贝叶斯统计茆诗松版大部分课后习题答案word精品
贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
【贝叶斯统计答案】第二章+第三章
二、1,2,3,5,6,7,8,10,11,122.2 解: 由题意,变量t 服从指数分布:()t p t e λλλ-=样本联合分布()itn p Te λλλ-∑=且1~(,),0()Ga e ααβλβλαβλλα--=>Γ ,()0.2E λ= ()1Var λ= 由伽玛分布性质知:20.20.04,0.21αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩ 又已知 n=20, 3.8t =120 3.876nii t==⨯=∑,所以120.04,76.2ni i n t αβ=+=+=∑由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布()11()()()t t n n i i t p T e e eλλββλααπλλπλλλλ--+∑∑--+-∝∝= 即后验分布为(,)(20.04,76.2)iGa n t Ga αβ++=∑|20.04()0.26376.2T i n E t λαλβ+===+∑1θλ-=服从倒伽玛分布(,)(20.04,76.2)i IGa n t IGa αβ++=∑||1()() 4.0021iT T t E E n λλβθλα-+===+-∑2.3可以算出θ的后验分布为(11,4)Ga ,θ的后验期望估计的后验方差为1116. 2.5只有个别人算错了,答案是36n ≥. 2.6大家差不多都做对了.2.7θ的先验分布为:1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩令{}101max ,,,n x x θθ=可得后验分布为:1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩则θ的后验期望估计为:1()()1n E x n αθθα+=+-,后验方差为:212()()(1)(2)n Var x n n αθθαα+=+-+-.2.8由1~(,),~(,)22n x Ga IGa θαβθ可以得出211221()2(),0()2nn xp x x e x n θθθ--=>Γ(1)(),0()e βααθβπθθθα--+=>Γ (1)θ的后验分布为:2(1)22()()()x nx p x eβαθπθθπθθ+--++∝∝即为倒伽玛分布(,)22nxIGa αβ++的核。
第一章_贝叶斯课后答案
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ==22628()0.20.80.2936P A C θ==从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()X P λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+==从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=> 1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝∙∝= 所以 (,1)x G a x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=∙=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (2) 由题意可知 12202()36xm x d x θθθ=∙=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝∙∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中人的高度,则2(,5)X N θ∴25(,)10X N θ∴2(176.53)5()p x θθ--= 由题意可知2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝∙222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝∙∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ 其中为已知 又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝∙222222251()()1252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x x N σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝∙00111n n n ααααθθθθθ++++∝∙∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计习题答案
贝叶斯统计习题答案第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=?+??=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==?+??=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语⾔求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1714631636315338533810<<-==-=--=--=----==--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语⾔求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<==<<=+<<-==+<<-=??θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=??θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝?∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ix e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2)由题意可知./(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{221221121212121 2122111<<∝===<<==<<<==?∏∏?∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x n ni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XNθ∴2由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()1122525eσθθθσσσ+----+?--+∝∝因此 222251(,)112525u x xN σθσσ+++⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(7687787321321321433213213321>?====≥=>=====<<=∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ从⽽有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111n n n ααααθθθθθ++++∝?∝因此θ的后验分布仍是Pareto 分布。
贝叶斯统计习题答案
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gammaλλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--= 由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)xN θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】 1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计第二版茆诗松汤银才编著
贝叶斯统计第⼆版茆诗松汤银才编著第⼀章先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从⽽有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 解:令121, 1.5λλ==设X 为⼀卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从⽽有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1)由题意知 ()1,01πθθ=<< 从⽽有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<1.5 解:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==?从⽽有()()()10,11.511.6()P x x m x θπθπθθ==<<1.6 证明:设随机变量()X P λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则 (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝?∝= 所以 (,1)x Ga x λαβ++ 1.7 解:(1)由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=?=-?因此 2=<<- (2)由题意可知 1222()36xm x d x θθθ=?=?因此 ()()()1,01()P x x m x θπθπθθ==<<1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝?∝--=- 由上可知 (5,297)A Be θ1.9 解:设X 为某集团中⼈的⾼度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?2(176.53)(172.72)(174.64)55.0821.26eeeθθθ------∝?∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知⼜由于X 是θ的充分统计量,从⽽有()()()()x x p x πθπθθπθ=∝?222222251()()11252()11225252u x x u e eeσθθθσσσ+----+?--+∝∝因此 222251(,)11⼜由于21112525σ≤+ 所以θ的后验标准差⼀定⼩于151.11 解:设X 为某⼈每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==?从⽽有 7()()3()()128p x x m x θπθπθθ==1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从⽽有 ()()()()x x p x πθπθθπθ∝?00111++++∝?∝因此θ的后验分布仍是Pareto 分布。
(完整版)贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计老师划的课后习题
1.1设θ是一批产品的不合格率,已知它不是0.1就是0.2,且其先验分布为π(0.1)=0.7 π(0.2)=0.3.假如从这批产品中随机抽取8个进行检查,发现有两个不合格品。
求θ的后验分布。
解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 设一卷磁带上的缺陷数服从泊松分布P (λ),其中λ可取1和1.5中的一个,又设λ的先验分布为π(1)=0.4 π(1.5)=0.6.假如检查一卷磁带发现了3个缺陷,求λ的后验分布。
解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()X P λ:∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)θ~u(0,1) (2)θ~π(θ)={10 )1(2else0<<-θθ解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.10 从正态总体N (0,4)中随机抽取容量为100的样本,又设θ的先验分布为正态分布。
概率论与数理统计(茆诗松)第二版课后第七章习题参考答案
⎧ X − µ 2.6 − 3 ⎫ < = −1.79⎬ = Φ (−1.79) = 0.0367 ; ⎩ 1 n 1 20 ⎭
⎧ X − µ 2 .6 − 3 ⎫ (2)因 β = P{ X < 2.6 | µ = 3} = P ⎨ < = −0.4 n ⎬ = Φ (−0.4 n ) ≤ 0.01 , 1 n ⎩1 n ⎭
则 Φ(0.4 n ) ≥ 0.99 , 0.4 n ≥ 2.33 ,n ≥ 33.93,故 n 至少为 34;
⎧ X − µ 2 .6 − 2 ⎫ (3) α = P{ X ≥ 2.6 | µ = 2} = P ⎨ ≥ = 0 .6 n ⎬ = 1 − Φ ( 0 .6 n ) → 0 ( n → ∞ ) , 1 n ⎩1 n ⎭
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 p
(2)在 p = 0.05 时犯第二类错误的概率
β = P ⎨∑ X i ∉ W | p = 0.05⎬ = ∑ ⎜ ⎜
⎩ i=1 ⎭
⎧ 20
⎫
⎛ 20 ⎞ ⎟ × 0.05k × 0.9520−k = 0.2641 . ⎟ k =2 ⎝ k ⎠
6 6 ⎛ 20 ⎞ ⎛ 20 ⎞ k 20−k 20−k k ⎟ ⎜ g ( 0 .2 ) = 1 − ∑ ⎜ g × 0 . 2 × 0 . 8 = 0 . 1559 , ( 0 . 3 ) = 1 − = 0.3996 , ∑ ⎜k⎟ ⎜k⎟ ⎟ × 0.3 × 0.7 k =2 ⎝ k =2 ⎝ ⎠ ⎠
α = P{ X ∈W | H 0 } = P{ X ≥ 2.6 | µ = 2} = P ⎨
犯第二类错误的概率为
⎧ X − µ 2.6 − 2 ⎫ ≥ = 2.68⎬ = 1 − Φ (2.68) = 0.0037 , ⎩ 1 n 1 20 ⎭
贝叶斯统计习题答案
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gammaλλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--= 由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)xN θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】 1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
【贝叶斯统计答案】第二章+第三章
【贝叶斯统计答案】第二章+第三章第二章,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:,,tni,pTe(),,,样本联合分布,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),由伽玛分布性质知:,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,t,3.8 又已知 n=20,nnnt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i,,n20.04,|TE()0.263,,,, ,t76.2,,i,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.2.6大家差不多都做对了.,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,,,,max,,,xx令 ,,101n,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,n12()1n,,1x,2,22 pxxex,,,(),0n,()2,,,,(1),,,,(),0,,e ,,,,,(),,(1)的后验分布为:x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,nxIGa(,),,,,即为倒伽玛分布的核。
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
n
n
= ∑ [( xi − x )( y i − y ) + ( x − c)( y i − y ) + ( xi − x )( y − d ) + ( x − c)( y − d )]
i =1 n n n
= ∑ ( x i − x )( y i − y ) + ( x − c)∑ ( y i − y ) + ( y − d )∑ ( x i − x ) + n( x − c)( y − d )
1
习题 5.2
1. 以下是某工厂通过抽样调查得到的 10 名工人一周内生产的产品数 149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数
⎧0, ⎪0.1, ⎪ ⎪0.3, ⎪ Fn ( x) = ⎨0.5, ⎪0.8, ⎪ ⎪0.9, ⎪ ⎩1,
(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.
贝叶斯统计-习题答案)
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(53531161453153531533853381<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计茆诗松版大部分课后习题答案
习题讲解一、1,3,5,6,10,11,12,15 记样本为X./?(x|^ = 0.1) = =C; * 0.12 *0.96« 0.1488p(x\0 = 0.2) = Cl *0.22*0.86 q 0.2936后验分布:兀(创兀)二"⑺“丫叭二504牡1-0)' 0V&V1加(x)⑵兀(X)二[2(1—°),I 0,0v8 <1zr (& = 0・1卜):0.1488*0.7 nC/11Q = --------------------------------- « 0.5418 0.1488*0.7+0.2936*0.3^•(<9 = 0.2%)0 2936*0 3- •- «0.4582 0.1488*0.7 + 0.2936*0.31.3⑴兀(%)二乙0<£?<1苴它 *:检验s个产品有3个不介恪1 1 /g\〃心)=J p(x^)7t(6)dO =|0 0 2丿1少(1-8)也二『56 少(1-0)5刖二- o 9w(x) = £p(x10)7r(e)d0 = £C S V\1-^)5 *2(1 —= £ 112<9\l-/9)%/6> = 4() ) "1兀()=川屮)=8400(1 一&)l0 v & v 1证明:设M.r …為 足来「I 泊松分九尸(久)的 个样木观察优•此样木的似然函数为:现取伽吗分布Ga(a.fi)作为泊松分布均他几的先验分布•叩兀(几)=—-00 < Z < +00 r (a) ^参数;I 的后验分布为 兀(几卜)0Cn、2+Cf-1p(x | A)^(A) oc A1-1服从仙网分布Gd(f W +匕0 + 71)i-1由题意设x 表示等候汽车的时间,则其服从均匀分布t/(0")1 nW = {&'o,因为抽取3个样本,即X =3,2*3),所以样本联合分布为所以,利用样本信息得1 io? 192/7(x, 0)= p (x =—~ = —(e>&o VX"N3<&)°的后验分布为.YC —X 〃<+000-(0+町几0<x<0其它又因为丄 “(X)十0, 0< x p x 2,x 3 < 0其它兀(&)=192/少,6>>4 0,6><4于是加(x )=厂i ( x, ewe=厂o<o.兀(&\x) g "(x|&)/r(&) = a 卑 / 严+曲 cc 1 / /+T, 0 > q = max 偲川,…,£ 因此&的后验分布的核为1/少刊=仍表现为Pareto 分布密度函数的核即得证。
概率论与数理统计(茆诗松)第二版课后第三章习题参考答案
Xi −1 0 1 P 0.25 0.5 0.25
解:因 P{X1 X2 = 0} = 1,有 P{X1 X2 ≠ 0} = 0, 即 P{X1 = −1, X2 = −1} = P{X1 = −1, X2 = 1} = P{X1 = 1, X2 = −1} = P{X1 = 1, X2 = 1} = 0,分布列为
故(X, Y ) 的联合分布函数为
⎧0,
F
(
x,
y
)
=
⎪ ⎪⎪ ⎨
x x
2 2
y ,
2
,
⎪ ⎪
y
2
,
⎪⎩1,
x < 0 或 y < 0, 0 ≤ x < 1, 0 ≤ y < 1, 0 ≤ x < 1, y ≥ 1, x ≥ 1, 0 ≤ y < 1, x ≥ 1, y ≥ 1.
8. 设二维随机变量(X, Y ) 在边长为 2,中心为(0, 0) 的正方形区域内服从均匀分布,试求 P{X 2 + Y 2 ≤ 1}.
0 < x < 1, 0 < y < 1, 其他.
试求 (1)P{0 < X < 0.5, 0.25 < Y < 1}; (2)P{X = Y }; (3)P{X < Y }; (4)(X, Y ) 的联合分布函数.
∫ ∫ ∫ 解:(1) P{0 < X < 0.5, 0.25 < Y < 1} =
0x
0
x0
y 1
0
1x
y
1
0.25
0
0.5 1 x
y
1
1
= ⎜⎛ x 2 − 1 x 4 ⎟⎞ = 1 ; ⎝ 2 ⎠0 2
概率论与数理统计(茆诗松)第二版课后第三章习题参考答案
+∞ +∞ −∞ −∞
y
∫
p( x, y )dxdy = 1 ,得
0
+∞ 0 + ∞ k −3 x k ⎡ 1 ⎤ e dx = − e −3 x dx ⋅ k ⎢− e −(3 x + 4 y ) ⎥ = ∫ 0 4 12 ⎣ 4 ⎦0 +∞ +∞
8 7 6 28 8 7 5 70 ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (0, 0, 1)} = ⋅ ⋅ = , 13 12 11 143 13 12 11 429 8 5 7 70 5 8 7 70 P{( X 1 , X 2 , X 3 ) = (0, 1, 0)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 0, 0)} = ⋅ ⋅ = , 13 12 11 429 13 12 11 429 8 5 4 40 5 8 4 40 P{( X 1 , X 2 , X 3 ) = (0, 1, 1)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 0, 1)} = ⋅ ⋅ = , 13 12 11 429 13 12 11 429 5 4 8 40 5 4 3 5 P{( X 1 , X 2 , X 3 ) = (1, 1, 0)} = ⋅ ⋅ = , P{( X 1 , X 2 , X 3 ) = (1, 1, 1)} = ⋅ ⋅ = ; 13 12 11 429 13 12 11 143 8 7 14 8 5 10 (2) P{( X 1 , X 2 ) = (0, 0)} = ⋅ = , P{( X 1 , X 2 ) = (0, 1)} = ⋅ = , 13 12 39 13 12 39 5 8 10 5 4 5 P{( X 1 , X 2 ) = (1, 0)} = ⋅ = , P{( X 1 , X 2 ) = (1, 1)} = ⋅ = . 13 12 39 13 12 39 X2 0 1 X1 0 14 / 39 10 / 39 1 10 / 39 5 / 39
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加 I —W)W j04/(l -疔36840 (1 ) ,011.6习题讲解一、1,3,5,6,10,11,12,15 1.1记样本为X. p(x 0.1) Cs *0.1 2 *0.960.1488 p(x 0.2) C ;*0.22*0.86 0.2936 后验分布: 0.1 x 0.2 x 0.1488*0.70.1488*0.7 0.2936*0.3 0.2936*0.30.1488*0.7 0.2936*0.30.5418 0.4582苴它1o<e<iJ n1 m x 0p(x| ) [2(1® aG<e<i其它1 d°C ; 3(1)5*2(1 )d1112 3(1 )6d12( X)i …氏 设辱心…血 是栗ri 泊松分布praj 的 个样本swe 匚此样木的似然函数为匕现収仙也[分•仃Ga(fiL Q 粹为泊松分巾均们A 的址验匕们•即―oo < a v +c©的后验分布为192/ 7 6 86 192—87参故久的百验分布为兀(几斗)板I A)^(Z)'X /J+M jA服从伽玛分布Go辽対+桟申一八r-1 1.11由题意设x 表示等候汽车的时间,则其服从均匀分布 U(0,)P(X )亠 0 X 0, 其它 因为抽取3个样本,即X (x 1,x 2, x 3),所以样本联合分布为丄 p(X) 3,0, X i ,X 2,X 3其它又因为 192/ 0, 所以,利用样本信息得 h(X, ) p(X )() 1 ~3 192 ~4 192 (~7 (8,0 X i ,X 2,X 3 )于是 m(X) 8 h(X,)d192 , rdp(x\A) = —Xi—, -OC < XIX/ < +OCh(X,) m(X)21p(x )— ,0 x0,即(x) ( n)1/0,即得证。
1.151样本的似然函数:p(x )1e服从伽马分布Ga n, nx-0.00024,20000.0.000121.12样本联合分布为:(X)6 867~0, (x) p(x )()1/1max 0,%丄,人因此的后验分布的核为1/n 1,仍表现为Pareto 分布密度函数的核参数的后验分布 (x) p(x )()n 1( nx)enX in— i 1en nxe1,2,3,5,6,7,8,10,11,12 2乙11)讥刈8)二&(1一&)\兀(&) = 1p 何0)兀(0)= &(1—胖 〜尿(2,4)E(&|X )"E =±W2)讽申)=,(1 — &)叫兀(&) = 1二 诃x) * p(x 0)兀(8)=护(1 一 0)10 〜%(4,11)i ・44E(& x) = 3¥ = -------- =——E 11 + 4 152.2解:由题意,变量t 服从指数分布: p(t )由伽玛分布性质知:0.2nt i 20 3.8 76,所以 ni 1由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布0.04, 0.2又已知n=20,t 3.8(|t) P (T| )( )neti1en 1e (t i)即后验分布为Ga( n,t i ) Ga(20.04,76.2)E T() n t i20.0476.20.2631服从倒伽玛分布IGa(n,t i ) IGa(20.04,76.2)样本联合分布p(T )neti且~Ga(,)〒0 , E()0.2 Var (n20.04, t ii 176.2t-E T ( ) E |T (1) ---------- 4.002n 1n 12.8 由 x ~ Ga( , ), ~ IGa(,)可以得出(1}e(1) 的后验分布为:(3)样本分布函数为:的后验期望估计的后验方差为11 162.5 n 36.2.7的先验分布为:()/ 1, 0, 令1 max 0必丄,X -可得后验分布为:(x)(n) 1 n/0,后验方差为: Var( x)E( x)十, n 1 (n) 122(n 1) (n 2)(xpn -2n -2X1 xe 2 ,x 0(x)p(x 1)e^即为倒伽玛分布IGa(-,2所以的后验分布为IGa(n2 )的核。
(2)后验均值为E(x)x2 _____n1 2后验方差为Var( x))22eD 2(-2)2.3可以算出 的后验分布为Ga(11,4),0 0n 1则的后验期望估计为:1 11 10 0nX1 12 2n_ 22.10 解:已知 x~ N( ,1), ~ N(3,1) 设的后验分布为N (仆-i ) 可得:2 2x0 ____________ 1 2 2 0所以 的后验分布为:即为 2IGa(]p(xP (X i1(2 ) 2 (n/2)x)p(xx) p(x(x)即: nnX i21)eX i 2i 1~2~[亠(2)可得MD nXii 122n~2nX ii 12)的核。
[(2 1 t1)2 H nnxFxi *1}e[(n 21)~2 ~2nx2i 1nX i 2nxi_1 ~2因此,倒伽玛分布的这两个估计是不一样的, 原因是它不对称。
而由公式得nx ii 1n 2 2由已知得:x 24 33 ,33 3 3 —21 3, 13 11 3即为[2.02,3.98].后验均值为:变换:2 Xi1~~2 ~2 ~21 0所以 的95%的可信区间为: [3 0.5 1.96,30.5 1.96]2.11 已知 x~ N 0,IGa可得 2的后验分布为IGa后验方差为: Var2 i 1~2-22 Xi~ Gan 2, 2 Xi令:2 0.10.9可得2的0.9可信上限为2 0.12.12 的先验分布为:(/ 0,1 1 1 max 0,为丄,x n1n 1n U、10,11,12,133.10解:依题意1exp0.01该元件在时间200之前失效的概率:3.11解:依题意 p X i可得后验分布为: (x)n) n10,可信上限为 u则u 1 带入有: n)1d20.01 exp0.010.013expi1ei1xX」X inmx i1m xx _____1 x x!,x 200 p m x dx 0200 0.01dx 0.999950.0133.12解:超参数和的似然函数为333 i -X iX!3!g5!7203f In从而有: 3f In 30.38759968 3.13证明:泊松分布的期望和方差分别为 2利用软件计算, 可得 1.033599, E X —g-利用样本矩代替边际分布的矩,列出如下方程 -2X S 2 XS 2 X四、1,4,8,9,10,11,12,15,164.41 状态集 5,6,7,8,9,10 ,行动集 5,6,7,8,9,10 2收益函数4.8f25fta + 750(9 — a) a<&250fla>0印a 2 a 3 a 4a5a 625 24 23 22 21 20 1 25 30 29 28 27 26 2 25 30 35 34 33 32 3 Q25 30 35 40 39 38 4 25 30 35 40 45 44525 30 35 40 45 50 63根据定义可知, 最优 行动是 a r ,即采摘 4按折中准则 J :H ma xQ,a1min Q , aH 1 25H 2 24 6H a 23 12H 4 22 18H 5 21 24H 6 20 30收益矩阵每天摘5朵鲜花 当05朵鲜花-时,选择 6 1时,选择a 6,每天摘10朵鲜花.Q ,a5a,a 6a,510卅布沟均殂4 4的泊松付布11刊0G2)・1.OOO状离集H-{0丄2一」习冇功集人工12}损光曲取为012j45c7 £9:o1111a JT(F) JTGO 0500闻100012S&15W175020002^002750Jdw00.01S3 I B 500a2505007501000125015001750:ooo2250□CO275010J733 1 11100050&0250500750100C12S015flC rso20002150150020.1465 1 B15OT IW050?Q■?Q5M巧。
1WQ1250UOT V50和i:X>0JS54 1 n2W0150010005C0025050075C IDQO1250U0Q I'502MB斗0.1554 1 D 25002(X101500LOOC050fl7501000125015001750J0.15AJ I B30002500200015Q0looo500025050075Q IQOO125015QO五0.104: 1 BJ5005000MOO2MH)150010005000230500"冗125070.0535 1 li4000350030002S0C20001500LOK50003505M7501000S0.029S 1 li 450040003500 3 DM)2S0020M ISM1000sw02SC sod也90.D132 1 B50C045004OM350030M2J00200015001W05005汉500100.MS3 I B5MD50M4JK4W35M3M025M2W01SD01CM50Q Q25011lunif L 1360005500500045004W03500300025002D JO150010005000 120.0006 1/13Z(^} = 1998.17 7^) = 152 04 Z(^) = 1080 3(5 Z(ff4> 759.57 Z(ff5>=5S4 80T(a f) = 5S6.56 ^)=645.54 Z^) = &12.67 码)=102446 = 1258.57瓦15C2.<50 ^.)-1750.60 Z(a]3) = 2000 05minZ^ )-1(^)购买,件(4))-3000 £(巧)=2节& £0J =21了3 = 1846 £(®)=1竹7 £(%J = I3砧Z(f7T)=1212 £(^) = 1115 Z(^) = 1077 衣①』二|旧6 死订)二1173 Z(«12) = 13O8L a131500购买8件.4.9对于行动a1,其收益函数为100,0 0.1Q 30,0.1 0.250,0.2 1对于行动a2,其收益函数为40,0从而可得在a 1和a 2处的损失函数:0,0 0.1L ,a 110,0.1 0.2 90,0.2160,0 0.1L ,8220,0.1 1服从Be 2,14—0.1L 82 0 60p d 27.06 元/吨故米用第一种收费方法对工厂有利##附R 软件计算定积分程序: in t<-fu nctio n(x){210*x*(1-x)X3};in tegrate(i nt,0.1,0.2)$value*10+i ntegrate(i nt,0.2,1)$value*90; [1] 18.86049in tegrate(i nt,0,0.1)$value*60; [1] 27.05742 4.1018 20 12 25当 6时,Q ,a 1L , a 1L , a 2 30 5当 6时,Q ,a 1 L , a 1 5 30L ,a 2服从0,10上的均匀分布 101 L a 1 5 30 d 4610 61L a 230 5 d 910最优行动是a 1.4 15* 1)由Jfi 倉可idB 叫)=5p (^)=lC»^0.5^(-l )v0.S=4.5V Q (勺}、0(还)「用期星段代决策隅选择打动坷L a 10.2 0.110p1 ,0290p d 18.86 元/吨Q , a 2 ,则在a 〒Ha 2处的损失函数为Q , a 2 ,则在a^^a 2处的损失函数为Q )由題总知效用矩阵为6 5"2 10] q 0.5 2 1 9.05•・・ j(q) = 2U(a 2) = 10x0.5+1x0.5 = 5.5•・• %) < %令 闪此用期型效用决策应选择行动a,(3) 弟效用质数为CJ =2+5tZ•・.[7(q )=12 ■C ;(^) = 52x0.5+7x0.5-29.5•.• CZ (坷)v C7 (口2) 因此用新期卑效用准刖件决策.应选样行功冬从(2) (3)的结果可以看出.曲种效用下咸选择狗行动相I 』・也说明了在先 黔分布不变的情况下,收益嗨数0(O.d )的:江性变儿4(P,d )+<r (r>0)不仝 「(变先斡期里准则下的最优行动•4.16 K 由题童可知需整交纳的 Xj4C0 - 0.25% = 1 <元可御K 收益絶阵为399 400'^ 0.998 3990 & 0 002■ 」 ▲其中坷代衣参'川火灾W 4a.代衣不参二火丈作心4代衣火灾不艾生.①代农讥灾发生 1.按W 经效用川汽.决策'采用期望收益准则的决徭相制可得 °(坷)=3如0(a J = 400K 0.998 + 0x 0.002 = 399.2•「0(5)< 0(彳) 所以应选择行动色即不摩 火冗化;:2. 由效用曲我17(加)=十400 _ 20知可得新的效用矩丙为 7521^05«7(399)-8.2666£7(400) = 32 W^(C)=00(q) = 8JS43x 0 998+Ox 0.002 = 8.2677 H为力⑷)丈所厘应选择行动幼即不参:」:茁-•L r(4C0 x 0.99 8 + 0 0.002} = L_(399.2) = S 2701 >丙0.998L r(400>+0.002i7<0) =8.2677斫以遑效用篩氓为上凸的「即为眾守型效用曲线五、2,3,7,11,18,21,225.2⑵(3)杵9的h -验分布为托(0 x) WJ Ji j 验风险为R(d\x)=訂(9心(0 卜)"=加 3 |.T)z/e 一 J/(0 - ")用(& 卜)朋一丄开(° *)曲=|.Y)rfy - c^Tl{e |x)rfy H-rrf-l=e cd E(e c0 \x)-cE (& |.v) \ cd 一 1对d 求导得并令JI 为0紂-ce^E(e^\x)^c = 0二尹二E (尹[G所以贝叶斯估计的丧达式为/ ln£(e rf |x)心二Je-2n c nxIn e 2 n d c - 1 nx In _ ---------2n 2c 2 cc2n附:用R 软件作图程序:y<-fu nctio n(x){exp(0.1*x)-0.1*x-1}; plot(y,xlim=c(-20,20),type=T,lty=1);lin es(x,exp(0.5*x)-0.5*x-1,xlim=c(-20,20),type=T,lty=2); lin es(x,exp(1.2*x)-1.2*x-1,xlim=c(-20,20),type=T,lty=3); leg. names<-c("c=0.1","c=0.5","c=1.2");⑷由x ~ N ,1可得p x样本的似然函数为:p X后验分布In E e cx则d B -----------------------------clege nd(locator(1),leg. names,lty=c(1,2,3));5.3可以求得的贝叶斯估计为x2 3lnc,C2e3.5.71x __e根据定理5.2 :在加权平方损失函数后验分布:的贝叶斯估计为:通过计算可得:町几俐寸=j^(l-血塚+ L 颐(叫门处=血匚反杖|工)川& -(1-加)匸JT(& |工则= <0^+(1- < 5)二血十(1 -的厂严(牛巴C 穿勺= <w+(l- -/J)「薛上所述,蒯从;:1 9 ffi讣为:£Q(O)|T]加+(1-加严帆S_/J) 5.11类似地,x n时,若>1,a B x 若0< 1, a B x 1.5.18(1)支付矩阵100 75 W100 150损失矩阵25 0L0 50a1与a2下的先验期望损失为E L ,a1 先验EVPI 15元.⑵从0,1,2到a1,a2上的任一个映射⑶、(4)17.5,E L ,a2 15,故a?是最优行动,x都是该冋题的决策函数.的后验分布为Be1x,n 1时,的贝叶斯估计为a B 0时,若>1,a B x若0< 1,考虑后验风险Rax 02a d 10< 当an 11 n 01,上式中括号内前两项积分都是有限的0 时,R a x2d 2a n 2d n 2d 0达到最小值,即a B x,而第三个积分是趋于无穷大的0;,从而x~b 2,,边缘概率m x p x i i,可得:i 1m 0 0.87475,m 1 0.1205,m 2 0.00475,后验分布为:计算,可得表格:a2,x 0xa i,x 1,2后验EVPI E x E |x L , x 13.89*0.87475 13.7975*0.1205 9.21*0.00475 13.8566 EVSI 先验EVPI E x E |x L , x 15 13.8566 1.1434 元ENGS EVSI C 2 1.1434 0.2 0.9434 元5.21b2 -(1) 0 —- 6m2 mi~ N 10,42, E 10, m1 m2,最优行动为a2t g m2 5, 4, 10, 0 6D。