DS18B20中文资料+C程序
温度测量、报警系统 C程序
程序名称:DS18B20温度测量、报警系统简要说明:DS18B20温度计,温度测量范围0~99.9摄氏度可设置上限报警温度、下限报警温度即高于上限值或者低于下限值时蜂鸣器报警默认上限报警温度为38℃、默认下限报警温度为5℃报警值可设置范围:最低上限报警值等于当前下限报警值最高下限报警值等于当前上限报警值将下限报警值调为0时为关闭下限报警功能编写:最后更新:09/04/16晚于寝室******************************************************************/ #include <AT89X52.h>#include "DS18B20.h"#define uint unsigned int#define uchar unsigned char //宏定义#define SET P3_1 //定义调整键#define DEC P3_2 //定义减少键#define ADD P3_3 //定义增加键#define BEEP P3_7 //定义蜂鸣器bit shanshuo_st; //闪烁间隔标志bit beep_st; //蜂鸣器间隔标志sbit DIAN = P2^7; //小数点uchar x=0; //计数器signed char m; //温度值全局变量uchar n; //温度值全局变量uchar set_st=0; //状态标志signed char shangxian=38; //上限报警温度,默认值为38signed char xiaxian=5; //下限报警温度,默认值为38ucharcode LEDData[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x ff};/*****延时子程序*****/void Delay(uint num){while( --num );}/*****初始化定时器0*****/void InitTimer(void){TMOD=0x1;TH0=0x3c;TL0=0xb0; //50ms(晶振12M)}/*****定时器0中断服务程序*****/void timer0(void) interrupt 1{TH0=0x3c;TL0=0xb0;x++;}/*****外部中断0服务程序*****/void int0(void) interrupt 0{EX0=0; //关外部中断0if(DEC==0&&set_st==1){shangxian--;if(shangxian<xiaxian)shangxian=xiaxian; }else if(DEC==0&&set_st==2){xiaxian--;if(xiaxian<0)xiaxian=0;}}/*****外部中断1服务程序*****/void int1(void) interrupt 2{EX1=0; //关外部中断1if(ADD==0&&set_st==1){shangxian++;if(shangxian>99)shangxian=99;}else if(ADD==0&&set_st==2){xiaxian++;if(xiaxian>shangxian)xiaxian=shangxian; }}/*****读取温度*****/void check_wendu(void){uint a,b,c;c=ReadTemperature()-5; //获取温度值并减去DS18B20的温漂误差 a=c/100; //计算得到十位数字b=c/10-a*10; //计算得到个位数字m=c/10; //计算得到整数位n=c-a*100-b*10; //计算得到小数位if(m<0){m=0;n=0;} //设置温度显示上限if(m>99){m=99;n=9;} //设置温度显示上限}/*****显示开机初始化等待画面*****/Disp_init(){P2 = 0xbf; //显示-P1 = 0xf7;Delay(200);P1 = 0xfb;Delay(200);P1 = 0xfd;Delay(200);P1 = 0xfe;Delay(200);P1 = 0xff; //关闭显示}/*****显示温度子程序*****/Disp_Temperature() //显示温度{P2 =0xc6; //显示CP1 = 0xf7;Delay(300);P2 =LEDData[n]; //显示个位P1 = 0xfb;Delay(300);P2 =LEDData[m%10]; //显示十位DIAN = 0; //显示小数点P1 = 0xfd;Delay(300);P2 =LEDData[m/10]; //显示百位P1 = 0xfe;Delay(300);P1 = 0xff; //关闭显示}/*****显示报警温度子程序*****/Disp_alarm(uchar baojing){P2 =0xc6; //显示CP1 = 0xf7;Delay(200);P2 =LEDData[baojing%10]; //显示十位P1 = 0xfb;Delay(200);P2 =LEDData[baojing/10]; //显示百位P1 = 0xfd;Delay(200);if(set_st==1)P2 =0x89;else if(set_st==2)P2 =0xc7; //上限H、下限L标示P1 = 0xfe;Delay(200);P1 = 0xff; //关闭显示}/*****报警子程序*****/void Alarm(){if(x>=10){beep_st=~beep_st;x=0;}if((m>=shangxian&&beep_st==1)||(m<xiaxian&&beep_st==1))BEEP=0; else BEEP=1;}/*****主函数*****/void main(void){uint z;InitTimer(); //初始化定时器EA=1; //全局中断开关TR0=1;ET0=1; //开启定时器0IT0=1;IT1=1;check_wendu();check_wendu();for(z=0;z<300;z++){Disp_init();}while(1){if(SET==0){Delay(2000);do{}while(SET==0);set_st++;x=0;shanshuo_st=1;if(set_st>2)set_st=0;}if(set_st==0){EX0=0; //关闭外部中断0EX1=0; //关闭外部中断1check_wendu();Disp_Temperature();Alarm(); //报警检测}else if(set_st==1){BEEP=1; //关闭蜂鸣器EX0=1; //开启外部中断0EX1=1; //开启外部中断1if(x>=10){shanshuo_st=~shanshuo_st;x=0;} if(shanshuo_st) {Disp_alarm(shangxian);} }else if(set_st==2){BEEP=1; //关闭蜂鸣器EX0=1; //开启外部中断0EX1=1; //开启外部中断1if(x>=10){shanshuo_st=~shanshuo_st;x=0;} if(shanshuo_st) {Disp_alarm(xiaxian);} }}}/*****END*****/DS18B20.h:#include <AT89X52.h>#define DQ P3_6 //定义DS18B20总线I/O/*****延时子程序*****/void Delay_DS18B20(int num){while(num--) ;}/*****初始化DS18B20*****/void Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位Delay_DS18B20(8); //稍做延时DQ = 0; //单片机将DQ拉低Delay_DS18B20(80); //精确延时,大于480usDQ = 1; //拉高总线Delay_DS18B20(14);x = DQ; //稍做延时后,如果x=0则初始化成功,x=1则初始化失败Delay_DS18B20(20);}/*****读一个字节*****/unsigned char ReadOneChar(void){unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat>>=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;Delay_DS18B20(4);}return(dat);}/*****写一个字节*****/void WriteOneChar(unsigned char dat){unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;Delay_DS18B20(5);DQ = 1;dat>>=1;}}/*****读取温度*****/unsigned int ReadTemperature(void){unsigned char a=0;unsigned char b=0;unsigned int t=0;float tt=0;Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0x44); //启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作 WriteOneChar(0xBE); //读取温度寄存器a=ReadOneChar(); //读低8位b=ReadOneChar(); //读高8位t=b;t<<=8;t=t|a;tt=t*0.0625;t= tt*10+0.5; //放大10倍输出并四舍五入 return(t);}/*****END*****/。
ds18b20c语言程序
ds18b20c语言程序DS18B20驱动程序(C语言)//#include"reg51.h"sbit DQ =P1^4; //定义通信端口//延时函数/*void delay(unsigned inti){while(i--);}*///初始化函数Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ 复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时大于 480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后如果x=0则初始化成功x=1则初始化失败delay(20);}//读一个字节ReadOneChar(void){unsigned chari=0;unsigned char dat = 0;for (i=8;i>;0;i--){DQ = 0; // 给脉冲信号dat>;>;=1;DQ = 1; // 给脉冲信号if(DQ)dat|=0x80;delay(4);}return(dat);}//写一个字节WriteOneChar(unsigned chardat){unsigned char i=0;for (i=8; i>;0; i--){DQ = 0;DQ = dat&0x01;delay(5);DQ =1;dat>;>;=1;}//delay(4);}//DS18B20程序读取温度ReadTemperature(void){unsigned char a=0;unsignedchar b=0;unsigned int t=0;floattt=0;Init_DS18B20();WriteOneChar(0xCC); // 跳过读序号列号的操作WriteOneChar(0x44); // 启动温度转换Init_DS18B20();WriteOneChar(0xCC); //跳过读序号列号的操作WriteOneChar(0xBE); //读取温度寄存器等(共可读9个寄存器)前两个就是温度a=ReadOneChar();b=ReadOneChar();t=b;t<<=8;t=t|a;t t=t*0.0625;//t= tt*10+0.5; //放大10倍输出并四舍五入---此行没用return(t);}//DS18B20主程序main(){unsigned chari=0;while(1){i=ReadTemperature();//读温度}}ds18b20c语言程序完毕。
DS18B20 c语言程序
**************************************/
BYTE DS18B20_ReadByte()
{
BYTE i;
BYTE dat = 0;
for (i=0; i<8; i++) //8位计数器
{
dat >>= 1;
DQ = 0; //开始时间片
DelayXus(1); //延时等待
DQ = 1; //准备接收
}
/**************************************
向DS18B20写1字节数据
**************************************/
void DS18B20_WriteByte(BYTE dat)
{
char i;
for (i=0; i<8; i++) //8位计数器
**************************************/
void DelayXus(BYTE n)
{
while (n--)
{
_nop_();
_nop_();
}
}
/**************************************
void main()
{
DS18B20_Reset(); //设备复位
DS18B20_WriteByte(0xCC); //跳过ROM命令
DS18B20_WriteByte(0x44); //开始转换命令
while (!DQ); //等待转换完成
DS18B20温度传感器设计原理图及c程序代码
/*******************代码部分**********************//*************** writer:shopping.w ******************/ #include <reg52.h>#include <intrins.h>#define uint unsigned int#define uchar unsigned char#define delayNOP() {_nop_();_nop_();_nop_();_nop_();}sbit DQ = P3^3;sbit LCD_RS = P2^0;sbit LCD_RW = P2^1;sbit LCD_EN = P2^2;uchar code Temp_Disp_Title[]={"Current Temp : "};uchar Current_Temp_Display_Buffer[]={" TEMP: "};uchar code Temperature_Char[8] ={0x0c,0x12,0x12,0x0c,0x00,0x00,0x00,0x00};uchar code df_Table[]=0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9};uchar CurrentT = 0;uchar Temp_Value[]={0x00,0x00}; uchar Display_Digit[]={0,0,0,0};bit DS18B20_IS_OK = 1;void DelayXus(uint x){uchar i;while(x--){for(i=0;i<200;i++);}}bit LCD_Busy_Check(){bit result;LCD_RS = 0;LCD_RW = 1;LCD_EN = 1;delayNOP();result = (bit)(P0&0x80);LCD_EN=0;return result;}void Write_LCD_Command(uchar cmd) {while(LCD_Busy_Check());LCD_RS = 0;LCD_RW = 0;LCD_EN = 0;_nop_();_nop_();P0 = cmd;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void Write_LCD_Data(uchar dat){while(LCD_Busy_Check());LCD_RS = 1;LCD_RW = 0;LCD_EN = 0;P0 = dat;delayNOP();LCD_EN = 1;delayNOP();LCD_EN = 0;}void LCD_Initialise(){Write_LCD_Command(0x01);DelayXus(5);Write_LCD_Command(0x38);DelayXus(5);Write_LCD_Command(0x0c);DelayXus(5);Write_LCD_Command(0x06);DelayXus(5);}void Set_LCD_POS(uchar pos){Write_LCD_Command(pos|0x80); }void Delay(uint x){while(--x);}uchar Init_DS18B20(){uchar status;DQ = 1;Delay(8);DQ = 0;Delay(90);DQ = 1;Delay(8);DQ = 1;return status;}uchar ReadOneByte(){uchar i,dat=0;DQ = 1;_nop_();for(i=0;i<8;i++){DQ = 0;dat >>= 1;DQ = 1;_nop_();_nop_();if(DQ)dat |= 0X80;Delay(30);DQ = 1;}return dat;}void WriteOneByte(uchar dat) {uchar i;for(i=0;i<8;i++){DQ = 0;DQ = dat& 0x01;Delay(5);DQ = 1;dat >>= 1;}}void Read_Temperature(){if(Init_DS18B20()==1)DS18B20_IS_OK=0;else{WriteOneByte(0xcc);WriteOneByte(0x44);Init_DS18B20();WriteOneByte(0xcc);WriteOneByte(0xbe);Temp_Value[0] = ReadOneByte();Temp_Value[1] = ReadOneByte();DS18B20_IS_OK=1;}}void Display_Temperature(){uchar i;uchar t = 150, ng = 0;if((Temp_Value[1]&0xf8)==0xf8){Temp_Value[1] = ~Temp_Value[1];Temp_Value[0] = ~Temp_Value[0]+1;if(Temp_Value[0]==0x00)Temp_Value[1]++;ng = 1;}Display_Digit[0] = df_Table[Temp_Value[0]&0x0f];CurrentT = ((Temp_Value[0]&0xf0)>>4) | ((Temp_Value[1]&0x07)<<4);Display_Digit[3] = CurrentT/100;Display_Digit[2] = CurrentT%100/10;Display_Digit[1] = CurrentT%10;Current_Temp_Display_Buffer[11] = Display_Digit[0] + '0';Current_Temp_Display_Buffer[10] = '.';Current_Temp_Display_Buffer[9] = Display_Digit[1] + '0';Current_Temp_Display_Buffer[8] = Display_Digit[2] + '0';Current_Temp_Display_Buffer[7] = Display_Digit[3] + '0';if(Display_Digit[3] == 0)Current_Temp_Display_Buffer[7] = ' ';if(Display_Digit[2] == 0&&Display_Digit[3]==0)Current_Temp_Display_Buffer[8] = ' ';if(ng){if(Current_Temp_Display_Buffer[8] == ' ')Current_Temp_Display_Buffer[8] = '-';else if(Current_Temp_Display_Buffer[7] == ' ')Current_Temp_Display_Buffer[7] = '-';elseCurrent_Temp_Display_Buffer[6] = '-';}Set_LCD_POS(0x00);for(i=0;i<16;i++){Write_LCD_Data(Temp_Disp_Title[i]);}Set_LCD_POS(0x40);for(i=0;i<16;i++){Write_LCD_Data(Current_Temp_Display_Buffer[i]);}Set_LCD_POS(0x4d);Write_LCD_Data(0x00);Set_LCD_POS(0x4e);Write_LCD_Data('C');}void main(){LCD_Initialise();Read_Temperature();Delay(50000);Delay(50000);while(1){Read_Temperature();if(DS18B20_IS_OK)Display_Temperature();DelayXus(100);}}。
单片机中使用DS18B20温度传感器C语言程序文件
单片机中使用DS18B20温度传感器C语言程序(参考1)/********************************************************************************DS18B20 测温程序硬件:AT89S52(1)单线ds18b20接P2.2(2)七段数码管接P0口(3)使用外部电源给ds18b20供电,没有使用寄生电源软件:Kei uVision 3**********************************************************************************/ #include "reg52.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned intsbit ds=P2^2;sbit dula=P2^6;sbit wela=P2^7;uchar flag ;uint temp; //参数temp一定要声明为int 型uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点数字编码/*延时函数*/void TempDelay (uchar us){while(us--);}void delay(uint count) //延时子函数{uint i;while(count){i=200;while(i>0)i--;count--;}}/*串口初始化,波特率9600,方式1 */void init_com(){TMOD=0x20; //设置定时器1为模式2 TH1=0xfd; //装初值设定波特率TR1=1; //启动定时器SM0=0; //串口通信模式设置SM1=1;// REN=1; //串口允许接收数据PCON=0; //波特率不倍频// SMOD=0; //波特率不倍频// EA=1; //开总中断//ES=1; //开串行中断}/*数码管的显示*/void display(uint temp){uchar bai,shi,ge;bai=temp/100;shi=temp%100/10;ge=temp%100%10;dula=0;P0=table[bai]; //显示百位dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存P0=0xfe;wela=1;wela=0;delay(1); //延时约2ms P0=table1[shi]; //显示十位dula=1;dula=0;P0=0xfd;wela=1;wela=0;delay(1);P0=table[ge]; //显示个位dula=1;dula=0;P0=0xfb;wela=1;wela=0;delay(1);}/*****************************************时序:初始化时序、读时序、写时序。
DS18B20温度传感器完整C程序
DQ=val&0x01; //最低位移出
delay(6); //66 us
val=val/2; //右移1位
temp<<=8;
temp=temp|temp_data[0]; // 两字节合成一个整型变量。
return temp; //返回温度值
}
//
}
//
//
/****************DS18B20写命令函数************************/
//向1-WIRE 总线上写1个字节
void write_byte(uchar val)
{
uchar i;
for(i=8;i>0;i--)
{
DQ=1;_nop_();_nop_(); //从高拉倒低
ow_reset(); //总线复位
delay(200);
write_byte(0xcc); //发命令
write_byte(0x44); //发转换命令
ow_reset();
delay(1);
//
uchar code dis_7[12]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6,0xff,0x02};
//共阳LED段码表 "0" "1" "2" "3" "4" "5" "6" "7" "8" "9" "不亮" "-"
DS18B20温度传感器C程序.docx
DS18B20 温度传感器 C 程序单片机型号:STC89C54RD+, STC89C52RC测试通过。
晶震频率: 11.05924使用时只需要修改对应的外部管脚即可。
MAIN.C :#include <reg52.h>#include <intrins.h>sbit IO_18B20 = P3^2;//18B20 通讯引脚。
extern void DelayX10us(unsigned char t);extern bit Get18B20Temp(int *temp);extern bit Get18B20Ack();extern bit Start18B20();unsigned char code LedChar[] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E};// 数码管编码0-F unsigned char LedBuff[12] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};int temp=1;unsigned char flg;unsigned char T0RH,T0RL;void ConfigTimer0(unsigned int ms)//开内部定时器延时,到时间后触发中断。
{unsigned long tmp;tmp = 11059200 / 12;tmp = (tmp * ms) / 1000;tmp = 65536 - tmp;tmp = tmp + 18;T0RH = (unsigned char)(tmp>>8);T0RL = (unsigned char)tmp;TMOD &= 0xF0;TMOD |= 0x01;TH0 = T0RH;TL0 = T0RL;ET0 = 1;TR0 = 1;}void LedScan(){//数码管扫描程序。
18b20详细中文资料及C语言程序
跳过
0CC
忽略 64 位 ROM 地址,直接向 DS1820
ROM 告警搜
索命令
H 0EC
H
发温度变换命令。适用于单片工作。 执行后只有温度超过设定值上限或下限
的片子才做出响应。
表 7 RAM 指令表
指令
约定 代码
功能
温度变 换
读暂存 器
44H
0BE H
启动 DS1820 进行温度转换,转换时最长 为 500ms(典型为 200ms)。结果存入内部 9 字节 RAM 中。
保留
7
CRC 检验
8
指令
约定 代码
功能
读 ROM
33H
读 DS1820ROM 中的编码(即 64 位地址)
符合 ROM
发出此命令之后,接着发出 64 位 ROM 编码,访问单总线上与该编码相对应的 55H DS1820 使之作出响应,为下一步对该 DS1820 的读写作准备。
搜索 ROM
用于确定挂接在同一总线上 DS1820 的 0F0H 个数和识别 64 位 ROM 地址。为操作各器件
4、读数据线状态,得一个状态位
5、延时 30 微秒
***************************/
uchar DS18B20_readbit()
{
bit x ;
uchar i;
DQ=1;
//数据线拉高
i++;
//延时 2 微秒
DQ=0;
//数据线拉低
Delay_6us(); //延时 6 微秒
break;
case 12:res=3;
break;
}
while(DS18B20_Reset());
ds18b20的C语言完整程序(c51)
ds18b20的C语言完整程序(c51)(可组网数字式温度传感器)发布日期:[2005-05-10]作者:(sparkstar)//DS1820 C51 子程序//这里以11.0592M晶体为例,不同的晶体速度可能需要调整延时的时间//sbit DQ =P2^1;//根据实际情况定义端口typedef unsigned char byte;typedef unsigned int word;//延时void delay(word useconds){for(;useconds>0;useconds--);}//复位byte ow_reset(void){byte presence;DQ = 0; //pull DQ line lowdelay(29); // leave it low for 480usDQ = 1; // allow line to return highdelay(3); // wait for presencepresence = DQ; // get presence signaldelay(25); // wait for end of timeslotreturn(presence); // presence signal returned} // 0=presence, 1 = no part//从 1-wire 总线上读取一个字节byte read_byte(void){byte i;byte value = 0;for (i=8;i>0;i--){value>>=1;DQ = 0; // pull DQ low to start timeslotDQ = 1; // then return highdelay(1); //for (i=0; i<3; i++);if(DQ)value|=0x80;delay(6); // wait for rest of timeslot}return(value);}//向 1-WIRE 总线上写一个字节void write_byte(char val){byte i;for (i=8; i>0; i--) // writes byte, one bit at a time {DQ = 0; // pull DQ low to start timeslotDQ = val&0x01;delay(5); // hold value for remainder of timeslotDQ = 1;val=val/2;}delay(5);}//读取温度char Read_Temperature(void){union{byte c[2];int x;}temp;ow_reset();write_byte(0xCC); // Skip ROMwrite_byte(0xBE); // Read Scratch Padtemp.c[1]=read_byte();temp.c[0]=read_byte();ow_reset();write_byte(0xCC); //Skip ROMwrite_byte(0x44); // Start Conversionreturn temp.x/2;}。
DS18B20中文资料+C程序
DS18B20中文资料+C程序18b20温度传感器应用解析温度传感器的种类众多,在应用与高精度、高可靠性的场合时dallas(达拉斯)公司生产的ds18b20温度传感器当仁不让。
超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得ds18b20更受欢迎。
对于我们普通的电子爱好者来说,ds18b20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。
了解其工作原理和应用可以拓宽您对单片机开发的思路。
ds18b20的主要特征:全系列数字温度切换及输入。
??一流的单总线数据通信。
最高12位分辨率,精度可达土0.5摄氏度。
12十一位分辨率时的最小工作周期为750毫秒。
??可选择真菌工作方式。
检测温度范围为c55°c~+125°c(c67°f~+257°f)??内置eeprom,限温报警功能。
64十一位光刻rom,内置产品序列号,便利多机了变。
??多样PCB形式,适应环境相同硬件系统。
ds18b20芯片PCB结构:ds18b20引脚功能:gnd电压地dq单数据总线vdd电源电压nc空插槽ds18b20工作原理及应用领域:ds18b20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。
其一个工作周期可分为两个部分,即温度检测和数据处理。
在讲解其工作流程之前我们有必要了解18b20的内部存储器资源。
18b20共有三种形态的存储器资源,它们分别是:rom只读存储器,用作放置ds18b20id编码,其前8位就是单线系列编码(ds18b20的编码就是19h),后面48位就是芯片唯一的序列号,最后8位就是以上56的位的crc码(缓存校验)。
数据在出产时设置无可奈何用户修改。
ds18b20共64十一位rom。
ram数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,ds18b20共9个字节ram,每个字节为8位。
第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户eeprom(常用于温度报警值储存)的镜像。
18B20详细介绍及程序
1.DS18B20基本知识DS18B20数字温度计是DALLAS公司生产的1-Wire,即单总线器件,具有线路简单,体积小的特点。
因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。
1、DS18B20产品的特点(1)、只要求一个端口即可实现通信。
(2)、在DS18B20中的每个器件上都有独一无二的序列号。
(3)、实际应用中不需要外部任何元器件即可实现测温。
(4)、测量温度范围在-55。
C到+125。
C之间。
(5)、数字温度计的分辨率用户可以从9位到12位选择。
(6)、内部有温度上、下限告警设置。
2、DS18B20的引脚介绍TO-92封装的DS18B20的引脚排列见图1,其引脚功能描述见表1。
(底视图)图1表1DS18B20详细引脚功能描述3.DS18B20的使用方法由于DS18B20采用的是1-Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。
由于DS18B20是在一根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。
DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。
该协议定义了几种信号的时序:初始化时序、读时序、写时序。
所有时序都是将主机作为主设备,单总线器件作为从设备。
而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。
数据和命令的传输都是低位在先。
DS18B20的复位时序DS18B20的读时序对于DS18B20的读时序分为读0时序和读1时序两个过程。
对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。
DS18B20在完成一个读时序过程,至少需要60us才能完成。
单片机DS18B20温度计C语言程序
{ dsInit(); //初始化 DS18B20, 无论什幺命令, 首先都要发起初始化 dsWait(); //等待 DS18B20 应答 delay(1); //延时 1ms, 因为 DS18B20 会拉低 DQ 60~240us 作为应答信号 writeByte(0xcc); //写入跳过序列号命令字 Skip Rom writeByte(0x44); //写入温度转换命令字 Convert T } //向 DS18B20 发送读取数据命令 void sendReadCmd() { dsInit(); dsWait(); delay(1);
单片机 DS18B20 温度计 C 语言程序
#include #include #include //要用到取绝对值函数 abs() //通过 DS18B20 测试当前环境温度, 并通过数码管显示当前温度值, 目前显 示范围: -55~ +125 度 sbit wela = P2; //数码管位选 sbit dula = P2; //数码管段选 sbit ds = P2 ; int tempValue; //0-F 数码管的编码(共阳极) unsigned char code table[]={0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};
i = 8; while(i>0) i--; //延时约 64us, 符合写时隙不低于 60us 要求 } else //写 0, 将 DQ 拉低 60us~120us ds = 0; i = 8; while(i>0) i--; //拉低约 64us, 符号要求 ds = 1; i++; i++; //整个写 0 时隙过程已经超过 60us, 这里就不用像写 1 那样, 再延 时 64us 了 } } //向 DS18B20 发送温度转换命令 void sendChangeCmd()
DS18B20温度传感器详解带c程序
00A2H
+0.5
0000 0000 0000 000
0000H
-0.5
1111 1111 1111 1000
FFF8H
-10.125
1111 1111 0110 1110
FF5EH
-25.0625
1111 1110 0110 1111
FF6FH
-55 执行序列与介绍 3.1 执行序列
duan=1; switch(i) {
case 0: if(zf==0) P1=numfh[zf];
else if(bai!=0) P1=numd[bai]; else if(shi!=0) P1=numd[shi]; else P1=numdg[ge]; break;
case 1: if(zf==0&&shi!=0) P1=numd[shi];
表 3.2 DS18B20 温度/数字对应关系表
温度(℃)
输出的二进制码
对应的十六进制码
+125
0000 0111 1101 0000
07D0H
+85
0000 0101 0101 0000
0550H
+25.0625
0000 0001 1001 0001
0191H
+10.125
0000 0000 1010 0010
uchar x,y; for(x=z;x>0;x--)
for(y=110;y>0;y--); } /******************15us 延时函数****************/ void delay(uint z) {
while(z--); } /******************初始化 DS18B20 函数****************/ void reset_ds18b20() {
DS18B20的c语言程序
c语言程序单总线接6个DS18B20(其实程序只要多余3个即可),。
//将DQ与Vcc之间接入4.7K上拉电阻#include "reg52.h"#include "INTRINS.H"#include "1602.c"#define uchar unsigned char#define uint unsigned int//#define CLEARSCREEN LCD_en_command(0x01) 1602清屏sbit DQ="P1"^0;/*操作命令代码跳过ROM 0xCC发送温度转换0xBE写EEPROM 0x4E*//////////////低层驱动子程序///////////void Init18B20(void); //初始化void Write18B20(uchar ch);//写数据unsigned char Read18B20(void);//读数据void Delay15(uchar n);void Delay10ms(uint delay_num);void Display(void);/////////////////////////////////////code uchar decimalH[]={00,06,12,18,25,31,37,43,50,56,62,68,75,81,87,93}; code uchar decimalL[]={00,25,50,75,00,25,50,75,00,25,50,75,00,25,50,75};uint ResultTemperatureH ,ResultTemperatureLH,ResultTemperatureLL;//整数,小数高位,小数低位uint ResultSignal;//符号位main(){ uint TemH,TemL,delay,k=0;for(; ; ){Init18B20();Write18B20(0xCC);//跳过ROM_nop_();//Write18B20(0x4E);//写EEPROM// Write18B20(0x00);//Th//Write18B20(0x00);//TlWrite18B20(0x7f);//12 bits温度分辨率Init18B20();Write18B20(0xCC);//跳过ROM_nop_();Write18B20(0x44);//发送温度转换指令Delay10ms(25);Delay10ms(25);Delay10ms(25);Delay10ms(25);//等待1s转换Init18B20();Write18B20(0xCC);//跳过ROMWrite18B20(0xBE);//发送温度转换指令TemL="Read18B20"(); //读低位温度值TemH="Read18B20"(); //读高位温度值Delay10ms(2);TemH=(TemH<<4)|(TemL>>4);TemL="TemL"&0x0f; //取低4位if(TemH&0x80){ TemH=~TemH;TemL=~TemL+1;ResultSignal="1"; //负}else ResultSignal="0"; //正ResultTemperatureLH="decimalH"[TemL];ResultTemperatureLL="decimalL"[TemL];ResultTemperatureH="TemH";Display();for(delay=0;delay<60000;delay++);for(delay=0;delay<20000;delay++);}}void Display(void){ uint i,j,q;LCD_init();CLEARSCREEN;LCD_en_command(0x01);delay_nms(2);q="ResultTemperatureH/100";i=(ResultTemperatureH%100)/10;j="ResultTemperatureH-"(i*10+q*100);LCD_write_string(0,LINE1," Jaq1217 18B20 "); if(ResultSignal){ LCD_write_string(0,LINE2," T is:- . "); }else {LCD_write_string(0,LINE2," T is:+ . ");}LCD_write_char(0x07,LINE2,q|0x30);LCD_write_char(0x08,LINE2,i|0x30);LCD_write_char(0x09,LINE2,j|0x30);LCD_write_char(0x0b,LINE2,(ResultTemperatureLH/10)|0x30); LCD_write_char(0x0c,LINE2,(ResultTemperatureLH%10)|0x30); LCD_write_char(0x0d,LINE2,(ResultTemperatureLL/10)|0x30); LCD_write_char(0x0e,LINE2,(ResultTemperatureLL%10)|0x30);}unsigned char Read18B20(void){ unsigned char ch;unsigned char q ;for(q=0;q<8;q++){ch=ch>>1;DQ="0";_nop_();DQ="1";_nop_();_nop_();_nop_();_nop_();if(DQ==1){ch="ch|0x80";}else {ch="ch"&0x7f;}Delay15(3);DQ="1";}return (ch);}void Write18B20(uchar ch){ uchar i;for(i=0;i<8;i++){ DQ="0";Delay15(1);DQ="ch"&0x01;Delay15(3);DQ="1";ch="ch">>1;_nop_();}}void Init18B20(void){ DQ="0";Delay15(33);//至少延时480usDQ="1";Delay15(10);//至少延时100us/*if(DQ==1) return 0; //初始化失败else return 1;DQ=1; Delay15(18); */}void Delay15(uchar n){ do{ _nop_(); _nop_(); _nop_(); _nop_(); _nop_();_nop_(); _nop_(); _nop_(); _nop_(); _nop_();_nop_(); _nop_(); _nop_();n--;}while(n);}void Delay10ms(uint delay_num){uchar i;while(delay_num--){for(i=0;i<125;i++){;}}}说明:如果你只需要温度部分的,那么LCD部分的,你可以不看,只参考18B20的程序段。
单片机DS18B20温度传感器C语言程序含CRC校验
单片机中使用DS18B20温度传感器C语言程序(参考1)/******************************************************************************** DS18B20 测温程序硬件:AT89S52(1)单线ds18b20接 P2.2(2)七段数码管接P0口(3)使用外部电源给ds18b20供电,没有使用寄生电源软件:Kei uVision 3**********************************************************************************/ #include "reg52.h"#include "intrins.h"#define uchar unsigned char#define uint unsigned intsbit ds=P2^2;sbit dula=P2^6;sbit wela=P2^7;uchar flag ;uint temp; //参数temp一定要声明为 int 型uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; //不带小数点数字编码uchar code table1[]={0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef}; //带小数点数字编码/*延时函数*/void TempDelay (uchar us){ while(us--); }void delay(uint count) //延时子函数{ uint i;while(count){ i=200;while(i>0)i--;count--; } }/*串口初始化,波特率9600,方式1 */void init_com(){ TMOD=0x20; //设置定时器1为模式2TH1=0xfd; //装初值设定波特率TL1=0xfd;TR1=1; //启动定时器SM0=0; //串口通信模式设置SM1=1;// REN=1; //串口允许接收数据PCON=0; //波特率不倍频// SMOD=0; //波特率不倍频// EA=1; //开总中断//ES=1; //开串行中断}/*数码管的显示 */void display(uint temp){ uchar bai,shi,ge;bai=temp/100;shi=temp%100/10;ge=temp%100%10;dula=0;P0=table[bai]; //显示百位dula=1; //从0到1,有个上升沿,解除锁存,显示相应段dula=0; //从1到0再次锁存wela=0;P0=0xfe;wela=1;wela=0;delay(1); //延时约2msP0=table1[shi]; //显示十位dula=1;dula=0;P0=0xfd;wela=1;wela=0;delay(1);P0=table[ge]; //显示个位dula=1;dula=0;P0=0xfb;wela=1;wela=0;delay(1); }/*****************************************时序:初始化时序、读时序、写时序。
对ds18b20温度控制C语言程序
#include<reg52.h>#include<intrins.h>typedef unsigned char uchar;typedef unsigned int uint;uchar wbuf[]={~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F}; uchar tplsb,tpmsb;//温度低位,高位uint temp=0;//实际温度uint temp1=30;//报警温度uint temp2=27;//报警温度//sbit led=P2^1; //示警发光二极管信号引脚sbit motor=P1^7; //电机信号输出引脚sbit reduce=P2^1; //报警温度下减键sbit plus=P2^0; //报警温度上加键//bit flag1=0;//bit flag2=0;sbit A=P2^6;//数码管位选sbit C=P2^7;//数码管位选sbit DQ=P1^0;//DS18B20控制线void delay1(uint j ){ int i,k;for(i=0;i<110;i++)for(k=0;k<j;k++);}void delay(uint t) //延时t毫秒{uint i;while(t--);{for(i=0;i<250;++i); //延时约1us{}}}/*产生复位脉冲初始化DS18B20*/void Init(){uint i=100;DQ=0;while(i>0)i--;//拉低约900usDQ=1;//拉高电平,产生上升沿i=4;while(i>0)i--;}/*等待应答脉冲*/void Wait(){uint i;while(DQ);while(~DQ); //检测到应答脉冲i=4;while(i>0)i--;}/*读数据一位*/bit Rebit(){uint i;bit b;DQ=0;i++;//保持低电平至少1usDQ=1;i++;i++;//延时15us以上,读时隙下降沿后15us,DS18B20输出数据才有效b=DQ;i=9;while(i>0)i--;//读时隙不低于60usreturn(b);}/*读一个字节数据*/uchar Rebyte(){uchar i,j=0,k=0;for(i=0;i<8;i++){k=Rebit();j=(k<<7)|(j>>1);}return(j);}/*写一个字节数据*/void Wrbyte(uchar b){uint i,j;bit temp;for(j=0;j<8;j++){temp=b&0x01;b>>=1;if(temp){/*写1*/DQ=0;i++;i++;//延时15usDQ=1;i=8;while(i>0)i--;//整个写1时隙不低于60us}else{/*写0*/DQ=0;i=8;while(i>0)i--;DQ=1;i++;i++;}}}/*启动温度转化*/void Convert(){Init();//初始化DS18B20Wait();//等待应答delay(1);//延时Wrbyte(0xcc);//skip rom命令Wrbyte(0x44);//convert T命令}/*读取温度值*/void Retemp(){Init();//初始化DS18B20Wait();//等待应答delay(1);//延时Wrbyte(0xcc);//skip rom命令Wrbyte(0xbe);//read scratchpad(读暂存器)命令tplsb=Rebyte();//温度低位字节(其中第四位为小数部分)tpmsb=Rebyte();//温度高位字节(其中高五位为符号位)temp=(tpmsb*256+tplsb)*0.0625;//转换}/*LED显示*/void Display(){for(n=0;n<3;n++){ j=temp/10;//取温度十位k=temp%10; //取温度个位P0=wbuf[j];//把要显示的位送入P0口A=0;C=1; //开第一位数码管,显示十位delay(10);//com1=1; //关第一位显示P0=wbuf[k];//把要显示的位送入P0口A=1;C=0; //开第二位数码管,显示个位//delay(2);//com2=1;//关第二位显示}}void main(){EA=1;EX0=1;TF0=1;//EX1=1;do{//delay(1);Convert();//温度转换delay(10);Retemp();//读温度delay(10);Display();//显示if((temp>=temp1)||(temp<=temp2)){// led=0;motor=0;}else{// led=1;motor=1;}// if(temp<=temp2)// motor=0;}while(1);}void TNTO() interrupt 0do{for(n=0;n<5;n++){ j=temp1/10;//取温度十位k=temp1%10; //取温度个位P0=wbuf[j];//把要显示的位送入P0口A=0;C=1; //开第一位数码管,显示报警温度十位delay1(12);P0=wbuf[k];//把要显示的位送入P0口A=1;C=0; //开第二位数码管,显示报警温度个位delay1(12);}if((P2&0x0f)!=0x0f){i=0;delay1(60);if((P2&0x0f)!=0x0f){ if(plus==0){ delay1(10);if(plus==0)temp1++;}if(reduce==0){ delay1(10);if(reduce==0)temp1--;}}}i++;if(((P2&0x0f)==0x0f)&&(i>=50)) break;}while(1);}。
DS18B20 C语言程序
/**********************êy??1ü??ê?**************************************/
void delay1ms(unsigned char a)
{
unsigned char j;
while(a-- != 0)
{
i=8;
while(i>0)i--;
DQ=1;
i++;
i++;
{
wr_dat(*p);
p++;
delay1ms(1);
}
}
init_play()//初始化显示
{ lcd_init();
wr_com(0x80);
display(str1);
wr_com(0xc0);
display(str2);
}
/******************************ds1820程序***************************************/
tflag=1;
}
tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数
return(tvalue);
}
/*******************************************************************/
void ds1820disp()//温度值显示
for (j = 0; j < 125; j++);
}
}
void disp(temp)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18B20温度传感器应用解析温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。
超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B 20更受欢迎。
对于我们普通的电子爱好者来说,DS18B20的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。
了解其工作原理和应用可以拓宽您对单片机开发的思路。
DS18B20的主要特征:?? 全数字温度转换及输出。
?? 先进的单总线数据通信。
?? 最高12位分辨率,精度可达土0.5摄氏度。
?? 12位分辨率时的最大工作周期为750毫秒。
?? 可选择寄生工作方式。
?? 检测温度范围为–55°C ~+125°C (–67°F ~+257°F)?? 内置EEPROM,限温报警功能。
?? 64位光刻ROM,内置产品序列号,方便多机挂接。
?? 多样封装形式,适应不同硬件系统。
DS18B20芯片封装结构:DS18B20引脚功能:·GND 电压地·DQ 单数据总线·VDD 电源电压·NC 空引脚DS18B20工作原理及应用:DS18B20的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。
其一个工作周期可分为两个部分,即温度检测和数据处理。
在讲解其工作流程之前我们有必要了解18B20的内部存储器资源。
18B20共有三种形态的存储器资源,它们分别是:ROM 只读存储器,用于存放DS18B20ID编码,其前8位是单线系列编码(DS18B20的编码是19H),后面48位是芯片唯一的序列号,最后8位是以上56的位的CRC码(冗余校验)。
数据在出产时设置不由用户更改。
DS18B20共64位ROM。
RAM 数据暂存器,用于内部计算和数据存取,数据在掉电后丢失,DS18B20共9个字节RAM,每个字节为8位。
第1、2个字节是温度转换后的数据值信息,第3、4个字节是用户EEPROM(常用于温度报警值储存)的镜像。
在上电复位时其值将被刷新。
第5个字节则是用户第3个EEPROM的镜像。
第6、7、8个字节为计数寄存器,是为了让用户得到更高的温度分辨率而设计的,同样也是内部温度转换、计算的暂存单元。
第9个字节为前8个字节的CRC码。
EEPROM 非易失性记忆体,用于存放长期需要保存的数据,上下限温度报警值和校验数据,DS18B20共3位EEPROM,并在RAM都存在镜像,以方便用户操作。
RAM及EEPROM结构图:图2我们在每一次读温度之前都必须进行复杂的且精准时序的处理,因为DS18B20的硬件简单结果就会导致软件的巨大开消,也是尽力减少有形资产转化为无形资产的投入,是一种较好的节约之道。
控制器对18B20操作流程:1,复位:首先我们必须对DS18B20芯片进行复位,复位就是由控制器(单片机)给DS18B20单总线至少480uS的低电平信号。
当18B20接到此复位信号后则会在15~60uS后回发一个芯片的存在脉冲。
2,存在脉冲:在复位电平结束之后,控制器应该将数据单总线拉高,以便于在15~60uS后接收存在脉冲,存在脉冲为一个60~240uS的低电平信号。
至此,通信双方已经达成了基本的协议,接下来将会是控制器与18B20间的数据通信。
如果复位低电平的时间不足或是单总线的电路断路都不会接到存在脉冲,在设计时要注意意外情况的处理。
3,控制器发送ROM指令:双方打完了招呼之后最要将进行交流了,ROM指令共有5条,每一个工作周期只能发一条,ROM指令分别是读ROM数据、指定匹配芯片、跳跃ROM、芯片搜索、报警芯片搜索。
ROM指令为8位长度,功能是对片内的64位光刻ROM进行操作。
其主要目的是为了分辨一条总线上挂接的多个器件并作处理。
诚然,单总线上可以同时挂接多个器件,并通过每个器件上所独有的ID号来区别,一般只挂接单个18B20芯片时可以跳过ROM指令(注意:此处指的跳过ROM指令并非不发送ROM指令,而是用特有的一条“跳过指令”)。
ROM指令在下文有详细的介绍。
4,控制器发送存储器操作指令:在ROM指令发送给18B20之后,紧接着(不间断)就是发送存储器操作指令了。
操作指令同样为8位,共6条,存储器操作指令分别是写RAM数据、读RAM数据、将R AM数据复制到EEPROM、温度转换、将EEPROM中的报警值复制到RAM、工作方式切换。
存储器操作指令的功能是命令18B20作什么样的工作,是芯片控制的关键。
5,执行或数据读写:一个存储器操作指令结束后则将进行指令执行或数据的读写,这个操作要视存储器操作指令而定。
如执行温度转换指令则控制器(单片机)必须等待18B20执行其指令,一般转换时间为500uS。
如执行数据读写指令则需要严格遵循18B20的读写时序来操作。
数据的读写方法将有下文有详细介绍。
若要读出当前的温度数据我们需要执行两次工作周期,第一个周期为复位、跳过ROM指令、执行温度转换存储器操作指令、等待500uS温度转换时间。
紧接着执行第二个周期为复位、跳过ROM指令、执行读RAM的存储器操作指令、读数据(最多为9个字节,中途可停止,只读简单温度值则读前2个字节即可)。
其它的操作流程也大同小异,在此不多介绍。
DS18B20芯片与单片机的接口:图3图4如图所示,DS18B20只需要接到控制器(单片机)的一个I/O口上,由于单总线为开漏所以需要外接一个4.7K的上拉电阻。
如要采用寄生工作方式,只要将VDD电源引脚与单总线并联即可。
但在程序设计中,寄生工作方式将会对总线的状态有一些特殊的要求。
图5DS28B20芯片ROM指令表:Read ROM(读ROM)[33H] (方括号中的为16进制的命令字)这个命令允许总线控制器读到DS18B20的64位ROM。
只有当总线上只存在一个DS18B20的时候才可以使用此指令,如果挂接不只一个,当通信时将会发生数据冲突。
Match ROM(指定匹配芯片)[55H]这个指令后面紧跟着由控制器发出了64位序列号,当总线上有多只DS18B20时,只有与控制发出的序列号相同的芯片才可以做出反应,其它芯片将等待下一次复位。
这条指令适应单芯片和多芯片挂接。
Skip ROM(跳跃ROM指令)[CCH]这条指令使芯片不对ROM编码做出反应,在单总线的情况之下,为了节省时间则可以选用此指令。
如果在多芯片挂接时使用此指令将会出现数据冲突,导致错误出现。
S earch ROM(搜索芯片)[F0H]在芯片初始化后,搜索指令允许总线上挂接多芯片时用排除法识别所有器件的64位ROM。
Alarm Search(报警芯片搜索)[ECH]在多芯片挂接的情况下,报警芯片搜索指令只对附合温度高于TH或小于TL报警条件的芯片做出反应。
只要芯片不掉电,报警状态将被保持,直到再一次测得温度什达不到报警条件为止。
DS28B20芯片存储器操作指令表:Write Scratchpad (向RAM中写数据)[4EH]这是向RAM中写入数据的指令,随后写入的两个字节的数据将会被存到地址2(报警RAM之TH)和地址3(报警RAM之TL)。
写入过程中可以用复位信号中止写入。
Read Scratchpad (从RAM中读数据)[BEH]此指令将从RAM中读数据,读地址从地址0开始,一直可以读到地址9,完成整个RAM数据的读出。
芯片允许在读过程中用复位信号中止读取,即可以不读后面不需要的字节以减少读取时间。
Copy Scratchpad (将RAM数据复制到EEPROM中)[48H]此指令将RAM中的数据存入EEPROM中,以使数据掉电不丢失。
此后由于芯片忙于EEPROM储存处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。
在寄生工作方式时必须在发出此指令后立刻超用强上拉并至少保持10MS,来维持芯片工作。
Convert T(温度转换)[44H]收到此指令后芯片将进行一次温度转换,将转换的温度值放入RAM的第1、2地址。
此后由于芯片忙于温度转换处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。
在寄生工作方式时必须在发出此指令后立刻超用强上拉并至少保持500MS,来维持芯片工作。
Recall EEPROM(将EEPROM中的报警值复制到RAM)[B8H]此指令将EEPROM中的报警值复制到RAM中的第3、4个字节里。
由于芯片忙于复制处理,当控制器发一个读时间隙时,总线上输出“0”,当储存工作完成时,总线将输出“1”。
另外,此指令将在芯片上电复位时将被自动执行。
这样RAM中的两个报警字节位将始终为EEPROM中数据的镜像。
Read Power Supply(工作方式切换)[B4H]此指令发出后发出读时间隙,芯片会返回它的电源状态字,“0”为寄生电源状态,“1”为外部电源状态。
DS18B20复位及应答关系示意图:图6每一次通信之前必须进行复位,复位的时间、等待时间、回应时间应严格按时序编程。
DS18B20读写时间隙:DS18B20的数据读写是通过时间隙处理位和命令字来确认信息交换的。
写时间隙:图7写时间隙分为写“0”和写“1”,时序如图7。
在写数据时间隙的前15uS总线需要是被控制器拉置低电平,而后则将是芯片对总线数据的采样时间,采样时间在15~60uS,采样时间内如果控制器将总线拉高则表示写“1”,如果控制器将总线拉低则表示写“0”。
每一位的发送都应该有一个至少15uS的低电平起始位,随后的数据“0”或“1”应该在45uS内完成。
整个位的发送时间应该保持在60~120uS,否则不能保证通信的正常。
读时间隙:图8读时间隙时控制时的采样时间应该更加的精确才行,读时间隙时也是必须先由主机产生至少1uS的低电平,表示读时间的起始。
随后在总线被释放后的15uS中DS18B20会发送内部数据位,这时控制如果发现总线为高电平表示读出“1”,如果总线为低电平则表示读出数据“0”。
每一位的读取之前都由控制器加一个起始信号。
注意:如图8所示,必须在读间隙开始的15uS内读取数据位才可以保证通信的正确。
在通信时是以8位“0”或“1”为一个字节,字节的读或写是从高位开始的,即A7到A0.字节的读写顺序也是如图2自上而下的。
//实验目的:熟悉DS18B20的使用//六位数码管显示温度结果,其中整数部分2位,小数部分4位//每次按下RB0键后进行一次温度转换。
//硬件要求:把DS18B20插在18B20插座上// 拨码开关S10第1位置ON,其他位置OFF// 拨码开关S5、S6全部置ON,其他拨码开关全部置OFF#i nclude<pic.h>//__CONFIG(0x1832);//芯片配置字,看门狗关,上电延时开,掉电检测关,低压编程关,加密,4M晶体HS振荡#define uch unsigned char //给unsigned char起别名 uch# define DQ RA0 //定义18B20数据端口# define DQ_DIR TRISA0 //定义18B20D口方向寄存器# define DQ_HIGH() DQ_DIR =1 //设置数据口为输入# define DQ_LOW() DQ = 0; DQ_DIR = 0 //设置数据口为输出unsigned char TLV=0 ; //采集到的温度高8位unsigned char THV=0; //采集到的温度低8位unsigned char TZ=0; //转换后的温度值整数部分unsigned char TX=0; //转换后的温度值小数部分unsigned int wd; //转换后的温度值BCD码形式unsigned char shi; //整数十位unsigned char ge; //整数个位unsigned char shifen; //十分位unsigned char baifen; //百分位unsigned char qianfen; //千分位unsigned char wanfen; //万分位unsigned char table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//0-9的显示代码//------------------------------------------------//延时函数void delay(char x,char y){char z;do{z=y;do{;}while(--z);}while(--x);}//其指令时间为:7+(3*(Y-1)+7)*(X-1)如果再加上函数调用的call 指令、页面设定、传递参数花掉的7 个指令。