平行、垂直的判定与性质. (2)空间角及空间向量的应用. (3)立体几何题通常分两问,第一问,线、面关系的证明,第二问,跟角有 关,考查线面角或二面角.在第二问中,一定要注意是求角的大小,还是求角 的某个三角函数值!
押题一 线面角
(2021·长沙市一中模拟(一))如图,七面体ABCDEF的底 面是凸四边形ABCD,其中AB=AD=2,∠BAD=120°,AC,BD 垂直相交于点O,OC=2OA,棱AE,CF均垂直于底面ABCD.
= 7
7 7.
所以直线GH与平面PBC所成角的正弦值为
7 7.
方法三:(1)同方法二. (2)设CD=2,在BD上取点I,使BI=3ID,连接HI,GI,CE,如图,则 GI∥CD,
根据题意CD⊥BD,CD⊥PD,BD∩PD=D, 所以CD⊥平面PBD,则GI⊥平面PBD,
所以GI⊥HI,
GH= HI2+GI2=
(2)由(1)知BF⊥EF,C1F⊥EF. ∴∠C1FB即为二面角C1-EF-B的平面角.
π ∴∠C1FB= 3 .过点F作平面AEFB的垂线,建立空间直角坐标系
如图所示.
由BF=EF=2AE=4,可得E(4,0,0),C1(0,2,2 B(0,4,0),A(4,2,0).
第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)
81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2
2023版高考数学一轮总复习第六章立体几何第一讲空间几何体的结构特征和直观图课件
以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y
轴的线段长度减半,平行于 x 轴和 z 轴的线段长度不变)来
掌握.
(2)按照斜二测画法得到的平面图形的直观图,其面积
与原图形的面积的关系:S
= 直观图
2 4S
原图形.
【变式训练】
一个水平放置的图形的斜二测直观图是一个底角为
45°,腰和上底均为 22的等腰梯形,那么原平面图形的面积
由斜二测画法可知,A′B′=AB=a,O′C′=21OC
= 43a,在图 6-1-6 中作 C′D′⊥A′B′于 D′,则 C′D′
= 22O′C′= 86a.所以 S△A′B′C′=21A′B′·C′D′=
12·a·86a= 166a2.
答案:D
【题后反思】
(1)画几何体的直观图一般采用斜二测画法,其规则可
3.(教材改编题)如图 6-1-1,长方体 ABCD-A′B′C′D′
被截去一部分,其中 EH∥A′D′.剩下的几何体是(
)
A.棱台 C.五棱柱 答案:C
图 6-1-1 B.四棱柱 D.六棱柱
题组三 真题展现
4.(2021 年新高考Ⅰ)已知圆锥的底面半径为 2,其侧 面展开图为一个半圆,则该圆锥的母线长为( )
A.2
B.2 2
C.4
D.4 2
答案:B
5.(2020 年全国Ⅰ)如图 6-1-2,在三棱锥 P-ABC 的平面 展开图中,AC=1,AB=AD= 3 ,AB⊥AC,AB⊥AD, ∠CAE=30°,则 cos∠FCB=________.
答案:-14
图 6-1-2
考点一 空间几何体的结构特征
[例 1] (1)给出下列命题:
高考数学(理)一轮复习精品课件:专题《立体几何》
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
1.多面体的结构特征
2.正棱柱与正棱 锥的结构特征 3.旋转体的 结构特征 4.三视图
考点42
空间几何体的结构、三视图
定义:从一个几何体的正前方、正左方、正上方三个 不同的方向看这个几何体,描绘出的平面图形,分别 称为正(主)视图、侧(左)视图、俯视图.
2.外接球、内切 球的计算问题
在Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+
r2.
8
9
10
11
12
13Байду номын сангаас
14
考法2 空间几何体的三视图
1.识别三视 图的步骤
(1)弄清结构,明确位置 (2)先画正视图,再画俯视图,最后画侧视图 (3)被遮住的轮廓线要画成虚线
2.判断余下视图
1.计算有关 线段的长
当球内切于正方体时,切点为正方体各个 面的中心,正方体的棱长等于球的直径;
2.外接球、内切 球的计算问题
7
考法1
空间几何体的结构特征
球与旋转体的组合通常作轴截面解题. 球与多面体的组合,通过多面体的一条侧棱
1.计算有关 线段的长
和球心(或“切点”“接点”)作出截面图解题. 设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任一点,球心O到截面圆O′的距离为d,则
专题8
第1 节
立体几何
空间几何体的三视图、表面积和体积
第2 节
质 第3 节
空间直线、平面平行与垂直的判定及其性
空间中的计算问题
1
考点42
空间几何体的结构、三视图
第八章-立体几何初步复习课图文课件
简单说,斜二测画法的规则是: 横竖不变,纵减半,平行
性不变.
复习回顾 结合正八棱柱的直观图,说出用斜二测画法画空间几何体的 直观图的基本步骤.
横竖不变,纵减半,平行性不变
复习回顾
问题3 对于空间几何体,可以有不同的分类,你能选择不同的分 类标准对柱、锥、台、球等空间几何体进行分类吗?如何计算柱、 锥、台、球的表面积和体积?你能说出柱、锥、台、球的体积公式 之间的联系吗?
,得 α ∩ γ =a;又γ ∩ β =直线b,故a与b
重合,
α , β , γ相交于同一条直线.
复习回顾
探究3 已知三个不同的平面 α, β, γ两两相交,设 α ∩ β=直线 c,
β ∩ γ =直线a, γ ∩ α =直线b,试问a,b,c有怎样的位置关系?
说明理由并画出相应图形. ②当a与c相交时,设a∩c=点O,由 α ∩ β =直线c, β ∩ γ
复习回顾 探究4 怎样求图中的四个四面体的外接球与内切球的半径?
四个四面体的外接球与正方体的
类比
外接球相同,其一条直径为正方
体的体对角线,半径
.
复习回顾
问题4 刻画平面的三个基本事实是立体几何公理体系的基石,是 研究空间图形、进行逻辑推理的基础.实际上,三个基本事实刻画 了平面的“平”、平面的“无限延展”,你能归纳一下刻画的方法
探究1 说明作出点H的过程.点H在线段DB1的什么位置?
设B1D1 ∩A1C1=P,点P为线段B1D1的中点,且平面
A1BC1 ∩平面BB1D1D=BP.
在矩形BB1D1D中, BP∩B1D=H.
由△B1HP∽△DHB,且 .
,知
复习回顾
探究1 说明作出点H的过程.点H在线段DB1的什么位置?
性不变.
复习回顾 结合正八棱柱的直观图,说出用斜二测画法画空间几何体的 直观图的基本步骤.
横竖不变,纵减半,平行性不变
复习回顾
问题3 对于空间几何体,可以有不同的分类,你能选择不同的分 类标准对柱、锥、台、球等空间几何体进行分类吗?如何计算柱、 锥、台、球的表面积和体积?你能说出柱、锥、台、球的体积公式 之间的联系吗?
,得 α ∩ γ =a;又γ ∩ β =直线b,故a与b
重合,
α , β , γ相交于同一条直线.
复习回顾
探究3 已知三个不同的平面 α, β, γ两两相交,设 α ∩ β=直线 c,
β ∩ γ =直线a, γ ∩ α =直线b,试问a,b,c有怎样的位置关系?
说明理由并画出相应图形. ②当a与c相交时,设a∩c=点O,由 α ∩ β =直线c, β ∩ γ
复习回顾 探究4 怎样求图中的四个四面体的外接球与内切球的半径?
四个四面体的外接球与正方体的
类比
外接球相同,其一条直径为正方
体的体对角线,半径
.
复习回顾
问题4 刻画平面的三个基本事实是立体几何公理体系的基石,是 研究空间图形、进行逻辑推理的基础.实际上,三个基本事实刻画 了平面的“平”、平面的“无限延展”,你能归纳一下刻画的方法
探究1 说明作出点H的过程.点H在线段DB1的什么位置?
设B1D1 ∩A1C1=P,点P为线段B1D1的中点,且平面
A1BC1 ∩平面BB1D1D=BP.
在矩形BB1D1D中, BP∩B1D=H.
由△B1HP∽△DHB,且 .
,知
复习回顾
探究1 说明作出点H的过程.点H在线段DB1的什么位置?
中职教育《立体几何(第一轮复习)》课件
l
a
Ma
b a
b
M
l
b
la
线不在多,重在相交
l b
2.直线和平面垂直的性质定理:
知识梳理
性质1
如果一条直线垂直于一个平面,那么这条直 线垂直于平面的任意一条直线.
性质2
如果两条平行线中的一条与平面垂 直,那么另一条也与这个平面垂直.
a‖ b .
abຫໍສະໝຸດ ab知识梳理例1.空间四边形ABCD, AB AC,DB DC, 求证:BC AD.
第九章 立体几何
总复习
• 2015: 9分(选择题和填空题各一道) • 2016:10分(2道选择题) • 2017:13分(1道大题) • 2018:13分(1道大题) • 2019:13分(1道大题) • 2020:13分(1道大题)
知识结构
一.平面的基本性质 二.空间两直线的位置关系 三.直线和平面平行的判定和性质 四.直线和平面垂直的判定和性质 五.两个平面平行的判定和性质 六.两个平面垂直的判定和性质
第九章 立体几何
9.1 平面与直线
知识梳理
1 平面的基本性质
公理1
如果一条直线上的两点在一个平面内,那么这条直
线上所有的点都在这个平面内.
.
A, B
Al, Bl
A
直线l
Bl
知识梳理
1 平面的基本性质
公理2
如果两个不重合的平面有一个公共点,那么它们有且只 有一条过这个公共点的直线.
P . l且P l
第九章 立体几何
9.3 直线和平面垂直的 判. 定和性质定理
1.直线和平面垂直的判定
1.直线和平面垂直的定义:
如果一条直线与一个平面内任何一条直线都垂 直,我们就说这条直线与这个平面相互垂直。