信号与系统知识点整理

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统重要知识总结

信号与系统重要知识总结

信号与系统重要知识总结信号与系统是电子信息类专业中的一门重要课程,它是研究信号的产生、传输、处理与分析的学科。

信号与系统的重要知识主要包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算、系统的稳定性等。

以下是对信号与系统重要知识的总结。

一、信号的基本概念信号是随时间、空间或其他自变量变化的物理量。

根据自变量的不同,信号可以分为时域信号和频域信号。

时域信号是关于时间的函数,而频域信号是关于频率的函数。

二、信号的分类根据信号的性质和特点,信号可以分为连续时间信号和离散时间信号。

连续时间信号是在整个时间范围内存在的信号,离散时间信号仅在一些离散时间点存在。

三、信号的时域和频域表示时域表示是将信号表示为随时间变化的函数,常用的时域表示方法有冲激函数表示、阶跃函数表示和周期函数表示等。

频域表示是将信号表示为随频率变化的函数,常用的频域表示方法有傅里叶变换和拉普拉斯变换等。

四、线性时不变系统线性时不变系统(LTI)是信号与系统中的重要概念,它是指系统的输出只取决于输入的当前值和过去值,且满足线性叠加原理。

LTI系统具有很多重要性质,如时域稳定性、频域稳定性、因果性、时域线性和频域线性等。

五、卷积运算卷积运算是信号与系统中的重要运算工具,它描述了输入信号经过系统响应的输出信号。

卷积运算实质上是将两个信号相乘并对一个变量进行积分的过程。

在时域中,卷积运算可以表示为输入信号和系统冲激响应的卷积;在频域中,卷积运算可以使用傅里叶变换和反变换来进行。

六、系统的稳定性系统的稳定性是指当输入有界时,输出是否也是有界的。

稳定性是一个重要的系统性质,不稳定系统可能导致系统失控或发生崩溃。

稳定性的判定方法有多种,常用的方法有判定系统传递函数的极点位置和利用BIBO(有界输入有界输出)稳定性判据。

综上所述,信号与系统是电子信息类专业中的一门重要课程,它涉及信号的产生、传输、处理与分析的方法。

信号与系统中的重要知识包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算和系统的稳定性等。

信号与系统知识点归纳

信号与系统知识点归纳
频谱特性
周期信号的频谱是离散的,由一系列频率分量组成,每个 分量对应一个傅里叶系数。
幅度谱和相位谱
幅度谱表示各频率分量的幅度大小,相位谱表示各频率分 量的相位信息。
非周期信号频谱分析
傅里叶变换
将非周期信号表示为一系列复指数函数的积分,即 $F(omega) = int_{-infty}^{infty} f(t) e^{jomega t} dt$,其中 $F(omega)$ 是信号的频谱。
单位样值信号
在某一时刻取值为1,其余时 刻为0的信号。
正弦型信号
形如sin(ωn)或cos(ωn)的周期 性信号,其中ω为角频率。
复杂指数型信号
形如ean的形式,其中a和ω为 常数,n为离散时刻。
离散时间信号频谱分析
离散时间信号的频谱
通过傅里叶变换将离散时间信号从时域转换 到频域,得到信号的频谱。
信号分类
根据信号的性质和特征,信号可以分 为多种类型,如连续时间信号和离散 时间信号、周期信号和非周期信号、 能量信号和功率信号等。
系统定义及性质
系统定义
系统是一个由输入信号激励、内部含有某种变换关系、并能产生输出信号的物理装置或算法。在信号处理中,系 统通常表示为对输入信号进行某种变换或处理的过程。
周期信号的频谱
周期信号可以表示为无穷级数,其频谱由傅 里叶系数确定。
非周期信号的频谱
非周期信号的频谱是连续的,可以通过傅里 叶变换求得。
信号的能量和功率谱
能量信号和功率信号的频谱特性不同,分别 对应能量谱和功率谱。
离散时间系统响应
线性时不变系统的响应
线性时不变系统对输入信号的响应具有叠加性和时不变性。
卷积和运算
线性时不变系统的响应可以通过输入信号与系统单位样值响应的卷积 和求得。

信号与系统知识点

信号与系统知识点

信号与系统信号分类:模拟、数字(连续、离散)三种基本系统互连:串联、并联(级联)、反馈对系统的描述:I/O方程、初始条件、边界条件因果:输出只取决于以前的和当前的输入时不变:特性不随时间改变线性:齐次性、可加性初始松弛条件一个离散时间线性时不变系统的特性完全由它的单位冲激响应决定。

(卷积)一个连续时间线性时不变系统的特性完全由它的单位冲激响应决定。

(卷积几份)卷积性质:交换律、分配律、结合律单位冲激响应对系统因果、稳定性的描述LTI系统的特征值、特征函数(离散、连续)周期性连续信号的傅里叶级数公式(各项意义)傅里叶级数存在条件(Dirichlet条件:周期内积分存在、有限个最大最小值、有限个不连续点)吉布斯现象(对存在不连续点的函数进行的傅里叶级数分析)帕斯瓦尔定理(能量与频谱的关系)时域卷积频域相乘;时域相乘频域卷积(系数)(离散:周期卷积)周期离散信号特征函数的性质(周期性N时域频域)与连续信号的区别系统函数、频率响应周期信号通过LTI系统:信号功率谱被改变(幅度、相位)时域连续频域非周期,时域周期频率离散傅里叶变换公式(傅里叶级数是傅里叶变换的抽样)傅里叶变换存在条件:能量有限、狄里赫利条件离散时间傅里叶级数以N为周期,傅里叶变换以2π为周期离散时间傅里叶反变换存在条件:无;变换:能量有限或绝对可和实信号的傅里叶变换共轭对称,实偶信号对应频域实偶,实奇频域虚奇周期卷积计算公式CTFT在时域和频域存在对偶关系线性相位:只时移不失真;非线性:时移的同时失真全通系统定义抽样:原始信号与抽样序列相乘(频域:频谱线性搬移)(零阶保持采样)奈奎斯特抽样速率(两倍信号最高频率)模拟角频率w,数字角频率Ω(Ω=wT)抽样前后傅里叶变换对应关系(以ws为周期和以2π为周期、系数)卷积的应用:AM调制(最大调制效率三分之一)、解调超外差式接收:先移到低频然后解调拉普拉斯变换:傅里叶变换不能分析不稳定系统以及不可和信号拉普拉斯变换与傅里叶变换的关系(不同:拉氏变换还需要收敛域来确定信号)收敛域(拉氏变换仅在收敛域内有定义)(合理变换的收敛域内不能有极点)(只与s的实部有关)(傅里叶变换存在条件)如果信号是有限长并且绝对可积,则收敛域是整个s平面单边信号收敛域:右单边对应右平面,左单边对应左平面,双边对应带状收敛域由极点确定,两极点之间,最右极点右边,最左极点左边,或不存在S平面几何分析法(确定拉氏变换幅频相频特性)拉氏变换确定系统稳定(ROC包含虚轴)、因果(RHP)初始、终值定理;应用(与拉氏变换零极点个数、已经s=0处是否有极点有关)框图表示系统函数单边拉氏变换(分析因果系统,用带有初始条件的微分方程描述系统)、微分性质中与初始条件有关全响应=零输入响应+零状态响应反馈:引入极点Z变换公式(收敛域只与z的模有关)Z变换和DTFT的关系(r=1)、LT关系(z=expsT)S平面和Z平面的关系(虚轴和单位圆)Z变换与因果(收敛域在圆外且包括无穷远或Z变换极点数不大于零点数)、稳定(收敛域包括单位圆或所有极点都在单位圆内或傅里叶变换存在)的关系图形分析(Z变换与频率响应的关系)线性常系数微分方程描述离散系统系统函数单边Z变换(收敛域总是在圆外并且包括无穷远处)(对因果系统,单边变换等于双边变换)(时移特性与n=-1处的值有关)。

信号与系统知识点

信号与系统知识点

| T0 2
−T0 2
x(t) |2
dt
=
∞ n=−∞
Cn
2
A → A2
B
sin
(ω0t )

B2 2
C
cos
(ω0t
)

C2 2
6、 连续非周期信号表达为 e jωt (−∞ < t < ∞) 的线性组合
∫ x(t) = 1 ∞ X ( jω)e jωtdω 2π −∞
x(t) ⇔ X ( jω)
∫ X ( jω) = ∞ x(t)e− jωtdt −∞
7、常用连续非周期信号的频谱
δ (t ),u (t ),sgn (t ), e−αtu (t ),sin (ω0t ), cos (ω0t ), e± jω0t , Sa (ω0t ),δT0 (t) ,矩形波、三
角波等
8、傅里叶变换的性质(用会)
第 3 章 系统的时域分析
1、系统的时域描述
连续 LTI 系统:线性常系数微分方程
y (t )与x (t ) 之间的约束关系
离散 LTI 系统:线性常系数差分方程
y[k]与x[k ]之间的约束关系
2、 系统响应的经典求解(一般了解) 衬托后面方法的优越
纯数学方法
全解=通解+特解
y (t ) = yh (t ) + yp (t )
项)(一般了解)
h[k ] :等效初始条件法(一般了解)
4、 ※卷积计算及其性质
∫ y(t) = x(t) ∗ h(t) = ∞ x(τ )h(t −τ )dτ −∞ ∞
y [k ] = x[k]∗ h[k] = ∑ x[n]h[k − n] n=−∞

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

信号与系统知识点详细总结

信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。

连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。

系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。

线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。

时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。

2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。

3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。

信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。

时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。

冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。

4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。

频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。

傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。

傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。

2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。

二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。

2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。

3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。

三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。

四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。

2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。

3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。

五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。

2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。

(完整版)信号与系统知识要点.doc

(完整版)信号与系统知识要点.doc

信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。

根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

信号与系统重点总结

信号与系统重点总结

信号与系统重点总结一、信号的分类与特征1.根据信号的时间性质划分,可分为连续时间信号和离散时间信号。

连续时间信号在时间上连续变化,离散时间信号在时间上以离散的形式存在。

2.根据信号的取值范围划分,可分为有限长信号和无限长信号。

有限长信号在一定时间段内有非零值,无限长信号在时间上无边界。

3.根据信号的周期性划分,可分为周期信号和非周期信号。

周期信号在一定时间内以固定的周期重复出现,非周期信号没有固定的周期性。

4.根据信号的能量和功率划分,可分为能量信号和功率信号。

能量信号能量有限且为有限幅,功率信号在无穷时间上的平均能量有限。

二、连续时间信号的表示与处理1.连续时间信号的表示可以使用函数形式:s(t),其中t为连续变量,s(t)为连续时间信号的幅值。

2.连续时间信号的处理包括时域分析和频域分析。

时域分析主要研究信号的幅值和时间关系,频域分析主要研究信号的频率和振幅关系。

3.连续时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、微分和积分等操作,以实现信号的滤波、平滑和增强等功能。

三、离散时间信号的表示与处理1.离散时间信号的表示可以使用序列形式:x[n],其中n为整数变量,x[n]为离散时间信号的幅值。

2.离散时间信号的处理包括时域分析和频域分析。

时域分析主要研究信号的幅值和时间关系,在离散时间上进行运算,频域分析主要研究信号的频率和振幅关系,在离散频率上进行运算。

3.离散时间信号可以通过不同的运算方式进行处理,如时域卷积、频域卷积、差分和累加等操作,以实现信号的滤波、平滑和增强等功能。

四、连续时间系统的特性与分析1.连续时间系统可以通过输入信号和输出信号之间的关系来描述。

输入信号经系统处理后,输出信号的幅值和时间关系可以通过系统的传递函数来表示。

2.系统的特性包括因果性、稳定性、线性性和时不变性等。

因果性要求系统的输出只能依赖于过去的输入,稳定性要求系统的输出有界,线性性要求系统满足叠加原理,时不变性要求系统的特性不随时间变化。

信号与系统定义知识点总结

信号与系统定义知识点总结

信号与系统定义知识点总结一、信号的基本概念1. 信号的定义:信号是指随时间或空间变化的某一物理量,它可以是电压、电流、声压、光强等。

信号可以是连续的,也可以是离散的。

2. 基本信号类型:常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号等。

3. 基本信号操作:信号的加法、乘法、平移、缩放等操作对信号的表示和分析非常有用。

二、连续时间信号的表示和分析1. 连续时间信号的表示:连续时间信号可以用数学函数来表示,如正弦函数、余弦函数、指数函数等。

2. 连续时间信号的性质:连续时间信号的周期性、奇偶性、能量和功率等性质对信号的分析和处理至关重要。

3. 连续时间信号的分析方法:傅里叶级数和傅里叶变换是分析连续时间信号最常用的方法,它可以将信号分解成一系列正弦、余弦函数的和,方便对信号进行分析。

三、离散时间信号的表示和分析1. 离散时间信号的表示:离散时间信号可以用序列来表示,如离散单位冲激函数、阶跃函数等。

2. 离散时间信号的性质:离散时间信号的周期性、能量和功率等性质对信号的分析和处理同样十分重要。

3. 离散时间信号的分析方法:离散傅里叶变换和Z变换是分析离散时间信号最常用的方法,它可以将离散时间信号转换成频域表示,方便对信号进行分析。

四、系统的基本概念1. 系统的定义:系统是对信号进行输入输出转换的装置或过程,它可以是线性系统、非线性系统,时变系统、时不变系统等。

2. 系统的性质:系统的稳定性、因果性、线性性、时不变性等性质对系统的分析和设计至关重要。

3. 系统的表示和分析:系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示和分析。

五、线性时不变系统的性质与分析1. 线性时不变系统的特点:线性时不变系统具有线性性质和时不变性质,这使得对其进行分析和设计更加方便。

2. 线性时不变系统的表示:线性时不变系统可以用微分方程、差分方程、传递函数、状态空间等不同方法进行表示。

3. 线性时不变系统的分析方法:冲激响应、频域分析、零极点分析等方法对线性时不变系统的分析非常重要。

信号与系统 知识点总结

信号与系统 知识点总结

信号与系统知识点总结1. 信号的分类信号可以分为连续信号和离散信号。

连续信号是在连续的时间范围内变化的信号,如声音信号、光信号等。

离散信号则是在离散的时间点上取值的信号,如数字信号、样本信号等。

信号还可以根据其能量或功率的性质来分类,能量信号是能量有限,而功率信号是功率有限。

对于周期信号和非周期信号,周期信号必须满足在某个周期内的所有时间点上的信号值是相同的。

2. 时域分析时域分析是研究信号在时间域上的特性,主要包括信号的幅度、相位、频率等。

时域分析有利于了解信号在时间上的变化规律,对于非周期信号可通过傅里叶变换将其分解为频谱成分,而对于周期信号可以利用傅里叶级数展开。

此外,还有拉普拉斯变换、Z变换等方法用于时域分析。

3. 频域分析频域分析是研究信号的频率特性,对于周期信号可以采用傅里叶级数展开进行频域分析,而对于非周期信号可以采用傅里叶变换进行频域分析。

频域分析有助于了解信号的频率分布情况,诸如频率分量的大小、相位、频率响应等。

4. 系统特性系统特性包括线性性、时不变性、因果性等。

线性时不变系统是信号与系统理论中最基本的概念之一,它是指系统对输入信号的线性组合具有线性响应,且系统的特性参数不随时间变化。

除了这些基本的特性外,系统还有稳定性、因果性、可逆性等特性。

稳定系统是指对于有限输入产生有限输出,因果系统则是指系统的输出只能由当前和过去的输入决定等。

5. 离散系统离散系统是指在离散的时间点上产生输出的系统,如数字滤波器、数字控制系统等。

离散系统与连续系统相比,具有离散时间的性质,其特性和分析方法也有所不同。

在离散系统中,常见的方法有差分方程描述、Z变换分析等。

而离散系统的特性与分析方法与连续系统有很大的差异,需要通过一定的数学工具进行分析与设计。

以上就是信号与系统的主要知识点总结,通过对这些知识的掌握,可以更好地理解信号的特性与系统的特性,从而应用于实际工程问题的处理与解决。

希望以上内容能对你的学习有所帮助。

信号与系统知识点汇总总结

信号与系统知识点汇总总结

信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。

通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。

信号与系统知识要点.

信号与系统知识要点.

《信号与系统》知识要点第一章 信号与系统1、周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。

(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。

2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量: 2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。

⎰∞∞-=t t f E d )(2def3 ① ②4、信号的基本运算1) 两信号的相加和相乘 2) 信号的时间变化a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c) 尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

正跳变对应着正冲激;负跳变对应着负冲激。

5、阶跃函数和冲激函数 (1)单位阶跃信号00()10t u t t <⎧=⎨>⎩0t =是()u t 的跳变点。

(2)单位冲激信号定义:性质:()1()00t dt t t δδ∞-∞⎧=⎪⎨⎪=≠⎩⎰ t1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞-∞∞-∞=-=⎰⎰()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-2)偶函数 ()()t t δδ=-3)尺度变换 ()1()at t aδδ=4)微积分性质 d ()()d u t t tδ= ()d ()t u t δττ-∞=⎰(3)冲激偶 ()t δ'性质: ()()(0)()(0)()f t t f t f t δδδ'''=-()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰(4)斜升函数 ()()()d tr t t t εεττ-∞==⎰(5)门函数 ()()()22G t t t τττεε=+--6、系统的特性 (重点:线性和时不变性的判断) (1)线性1)定义:若同时满足叠加性与均匀性,则称满足线性性质。

信号与系统复习资料

信号与系统复习资料

信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。

信号可以是连续的或离散的,并且可以是模拟的或数字的。

系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。

在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。

二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。

离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。

连续时间信号和离散时间信号可以通过采样和保持操作相互转换。

三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。

周期信号具有重复的模式,并且在无穷远处也保持有界。

非周期信号则没有重复的模式,并且在无穷远处不保持有界。

另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。

四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。

系统可以是线性的或非线性的。

线性系统遵循叠加原则,输出信号是输入信号的线性组合。

非线性系统则不遵循叠加原则。

五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。

常用的时域分析技术包括时域图、自相关函数、互相关函数等。

时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。

自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。

六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。

傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。

傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。

功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。

信号与系统重要知识总结

信号与系统重要知识总结
(2)三角函数形式的傅里叶级数函数比较明确
(3)时域无限,频域有限;时域有限,频域无限。
证明:时域有限信号可以看作是信号和门函数相乘,由傅里叶变换的性质,时域相乘对应频域卷积,门函数的傅里叶变换是 函数,故频域无限,由卷积区间的确定(高+高,低+低)的规律知卷积后在频域是无限的。
同理频域有限信号可以看作是门函数与频带有限信号的乘积,由傅里叶变换的性质,频域相乘对应时域卷积,故时域无限。
或者由傅里叶变换的对称性知,频域有限时域无限。
几何平均:N个数据的连乘积的开N次方根。
调和平均:一组数据的倒数和除以数据的项数的倒数。
统计平均:概率不同的数据的均值。
算数平均:一组数据的代数和除以数据的项数所得的平均数。概率相同的数据的均值。
标准差:是方差的算术平方根
均方根误差:RMSEroot-mean-square error亦称标准误差它是观测值与真值偏差的平方和观测次数n比值的平方根
基本概念
一维信号:信号是一个独立变量的函数时,称为一维信号。
多维信号:如果信号是n个独立变量的函数,就称为n维信号。
归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。
能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。
功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。
方波的傅里叶级数:频率较低的谐波,其振幅较大,它们组成方波的主体,频率较高的高次谐波振幅较小,它们主要影响波形的细节,波形中所包含的高次谐波越多,波形的边缘越陡峭。谐波中所包含的谐波分量愈多时,除间断点附近外,它愈接近原方波信号,在间断点附近,随着所含谐波次数的增高,合成波形的尖峰愈靠近间断点,但是尖峰的幅度并未明显减小。

(完整版)信号与系统知识点整理

(完整版)信号与系统知识点整理

(完整版)信号与系统知识点整理第一章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与非周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结在现代科学和工程领域中,信号与系统是重要的基础理论。

它涉及到从电子通信、音频处理到图像识别等许多领域的技术和应用。

本文将对信号与系统的若干关键概念和知识点进行总结与概括。

一、信号的分类和性质信号可以被分为连续时间信号和离散时间信号两类。

连续时间信号是在定义域上连续存在的信号,它可以用连续的函数描述。

离散时间信号是在定义域上只取有限或无限多个离散点的信号,它可以用序列来表示。

信号还可以根据其能量和功率来分类。

能量信号是其能量有限的信号,如脉冲信号;功率信号是其功率有限的信号,如正弦信号。

这个概念对于信号在通信中的传输和处理具有重要意义。

二、线性时不变系统线性时不变系统(简称LTI系统)是信号与系统领域中最为重要的概念之一。

它的特点是输出与输入之间存在线性关系且不随时间发生变化。

LTI系统的性质可以由其冲激响应来描述。

冲激响应是当输入信号为单位冲激函数时,LTI系统的输出。

通过对冲激响应进行线性叠加和时间平移,可以得到系统对任意输入信号的响应。

三、卷积运算卷积运算是在信号与系统中常用的一种数学运算方法。

它可以将两个信号进行融合和混合,得到新的信号。

连续时间信号的卷积可以通过函数乘积和积分运算得到。

离散时间信号的卷积可以通过序列元素的加权和得到。

卷积运算在信号的滤波和频域分析中扮演着重要的角色。

例如,通过卷积可以实现低通滤波和高通滤波,以及信号的快速傅里叶变换。

四、傅里叶变换傅里叶变换是将一个信号从时域变换到频域的数学工具。

它可以将信号表示为一系列复数的和,从而揭示信号的频率分量和功率分布。

连续时间信号的傅里叶变换可以通过积分运算得到,离散时间信号的傅里叶变换可以通过离散的和运算得到。

傅里叶变换在信号压缩、频谱分析和滤波等方面有广泛应用。

例如,通过傅里叶变换可以将音频信号从时域转换为频域,实现音频的压缩和编码。

五、采样定理与信号重构在实际应用中,信号往往是以离散时间形式进行采样和处理的。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.什么是信号?
是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?
系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?
系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:
✓连续信号与离散信号
✓偶信号和奇信号
✓周期信号与非周期信号
✓确定信号与随机信号
✓能量信号与功率信号
5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号
出现的可能性(概率)是相对确定的,但何时出
现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.
注意:对离散信号做自变量线性变换会产生信息的丢失!
11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能
力。

(开关效应)
12.单位冲激信号的物理图景:
持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作
用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,
一个位于t=0-处,强度正无穷大;
另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,
其他因子在冲激偶出现处存在时间的连续导数.
14.斜升信号:
单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:
1、稳定性
2、记忆性
3、因果性
4、可逆性
5、时变性与非时变性
6、线性性
16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

17.记忆系统:系统的输出取决于过去或将来的输入。

18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。

19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。

20.非因果系统:输出与未来的输入信号相关联。

21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作.
22.可逆系统:可以从输出信号复原输入信号的系统。

23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。

24.系统的时变性:
如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。

25.检验一个系统时不变性的步骤:
1. 令输入为 ,根据系统的描述,确定此时的输出 。

1()x t 1()y t
37. 任何时候都满足齐次方程的解叫齐次解,齐次解可能不止一个,代表满足齐次方程的系统的各种可能的状态!
38.
在零输入(即与输入信号直接有关的变化均为零)的前提下,由系统的非零初始条件(即某一时刻该方程的状态)所决定的解,称为满足初始条件的齐次解;此时方程所对应的系统输出信号称为系统的自然响应,描述系统中由非零初值条件所代表的储能或过去存储值耗散的方式。

39.在描写LTI 系统的常系数线性微分方程或差分方程中,当与输入信号直接有关的变化均为零时,该方程称为齐次方程.
40.当系统的初始条件为零(即自然响应为零)时,只由输入信号引起的系统响应,称为强迫响应,即描述当系统处于零状态时受输入信号“推动”的结果。

41.满足初始条件的非齐次方程的通解是完全解,完全解所对应的系统的输出信号就是完全响应。

42.完全响应就是自然响应与强迫响应的叠加。

第三章
43.LTI 系统的冲激响应描述代表了系统的全部时域特征:
任何信号均可表示为以该信号为权重的冲激信号的线性叠加;
任何输入信号经过LTI 系统后的输出信号,都可以表示成输入信号与系统冲激
响应的卷积和或卷积积分。

44. 频率为ω的复正弦信号经LTI 系统后的输出,是只与该频率有关的复常数与复正弦信号的乘积。

称为LTI 系统对频率ω的复正弦输入信号的频率响应.
45. 如果一个函数通过系统后变为一个数值与该函数相乘,称函数 是系统的特征函数,数值称为该系统与此特征函数相对应的特征值。

46.LIT 对复正弦信号的输出特点:
1)输出信号也是M 个复指数特征函数的加权和;
2)卷积运算变成了输入权重与频率响应的乘积运算;
3)输入与输出权重:信号由时域表示转换为频域表示;
4)与每个频率的复正弦信号相联系的权重表示该频率的正弦信号对整个信号的贡献。

47.
“周期信号都可以表示为成谐波关系的正弦信号的加权和(傅里叶级数)。

”——傅里叶的第一个主要论点 )(t ψλ)(t ψλ
“非周期信号都可以用正弦信号的加权积分来表示(傅里叶变换) 。

”——傅里叶的第二个主要论点。

48.傅里叶分析:利用复正弦信号,通过傅里叶级数及傅里叶变换,分析信号与
系统在频域范围内性质的方法。

傅里叶分析表明:连续时间周期信号可以按傅里叶级数分解成无数个复正弦谐波分量的加权叠加。

49.
狄里赫利(Dirichlet )条件:
1、信号是有界且单值的;
2、任何区间内绝对可积(或绝对可和);
3、信号在任何有限区间内只有有限个极大值和极小值;
4、信号在任何有限区间内只有有限个不连续点。

50.实数域周期信号的傅里叶级数还可以表示为有初相位变化的余弦函数形式,称为谐波型傅里叶级数
51.时移特性:
时移↔引起频率线性函数的相移;
与幅度,相移大小是时移与正弦频率的乘积。

频移特性:
号的频移↔时域:初始复正弦与另一频率等于频移量的复正弦的乘积。

频移与时移两种特性是对偶关系:一个域内的移动,对应于另一个域内乘以一个复正弦函数。

52.帕斯瓦尔(Parseval)关系
信号的能量或功率在时域与频域中是相等的。

53.不定性原理:不可能同时减小信号的持续时间和带宽。

54.对偶特性:
时域和频域表示之间的对称性。

55.对偶特性要求:对偶的两信号的类型相同。

56.复正弦函数是LTI 系统的特征函数,对应特征值只是频率的函数,即LTI 系 统对频率ω的复正弦输入信号的频率响应。

57.连续周期信号的FT 对应的频域信号: 看做一个频移量为的冲激序列的加权叠加,各冲激信号的强度为,间隔为基频。

离散周期信号的DTFT 对应的频域信号:
0ωk ][2k X π0ω
看做一个频移量为的冲激序列的加权叠加,各冲激信号的强度为 ,间隔为基频。

58. 冲激抽样:抽样信号表示为原始连续信号与冲激序列的乘积.
59.从抽样信号恢复原信号满足的要求:
如果 X(jω)与x(t)是一对傅里叶变换对, X(jω)存在最大频率限制,即|ω|>ωm 时 X(jω) = 0;当抽样频率满足ωs>2ωm 时,原来的信号x(t)由样本x(nTs),n=±1, ±2,…惟一确定.
60.抗混叠滤波—抽样(离散化)前的预处理:
目的:
1、将无限带宽信号变为有限带宽信号;
2、消除与待传输或待处理信号无关的信号;
3、消除部分高频噪声。

61.零阶保持:表示为抽样间隔整数倍的矩形脉冲的时移加权和。

62.零阶保持效应:
导致抽样信号的频谱失真。

包括线性相移、由的主瓣弯曲、旁瓣衰减等引起的失真。

63.等效连续时间系统的频率响应,就是离散时间系统频率响应在一个周期内的特性,只不过在频率上有一个尺度变换。

64.反向滤波器:
为了可以恢复原始连续信号,要求在零阶保持系统后再级联一个系统。

作用:反像滤波器可校正零阶保持抽样信号频谱的畸变,以及平滑时域信号的不连续阶梯
0Ωk ][2k X π0Ω()o H j ω()c H j ω。

相关文档
最新文档