大学物理热力学第一定律课件讲义

合集下载

大学物理第二十四讲 热力学第一定律、摩尔热容PPT课件

大学物理第二十四讲 热力学第一定律、摩尔热容PPT课件

U
CV ,mT
i 2
RT
3104 J
2. Qp Cp,mT Cp,m (T2 T1) Cp,m (t2 t1)
t2
t1
Qp
Cp,m
t1
2Qp
(i 2)R
36C
t1 0C
19
例:热力学系统经历如图所示过程后回到初态a。设过 程 abc 中吸热600 J;过程 cda 向外放热450J,对外做 功-150J,求系统在 abc 过程中内能的增量及对外做功。
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
R(T2
T1)
o
VV
●等容过程中系统从外界吸收的热量全部转化为
系统的内能。
10
三、等压过程
dp 0
pV RT U i RT
2 Q U A
U
i 2
R(T2T1)ppA V2 V1
pdV
p(V2
V1 )
A
R(T2 T1)
o
V1
V2 V
Qp
U
A
i 2
R(T2
T1)
R(T2
T1)
Tb 2Ta Tc , Td Ta , Vc V3 4V1
所以
U
i 2
R(Td
Ta )
0
p
p2 a
Aab p2 (V2 V1) 2 p1V1 2 RTa
Abc
RTb
ln
Vc Vb
2 RTa
ln 2
p1
o V1
Acd p1(V2 V3 ) 2 p1V1 2 RTa
b 等温线

《大学物理》课件-热力学第一定律

《大学物理》课件-热力学第一定律
非平衡态不能用一定的状态参量描述,非准静态过程 也就不能用状态图上的一条线来表示。
21
例1 理想气体准静态等温膨胀做的功。并思考如何实现这 一准静态过程。
22
假设缸中由v mol气体,等温膨胀的温度为T,体积
变化为:
V1 →V2

V2
A=
V1
pdV
= V2RT
绝热壁
C
向真空中自由膨胀。测量 膨胀前后水温的变化。
气体
真空 水
实验结果:水温不变,
验证了理想气体的内能与体积无关。为什么?
dQ = 0,dA = 0 dE = 0 (V1 →V2 )
但水的热容比气体的大得多,焦耳实验中气体温度变化不 易测出。实验进一步改进。1852年焦耳和汤姆逊用节流方法重 新做了实验。
11
4.热力学第一定律 机械能守恒: Aex + Ain,n-cons = EB - EA 对保守系统: Aex = EB - EA = ΔE 质心参考系下:Aex = Ein,B - Ein,A
对单一组分的热力学系统(保守系统),外界对系统做 功可分为:①与系统的边界具有宏观位移相联系的宏观功; ②没有宏观位移的热传递型微观功。
Aex = A + Q 则机械能守恒在热力学系统的新形式: A + Q = ΔE
12
对于任何宏观系统的任何过程,系统从外界吸收的热
量等于系统内能的增量和系统对外做的功之和。
Q = E2-E1 + A
A = -A表示系统对外界做功。对初、末态为平衡态的无
限小过程
dQ = dE + dA
——涉及热现象的能量守恒定律的表述。 ——不需要能量输入而能继续做功的“第一类永动机”不 存在。

大学化学《物理化学-热力学第一定律及其应用》课件

大学化学《物理化学-热力学第一定律及其应用》课件

(1)克服外压为 p ',体积从V1 膨胀到V ' ; (2)克服外压为 p",体积从V ' 膨胀到V " ;
(3)克服外压为 p2,体积从V "膨胀到V2 。
We,3 p '(V 'V1)
p"(V "V ')
p
p1
p1V1
p2 (V2 V ")
p'
所作的功等于3次作功的加和。p "
p 'V ' p"V "
可见,外压差距越小,膨 p2 胀次数越多,做的功也越多。
V1 V ' V "
p2V2
V2 V
上一内容 下一内容 回主目录
返回
2024/9/13
功与过程(多次等外压膨胀)
p"
p' p1
V"
V1
V'
p
p1
p1V1
p2
V2
p'
p 'V '
阴影面积代表We,3
p"
p"V "
p2
p2V2
上一内容
下一内容
V1 V ' V "
第三步:用 p1 的压力将体系从V ' 压缩到 V1 。
p
W' e,1
p"(V "
V2 )
p1
p1V1
p' (V ' V ")
p'
p 'V '
p1(V1 V ' )
回主目录
V2 V

大学物理热力学第一定律 21页PPT文档

大学物理热力学第一定律 21页PPT文档

总热量: Q 2 dQ 积分与过程有关 。 1
§2 热力学第一定律
四、热力学第一定律
某一过程,系统从外界吸热 Q,对外界做功A,系 统内能从初始态 E1变为 E2,则由能量守恒:
QE2E1A
对微小过程:
1
2
dQdEdA
E1
E2
注意:
1. 功、热量为过程量,内能为状态量 1. 2. A、Q的正负号 2. 3. 适用任何系统的任何过程
T1
4 O
3 V T2
2-3
绝热膨胀
TV TV 1 12
1
23
Q'
RT
V ln 3

2
1
T2
2
ln
V V
V4
3
4
T ln V 2
V 1 1
4-1 绝热收缩 TV1TV1
11
24
V (2
)1
(V3
)1
V
V
1
4
1 T2
T1
注意:
卡诺逆循环(制冷机)
dApdV
P
dV0,dA0 系统作正功
dV0,dA0 系统作负功
总功: AdAV V 12PdV O
V
三、热量
传热—改变系统状态的另一种方法
T1
条件:系统与外界的温度不同
T2
通过分子热运动传递能量 无法用宏观量计算
热量Q—传热过程中传递的能量
dQ0 系统从外界吸收热量 热量是过程量 dQ0 系统向外界放出热量
EEk Ep
EE(T,V)
内能是状态量, 与过程无关
理想气体: EP=0
E Ek
A
EEBEA

热力学第一定律ppt课件

热力学第一定律ppt课件
的两绝热活塞将汽缸分为f、g、h三部分,活塞与汽缸壁间没有摩擦。初
始时弹簧处于原长,三部分中气体的温度、体积、压强均相等。现通过电
阻丝对f中的气体缓慢加热,停止加热并达到稳定后(

A.h中的气体内能增加
B.f与g中的气体温度相等
C.f与h中的气体温度相等
D.f与h中的气体压强相等
6、如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距
1840年在英国皇家学会上宣布了电流通
过导体产生热量的定律,即焦耳定律。
焦耳测量了热与机械功之间的当量关系—
焦耳
—热功当量,为热力学第一定律和能量守
恒定律的建立奠定了实验基础。
焦耳的实验
绝热过程
系统只通过对外界做功或外界对它做功而与外界交换能量,它
不从外界吸热,也不向外界放热,这样的过程叫做绝热过程。
为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质
量的理想气体。已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸
壁均绝热,不计它们之间的摩擦。开始时活塞处于静止状态,上、下方气
体压强均为p0,温度均为T0。现用电热丝缓慢加热汽缸中的气体,直至活
塞刚好到达b处。求此时汽缸内气体的温度以及在此过程中气体对外所做
增加,A 项正确;ab 过程发生等容变化,气体对外界不做功,
C 项错误;一定质量的理想气体内能仅由温度决定,bc 过程发
的功。(重力加速度大小为g)
7、如图所示,一定质量的理想气体由a状态变化到b状态,下列
说法正确的有(
)
A.外界对气体做功
B.气体对外界做功

C.气体向外界放热
D.气体从外界吸热

BD

热力学第一定律 能量守恒定律 课件 (共22张PPT)

热力学第一定律 能量守恒定律 课件 (共22张PPT)
规律方法——应用能量守恒定律的思路方法(1)能量守恒的核心是总能量不变,因此在应用能量守恒定律时应首先分清系统中哪些能量在相互转化,是通过哪些力做功实现的,这些能量分别属于哪些物体,然后再寻找合适的守恒方程式.(2)在应用能量守恒定律分析问题时,应明确两点:①哪种形式的能量减少,哪种形式的能量增加.②哪个物体的能量减少,哪个物体的能量增加.
(3)应用①各种形式的能可以转化,但能量在转化过程中总伴有内能的损失.②各种互不相关的物理现象,可以用能量守恒定律联系在一起.
1.概念:不消耗任何能量而能永远对外做功的机器.2.结果:17~18世纪,人们提出了许多永动机设计方案,但都以失败而告终.3.原因:设想能量能够无中生有地创造出来,违背了热力学第一定律.4.启示:人类利用和改造自然时,必须遵循自然规律.
解析:(1)根据热力学第一定律表达式中的符号法则,知Q=2.6×105 J,ΔU=4.2×105 J.由ΔU=W+Q,则W=ΔU-Q=4.2×105 J-2.6×105 J=1.6×105 J.W>0,说明是外界对气体做了功.(2)Q=3.5×105 J,W=-2.3×105 J,则ΔU=Q+W=1.2×105 J,ΔU为正值,说明气体的内能增加1.2×105 J.答案:(1)外界对气体做功 1.6×105 J (2)增加了1.2×105 J
知识点二 能量守恒定律
(3)亥姆霍兹的贡献从理论上把力学中的能量守恒原理推广到热、光、电、磁、化学反应等过程,揭示了它们之间的统一性.4.能量守恒定律(1)内容:能量既不会消失,也不会创生,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能量的总值保持不变.(2)意义:揭示了自然科学各个分支之间的普遍联系,是自然界内在统一性的第一个有力证据.
3.2 热力学第一定律3.3 能量守恒定律

热力学第一定律 课件

热力学第一定律 课件
的增加。
(3)若过程的始末状态物体的内能不变,即 ΔU=0,则 W+Q=0 或 W=-Q,
外界对物体做的功等于物体放出的热量。
4.判断是否做功的方法
一般情况下外界对物体做功与否,需看物体的体积是否变化。
(1)若物体体积增大,表明物体对外界做功,W<0;
(2)若物体体积变小,表明外界对物体做功,W>0。
为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能
量的总量保持不变。
2.意义
(1)能量守恒定律告诉我们,各种形式的能量可以相互转化。
(2)各种互不相关的物理现象——力学的、热学的、电学的、磁学的、
光学的、化学的、生物学的等可以用能量守恒定律联系在一起。
三、永动机不可能制成
1.第一类永动机:人们设想中的不需要任何动力或燃料,却能不断地对
提示前者能制成而后者不能制成。这是因为可以用太阳能、电能等
能源代替石油能源制造出太阳能汽车、电动汽车等,但是不消耗任何能量
的汽车不可能制成,因为它违背能量守恒定律。
2.热力学第一定律与能量守恒定律是什么关系?
提示能量守恒定律是各种形式的能相互转化或转移的过程,总能量保
持不变,它包括各个领域,其范围广泛。热力学第一定律是物体内能与其他
(2)突破了人们关于物质运动的认识范围,从本质上表明了各种运动形
式之间相互转化的可能性。能量守恒定律比机械能守恒定律更普遍,它是物
理学中解决问题的重要思维方法。能量守恒定律与细胞学说、生物进化论
并称 19 世纪自然科学中三大发现,其重要意义由此可见。
(3)具有重大实践意义,即彻底粉碎了永动机的幻想。
外做功的机器。
2.第一类永动机不可制成的原因:违背了能量守恒定律。

热力学第一定律 课件

热力学第一定律  课件
• 在气泡缓慢上升的过程中,气泡外部的压强逐渐减小,气 泡膨胀,对外做功,故气泡中空气分子的内能减小,温度 降低.但由于外部恒温,且气泡缓慢上升,故可以认为上 升过程中气泡内空气的温度始终等于外界温度,内能不变, 故须从外界吸收热量,且吸收的热量等于对外界所做的 功.答案为B.
• 【答案】 B
【方法总结】
• 【答案】 C
• 【方法总结】 • 应用热力学第一定律解题的一般步骤: • (1)根据符号法则写出各已知量(W、Q、ΔU)的正、负; • (2)根据方程ΔU=W+Q求出未知量; • (3)再根据未知量结果的正、负来确定吸热、放热情况或做
功情况或内能增减情况.

热力学第一定律与气体的综合应用

一个气泡从恒温水槽的底部缓慢向上浮起,(若
在理想气体状态发生变化时,应用热力学第一定律的关
键是:
(1)理想气体的内能完全由温度来决定.
(2)注意应用理想气体状ຫໍສະໝຸດ 方程p1V1 T1=
p2V2 T2
分析状态参量
的变化.
(3)理想气体状态变化时,体积变大,气体对外做功
W<0;体积变小,外界对气体做功W>0(自由膨胀例外).且
在p-V图中,p-V图线下方的“面积”表示功的多少.如图
不计气泡内空气分子势能的变化)则( )
• A.气泡对外做功,内能不变,同时放热
• B.气泡对外做功,内能不变,同时吸热
• C.气泡内能减少,同时放热
• D.气泡内能不变,不吸热也不放热
• 【解析】 气泡上升过程中,由于压强减小,体积增大, 故对外做功,缓慢上升指有时间发生热传递,可认为温度 是不变的.
• A.A中水银的内能增量大于B中水银的内能增量 • B.B中水银的内能增量大于A中水银的内能增量 • C.A和B中水银体积保持不变,故内能增量相同 • D.A和B中水银温度始终相同,故内能增量相同

8大学物理 热力学第一定律PPT课件

8大学物理 热力学第一定律PPT课件

室温下气体的 值
气体
He Ar H2 N2 O2 CO H2O CH4
理论值 (i2)/i 1.67 1.67 1.40 1.40 1.40 1.40 1.33 1.33
实验值 1.67 1.67 1.41 1.40 1.40 1.29 1.33 1.35
p
等 压
p
(p,V1,T1) (p,V2,T2)
p
A*
1
p
A*
1
2 *B
o
V
2 *B
o
V
W A 1 B Q A 1 B W A 2 B Q A 2 B W A 1 B 2 A Q A 1 B 2 A 0
理想气体内能 : 表征系统状态的单值函数 , 理想气体的内能仅是温度的函数 .
EE(T)mi RT M2
系统内能的增量只与系统起始和终了状态有 关,与系统所经历的过程无关 .
外界与系统之间不仅作功,而且传递热量,则有 Q ( E 2 E 1 ) A
Q E A E 2E 1A热力学第一定律 The first law of thermodynamics:系统在任一过程中 吸收的热量等于系统内能增量和系统对外作功之和。
第一定律的符号规定
Q
系统吸热 系统放热
E2 E1
内能增加
在此过程中系统向外界放出热量
18.3 热力学第一定律在等值过程中的应用 热容
计算各等值过程的热量、功和内能的理论基础
(1) pV m RT (理想气体的共性) M
dQdEpdV 解决过程中能
(2) QE V2 pdV 量转换的问题 V1
(3)EE(T)mi RT(理想气体的状态函数) M2
(4) 各等值过程的特性 .

热力学第一定律ppt课件

热力学第一定律ppt课件
程活塞对气体的压力逐渐增大,其做的功相当 于2×103 N的恒力使活塞移动相同距离所做的 功(图甲)。内燃机工作时汽缸温度高于环境温 度,该过程中压缩气体传递给汽缸的热量为 25 J。 (1)求上述压缩过程中气体内能的变化量。
解析:压缩过程中,活塞(外界)对气体(系统)做功,W是正值:
W1= F1l1= 2×103×0.1 J = 200 J
请你通过这个例子讨论总结功和热量取 正、负值的物理意义。
物理量
功W 热量Q 内能变化量ΔU
取正号(+)的 取负号(-)的
意义
意义
外界对系统做功 系统对外界做功
系统吸热
系统放热
内能增加
内能减少
ΔU=Q + W
ΔU=-135J + -85J
ΔU=-220J
气体内能减少了220J
练习
1.如图所示,密封的矿泉水瓶中,距瓶 口越近水的温度越高。一开口向下、导 热良好的小瓶置于矿泉水瓶中,小瓶中 封闭一段空气。挤压矿泉水瓶,小瓶下 沉到底部;松开后,小瓶缓慢上浮,请 分析上浮过程中:
科学推理
单纯地对系统做功做功(绝热过程):ΔU=W 单纯地对系统传热: ΔU=Q 当外界既对系统做功又对系统传热时,内能 的变化量就应该是:
ΔU=Q+ W
归纳总结 热力学第一定律
ΔU=Q+ W
一个热力学系统的内能变化量等于外界向它 传递的热量与外界对它所做的功的和.
物理量 ΔU Q W
物理意义 内能的变化量 外界向系统传递的热量 外界对系统所做的功
(2)是小瓶内气体对外界做功?还是外 界对小瓶内气体做功?
小瓶上升过程中,瓶内气 体的温度逐渐升高,压强 逐渐减小,根据理想气体 状态方程

热力学第一定律PPT课件

热力学第一定律PPT课件
解:
取杜瓦瓶及其中的物
质为系统,Q 0
例:绝热容器中盛有水,另有电源对浸于水中的电 热丝通电,见图。选取(1)水为系统;(2)水与 电热丝一起为系统,问 Q 0,Q 0,Q 0 ; W 0,W 0,W 0 解:
(1)取水为系统,则 系统边界是绝热壁及水 与电热丝交界处
Q 0, W 0
Qp ΔH
def
H U pV
dH dU d pV
dQp dH
不做非体积功时,恒压热等于系统焓的变化, 它只决定于系统的初终态
恒压过程的几点说明:
1 恒压过程只要求外压维持恒定,并且体系的初末 态压强等于外压,即可得到不做非体积功时,恒压 热等于焓变。
2 dQp dH 指的是一个微小恒压过程,并不是指 一个恒压过程中间的一个微元,因为实际过程的中
◆ 恒压(isobaric)过程——p1=p2 =p外 且p外维 持恒定
封闭系统 不做非体积功 恒压过程
Qp DU W DU p外(V2 V1 ) U2 U1 ( p2V2 p1V1 ) (U2 p2V2 ) (U1 p1V1 )
定义:焓 (enthalpy)H
DH DU D pV
(2)取水与电热丝一起为系统,则 Q 0, W 0
2.热力学第一定律(the first law of
thermodynamics)
W Q △U
U1
U2
△U = Q + W
以传热和做功的形式传递的能量,必定等于 系统热力学能的变化
△U = Q + W
◆ 一个过程的热和功 的代数和等于系统状态 函数U的变化,与途径 选择无关;
平衡体系的状态得以发生变化依赖环境的影 响,只有来自于体系外部的影响才能使处于平衡 态的体系发生变化。

大学物理课件热学-热力学第一定律

大学物理课件热学-热力学第一定律

PF S
如果活塞没有加速度(或可忽略), 由力学的动量守恒,有外压力与气 体压力相等。这时:
A PdV
3.热量:物体间通过热接触传递的能量。热量的测量方法:量热技术。
Q=?
实验时,如果电阻的欧姆热全部流入系统,有

Q / t RI 2


电阻
电流

接 地
如果一定量的机械能通过摩擦产生的热都流入了系统,有
B
如果从B到A,放热.
注意:一个过程不一定从头到尾都吸收或放热.
V
它可能有时吸收热, 有时放热.
因此分析整个过程吸收或放热是, 应一小段,一小段地考虑
6.理想气体平衡过程分析: 等温过程、绝热过程、等容过程、循环过程,……
等容过程 dV=0 : (1) A 不变化: A=0!
P
A
(2) 热:
B
Q U dU T
p1
ab
试求: ( 1)状态d的体积Vd;
d
(2)整个过程对外所作的功; o
V
(3)整个过程吸收的热量。
V1 2V1
解:(1)根据题意 Ta Td
又根据物态方程 pV RT
Td
Ta
p1V1 R
p
Tc
pcVc R
4 p1V1 R
4Ta
2p1
c
再根据绝热方程TcVc 1 TdVd 1 p1 a b
3 热力学第一定律
(能量守恒: 能量与能流)
1.物体的能量: 内能或热力学能量。有时可分为:1机械能 + 2热能。
能量概念来自对力学运动规律的研究。 从质点动力学人们认识到,比如:
弹簧质点组成的“孤立”系统:
m1

大学物理-热力学第一定律PPT课件

大学物理-热力学第一定律PPT课件
(2)再对理想气体状态方程取微分:
PdV+VdP = RdT (2)
将(1)式的dT 代入(2)式,并化简
PdV PdVVdPR
CV, m C V ,m P d V C V ,m V d P Rd V P
PdVV dP0

dV dP
VP
.
19
dV dP
VP
对上式积分得 ln Pln VC
.
10
又如: 准静态传热
系统 T
1
T2
T1与外界的T2为有限温差
有限温差下的热传导, 为非准静态过程!
系统 T1
保持系统与外界无限小温差 无限小温差下的热传导
T1+△T T1+2△T T1+3△T
T2
状态图上准静态过程 为连续曲线
.
为准静态过程!
P 平衡态
V 11
§10.3 热容 一、热容
设系统温度升高 dT ,所吸收的热量为dQ
热传导时间 > 过程时间 > 驰豫时间
绝热
准静态
过程方程:
PV C1
或 TV 1 C2 , P 1 / T C3
推导过程方程:
(1)先考虑一绝热的元过程,写出热一律:
因为
dQ =0, dA = -dE ,
对准静态过程有 PdV = -CV,mdT .
(1)
18
PdV = -CV,mdT (1)
第十章 热力学第一定律
§10.1 功,热量,热力学第一定律 §10.2 准静态过程 §10.3 热容 §10.4 绝热过程 §10.5 循环过程 §10.6 卡诺循环 §10.7 致冷循环
.
1
§10.1 功,热量,热力学第一定律 一 、功
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V
p
p
1
A
2
O
A V1 V2
V
O
V
功是过程量, 其值依赖于过程, 其值可正可负.
A>0,系统对外作功; A<0,外界对系统作功.
正循环(顺时针), A>0
逆循环(逆时针) ,A<0
[例] 理想气体的状态变化遵从pV2=B的规律(B 为常量),则当体积由V1膨胀至2V1时,气
体对外做功A=.
解: A 2V1 pdV 2V1 B dV B
设想的“永动机” 1
设想的“永动机” 2
结论:“要科学,不要永动机!”—焦耳
例.用热一律求不同过程的热量(或求内能,求功).
由a状态沿acb到达b状态,吸热80卡,系统作功126J.
①经 adb 过程, 作功42J, 吸热为多少? p
c
b 解: ① adb过程中的热一律:
a
d
Qadb Eb Ea Aadb
摩尔数:
1 dQ v (dT )V
p
1 v
dQ ( dT ) p
m M
三、热量的计算
dQ C dT
C
1 v
dQ dT
若有限过程中C=const .,则有
Q C ΔT
Q也是过程量,其值可正可负。
Q>0,系统吸热;
Q<0,系统放热。
8.4 热力学第一定律
•系统从外 使系统内能增加 E
界吸热 Q 用于系统对外作功 A
实验: 1. 从外界传热 2. 利用外界作功
T1 T2
结论: 1)改变系统状态(E)的方式有两种 2)功、热量是相同性质的物理量
均是 过程量
作功 传热
8.2 准静态过程功的计算
•过程进行的任一时刻,系统的状态并非平衡态。
初平 衡态
一系列非 平衡态
末平 衡态
•热力学中,为能利用平衡态的性质,引入 准静态过程(quasi-static process) 的概念。
a
O
d
V
Aba 84J
Qab 294J
Eb Ea 210
Q E A ◆ 热力学第一定律适用于任何
dQ = dE+ dA 热力学系统、任何热力学过程
若为准静态过程
dQ dE PdV
V2
Q E PdV
若为理想气体
V1
dQ i RdT dA
2
Q i RT A
2
若为理想气体准静态过程
无限缓慢时才可看作是准静态过程。
2.过程曲线 准静态过程可用过程曲线表示。
p
状态图(P-V图、P-T图 、V-T图)上:
p1
1 ( p1,V1,T1)
• 一个点代表一个平衡态; p2
• 一条曲线代表一个准静
2 ( p2 ,V2 ,T2 )
态过程。
o V1 V2 V
二、 准静态过程中体积功的计算
系统从初态 P1 V1 末态P2 V2
讨论
Q =△E + A = (E2-E1)+ A
◆微小过程 dQ = dE+ dA
——热一定律的微分形式
◆热力学第一定律是热现象中能量转化与守恒的定 律,适用于任何系统的任何过程(非准静态过程亦成
立)。它指出第一类永动机是不可能制成的。
第一类永动机:不需消耗内能,也不需对 系统传热,却能不断对外作功的机器。
系统在任一过程中从外界吸收的热量等于 系统内能增量与系统对外作功之和。
Q =△E + A = (E2-E1)+ A
讨论 ◆ 热力学第一定律的符号规定
Q
E2 E1
A
系统吸热 内能增加 系统对外界做功
系统放热 内能减少 外界对系统做功
系统在任一过程中从外界吸收的热量等于 系统内能增量与系统对外作功之和。
dQ i RdT PdV
2
Q
iV2RT p NhomakorabeaV2
V
热一律在理想气体准静态过程中的应用
Q
i 2
R(T2
T1
)
V2 pdV
V1
•作功多少? •内能怎样变化? •与外界有能量交换吗?
(P1 ,V1 ,T1 )
•作功为零的过程A=0 ------等容 •内能不变的过程△E=0 -----等温 (P2 ,V2 ,T2 ) •与外界没有能量交换的过程Q=0 -----绝热 •都不为零的过程 ----等压
8.5 理想气体的等值过程
一、作功A=0的过程---等体(等容)过程
O
V
Qacb Eb Ea Aacb
Aadb 42J
Aacb 126J
Eb Ea 210J
Qacb 80 4.2J
Qadb 252J
②由b状态沿曲线 ba 返回状态 a 时,系统
作功-84J, 系统是吸热还是放热?热量传递
多少?
p
•ab过程中的热一律:
c
b
Qba Ea Eb Aba
一、准静态过程(quasi-static process) 状态变化过程进行得非常缓慢,以至于过
程中的每一个中间状态都无限接近于平衡态。
是由一系列依次接替的平衡态组成。
1.准静态过程是一个理想化的过程。
是实际过程的近似。
• 只有过程进行得无限缓慢,每个中间态才可 看作是平衡态。 所以,实际过程仅当进行得
8.1 功 热量
一、热力学过程
热力学系统从一个状态变化到另一个状态 ,称为热力学过程。
热力学过程的分类
1. 准静态与非静态过程(经历的各状态是
否是平衡状态)
2. 等值过程 (状态参量的取值情况)
3. 绝热过程
(与外界的关系)
4. 可逆与不可逆过程(自发与非自发)
二. 改变热力学状态的两种能量交换形式
I(E1)
面积表示元功,总面积表示总功。 p
dA pdV
II(E2)
准静态过程的功等于p-V图上 过程曲线下的面积值。
O V1 dV V2
V
V2
(2) 功是过程量。例:
A PdV
V1
p ( p1,V1)
p ( p1,V1)
p ( p1,V1)
( p2 ,V2 )
V
( p2 ,V2 )
V
( p2 ,V2 )
dl
功的计算:由功的定义
Sp
dA=Fdl= pS dl = pdV
F
膨胀 →dV > 0,dA > 0 → 系统对外作功(正功)
压缩 →dV < 0,dA < 0 →外界对系统作功(负功)
系统体积由V1到V2,系统对外作功为:
V2
A dA PdV
V1
三、 准静态过程体积功的图示法
(1) p-V图上过程曲线下的小长条 p
V1
V V1
2
2V1
8.3 热量的计算
热量是传热过程中所传递能量多少的量度。
准静态过程中, TT+dT,物质吸收热量 dQ
一、物质的热容量
物质温度升高1度所吸收的热量,即
热容量是过程量 可以 >0 = 0
c
dQ dT
<0
二、摩尔热容量
1mol 物质温度升高1 度所吸收的热量,即
C
1 v
dQ dT
1.定体摩尔热容量 CV C是过程量 2.定压摩尔热容量 C
相关文档
最新文档