核物理综合作业

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核物理综合作业

1、什么是散裂中子源?

2、中子源特征

3、散裂中子源与反应堆中子源相比优点

4、在测井中的前景

5、世界上的散裂中子源

6、问题

一、什么是散裂中子源?

当一个中高能质子,打到重原子核上时,一些中子被轰击出来,这个过程被称为散裂反应。被轰击的原子核温度升高,更多的中子就会“沸腾”起来并脱离原子核的束缚。如果将一个垒球用力投到装满球的筐中,有一些球会立刻蹦出来,而更多的球则会弹跳并翻出筐外,散裂反应与这个过程很相似。每个与原子核相作用的质子能够轰击出20到30个中子。

从上世纪80年代开始发展起来的、基于先进加速器技术的

散裂中子源是目前世界上最先进的中子源。其基本原理是用高能强流质子加速器产生能量在1GeV以上的质子束轰击重元素靶(如钨或铀),在靶中发生散裂反应,产生大量的中子。

当一个中等能量的质子打到重核(钨、汞等元素)之后会导致重核的不稳定而“蒸发”出20-30个中子,这样重核“裂开”并向各个方向“发散”出相当多的中子,大大提高了中子的产生效率,按这种原理工作的装置称为散裂中子源。(过程如下图)

二、中子源特征

用中子散射技术来进行材料科学和生命科学研究,与X射线技术以及同步辐射技术相比具有以下特点和优势:

1、中子具有同位素识别能力。中子与核的相互作用可以轻易地识别同位素,包括像氢、碳、氧,还可以识别原子系数相邻的元素,如铁、钴、镍,对有机化合物和生物大分子的研究,对有机化合物和生物大分子的研究以及一些合金材料和磁性材料的研究特别有利。因此,中子科学装置成为开展生命科学研究重要的平台。

2、中子不带电,但有磁矩,它和晶格的磁散射是直接探测物质磁性结构和磁动力学的唯一物理工具,可以用来研究磁性材料的磁结

构和磁相互作用,现代磁学就建立在中子散射技术所取得的一些成果上,可以说没有中子散射技术,就没有现代的磁学。

3、中子的波长和晶格参数相近,中子的能量和晶格的元激发可比,因此中子可用于研究固体的结构和动力学特怔。中子非弹性散射是研究动力学特怔的理想的物理工具。长波中子小角散射是研究纳米、生物、聚合物大分子的特殊实验工具。

4、中子具有较强的穿透力。因为中子和物质的相互作用没有库

仑位垒的影响,同时也不会引起电离,因此它穿透力强,可以观测样品的整体效应,可在高温高压等极端条件下不受容器和装置的影响观察物质结构。

5、热中子引起的损伤较小,是一种高度无损的技术。对生物体

的损伤,热中子比X射线要小一百倍,特别适用实时地研究生物活体(如蛋白质,病毒的生命活动)。

最早期使用的中子源是放射性同位素中子源,将可以自发发射α

射线的元素与靶物质混合在一块,靶物质吸收一个α射线粒子即可

放射出一个中子,通过这种反应产生中子,其优点是中子源非常微小,用起来比较方便,但缺点也很明显,因为这种中子源的强度达不到太高,即中子注量率非常低,同时,这种中子源通常受到寿命的限制,随着时间的推移其源强逐渐衰减,这些缺陷影响和限制了它的使用。

20世纪用于中子核物理研究的主要工具是用低能粒子加速器产

生的带电粒子束轰击靶,通过核反应来产生中子,它的特点是,能量单一、脉冲性能比较好,这对于精密的核物理实验非常重要。缺点是

中子的注量相对较低,中子产生效率较低,不太经济。例如用400千电子伏特的氘反应来产生中子,每产生一个中子,要消耗一万兆电子伏特的能量。因此,低能加速器中子源不适合于生产同位素、生产核材料。

反应堆中子源应用最为广泛。一般情况下反应堆中子源所能提供的中子注量率为1013-14/cm2.s,20世纪90年代之后,国际上已经有了高通量研究性反应堆,中子注量率可以达到1015/cm2.s,一些大型的快堆,可达5×1015/cm2.s,接近反应堆中子源受材料与热工限制的极限,已是相当强的中子源。但由于反应堆散热技术的限制,反应堆提供的中子通量很难超过当前美国的HF高通量堆达到的最高指标3 ×10 15 n/cm2.s。

散裂中子源的出现突破了反应堆中子源中子通量的极限。当快速粒子如高能质子轰击重原子核时,一些中子被“剥离”,或被轰击出来,在核反应中被称为散裂。散裂反应和裂变反应的不同点是:它不释放那么高的能量,但它可以将一个原子核打成几块,可能是三块,也可能是四块,这个过程中会产生中子、质子、介子、中微子等产物,对开展核物理前沿课题研究和应用研究非常有用,且所产生的中子还会在相临的靶核上继续通过核反应产生中子——即核外级联。一个质子在后靶大概可以产生20到30个中子,这是散裂中子源的基本条件。

20世纪80年代起,质子加速器驱动的散裂中子源,逐渐地进入实际应用阶段。其原理比较简单,用中能强流质子加速器,产生1GeV 左右的中能质子(束功率为兆瓦量级)轰击重元素靶(如铅、钨或者

铀、钍重靶),在靶中产生散裂反应,具有高有效中子通量、无放射性核废料等特征。

散裂中子源的特点是在比较小的体积内可产生比较高的中子通量,每个中子能量沉积比反应堆低4-8倍单位体积的中子强度比裂变堆高4-8倍可用较低功率产生与高通量堆相当或更高的平均中子通量。要达到1×1015/cm2.s 的平均中子通量,散裂源需5兆瓦束功率,而高通量堆则需60兆瓦热功率。

散裂中子源的脉冲特性是由加速器所决定的,因此它的脉冲化对于中子通量并不造成损失,如果配上飞行时间技术,可以具有很高的时间分辨性能,对于开展材料和生命科学中,包括一些中子核物理,一些动态特性的研究极为关键。散裂中子源能提供的中子能谱更加宽广,它可以提供从电子伏特,到几百兆电子伏特宽广能区的中子,大大地扩展了中子科学研究的范围,拓深了中子科学研究的领域。发达国家正把建设高性能散裂中子源作为提高科技创新能力的重要措施。

三、散裂中子源与反应堆中子源相比有以下优点:

1、它和脉冲时间飞行技术结合后,能使用脉冲散裂中子源产生的中子脉冲里的全部中子,并有极高的能量分辨率。从而使谱仪的样品处的中子通量和核反应堆相比提高了100倍以上。比如英国ISIS 脉冲中子源的粉末衍射仪GEM,只需1毫克的样品就能测出衍射谱。美国在建的MW级SNS脉冲散裂中子源的工程材料衍射仪,只用1/10秒就能测出衍射谱。比核反应堆的相应衍射仪快几百倍。

相关文档
最新文档