求数列前n项和练习测试题
等差数列的前n项和公式同步练习(含解析)
《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
等比数列的前n项和公式专题练习(解析版)
等比数列的前n 项和公式一、单选题 1.(2021·内蒙古宁城·高三月考(文))已知{}n a 是等比数列,若12a =,528a a =,数列{}n a 的前n 项和为n S ,则n S 为( ) A .22n - B .121n +- C .122n +- D .21n -【答案】C 【分析】设公比为q ,根据528a a =求得公比,再利用等比数列前n 项和的公式即可得出答案. 【详解】 解:设公比为q ,因为528a a =,所以3528a q a ==,所以2q ,所以()12122212nn n S +⨯-==--.故选:C.2.(2021·河北·高三月考)已知正项等比数列{}n a 的前n 项和为n S ,42S =,810S =,则{}n a 的公比为( ) A.1 B C .2 D .4【答案】B 【分析】利用等比数列的性质求解即可. 【详解】因为42S =,810S =,{}n a 为正项等比数列,所以4845678412344S S a a a a q S a a a a -+++===+++,解得q 故选:B .3.(2021·西藏·拉萨那曲第二高级中学高三月考(文))记等比数列{}n a 的前n 项和为n S ,若214a =,378S =,则公比q = ( ) A .12-B .12C .2D .12或2【答案】D 【分析】根据等比数列的性质可得2132116a a a ==,再由378S =,可得1358a a +=,分别求出13,a a ,即可得出答案. 【详解】解:在等比数列{}n a 中,若214a =,则2132116a a a ==,312378S a a a =++=,所以1358a a +=, 由13116a a =,1358a a +=,解得131218a a ⎧=⎪⎪⎨⎪=⎪⎩,或131812a a ⎧=⎪⎪⎨⎪=⎪⎩,当131218a a ⎧=⎪⎪⎨⎪=⎪⎩时,2112a a q ==, 当131812a a ⎧=⎪⎪⎨⎪=⎪⎩时,212a q a ==, 所以q =12或2.故选:D.4.(2021·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3 B .13C .2D .12【答案】B 【分析】 由已知得()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭.再求得13a =,从而有数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,由等比数列的通项公式求得n a ,再利用分组求和的方法,以及等比数列求和公式求得n S ,从而求得n T 得答案. 【详解】解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=,∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n na --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn n n n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n nn n a S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13.故选:B.5.(2021·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2 B .()1213n- C .4n ﹣1 D .()1413n- 【答案】D 【分析】根据等比数列定义,求出214n n n b a -==,可证明{}n b 是以1为首项,4为公比的等比数列,利用等比数列的求和公式,可得解 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --=== 由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列 a 12+a 22+⋯+a n 2=1(14)41143n n ⋅--=- 故选:D6.(2021·河南郑州·高二期中(理))设n A ,n B 分别为等比数列{}n a ,{}n b 的前n 项和.若23n n n n A aB b+=+(a ,b 为常数),则74a b =( )A .12881B .12780C .3227D .2726【答案】C 【分析】设(2),(3)n nn n A a m B b m =+=+,项和转换776a A A =-,443b B B =-求解即可【详解】由题意,23n n n n A a B b+=+ 设(2),(3)n nn n A a m B b m =+=+则76776[(2)(2)]64a A A a a m m =-=+-+=()()434433354b B B b b m m ⎡⎤=-=+-+=⎣⎦7464325427a mb m ∴== 故选:C7.(2021·河南郑州·高二期中(理))设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【答案】A 【分析】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,然后利用分求出,n n A B ,再利用n n n S A B =+列方程,由对应项的系数相等可求出结果 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则 ()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n nn n d d S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221b d da q q-====--, 解得111,2,5,4a d q b ====, 所以3d q -=-.8.(2021·福建·泉州科技中学高三月考)我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列233464510105,,,,,,,,,,,则此数列的前35项和为( )A .994B .995C .1003D .1004【答案】B 【分析】没有去掉“1”之前,可得每一行数字和为首项为1,公比为2的等比数列,可求出其前n 项和为21n n S =-,每一行的个数构成一个首项为1,公差为1的等差数列,从而可求出前n 项总个数为(1)2n n n T +=,由此可计算出第10行去掉“1”后的最后一个数为第36个数,从而可求出前35项和。
(完整版)等差数列的前n项和练习含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
数列前n项和练习题
数列前n 项和求解专项练习题1 已知数列{a n }满足:a n =2n+3,求S n 。
2 已知数列{a n }的通项公式a n =3•2n ,求S n3 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.4 求数列13,24,35,,(2),n n ⨯⨯⨯+ 的前n 项和Sn5 求数列5,55,555,5555,…,5(101)9n -,…的前n 项和Sn6 求数列 0.9,0.99,0.999,0.9999,…的前n 项和 。
7 求数列S n =n n 21813412211+⋅⋅⋅+++8 求数列{n+2n }的前n 项和9 计算22332222)1()1()1()1(n n a a a a a a aa +++++++11 求通项公式为13n n a n =+的数列的前n 项和Sn12 已知{a n }是公差为2首项是1的等差数列,{b n }是公比为q 首项为1的等比数列,求{c n =a n b n }的前n 项和s n .13 求数列a,2a 2,3a 3,4a 4,…,na n , … (a >1)的前n 项和14 求数列{n n 21)13(⋅+ }的前n 项和。
15 计算:n n 1)1(4321+-++-+- 的值。
16 求数列1111,,,,,132435(2)n n ⨯⨯⨯+ 的前n 项和Sn17 计算:n +++++++++++++++32114321132112111的值。
18 求数列{)12)(12(1+-n n }的前n 项和。
19 求以n a =为通项公式的数列的前n 项的和Sn20 已知{a n =kn nC },求其前n 项和s n ,并求满足s n =5120时n 的值。
21 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++。
等差数列的前n项和(作业带答案)
等差数列的前n 项和一、选择题(5*6=30)1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .232.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .663.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6634.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .295.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .266.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010二、填空题(2*5=10)7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.三、解答题(20*3=60)9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?等差数列的前n 项和(答案)一、选择题1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( )A .138B .135C .95D .23C [∵⎩⎪⎨⎪⎧ a 2+a 4=4,a 3+a 5=10,∴⎩⎪⎨⎪⎧ a 1+2d =2,a 1+3d =5,∴⎩⎪⎨⎪⎧a 1=-4,d =3,∴S 10=10a 1+10×92×d =-40+135=95.]2.已知S n 是等差数列{a n }的前n 项和,若a 1+a 12=a 7+6,则S 11=( )A .99B .33C .198D .66D [因为a 1+a 12=a 7+6,所以a 6=6,则S 11=11(a 1+a 11)2=11a 6=11×6=66,故选D .] 3.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663B [由题意得,所有被7除余2的数构成以2为首项,公差为7的等差数列,∴2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.]4.现有200根相同的钢管,把它们堆成三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29B [钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少, 为10根.]5.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布.记该女子一月中的第n 天所织布的尺数为a n ,则a 14+a 15+a 16+a 17的值为( )A .55B .52C .39D .26B [由题意可得{a n }为等差数列,a 1=5,∴S 30=30×5+30×292d =390,解得d =1629,∴a 14+a 15+a 16+a 17=a 1+13d +a 1+14d +a 1+15d +a 1+16d =4a 1+58d =4×5+58×1629=52.]6.(多选题)设等差数列{a n }的前n 项和为S n 且满足S 2 019>0,S 2 020<0,对任意正整数n ,都有|a n |≥|a k |,则下列判断正确的是( )A .a 1 010>0B .a 1 011>0C .|a 1 010|>|a 1 011|D .k 的值为1 010AD [由等差数列{a n },可得S 2 019=2 019(a 1+a 2 019)2>0,S 2 020=2 020(a 1+a 2 020)2<0, 即:a 1+a 2 019>0,a 1+a 2 020<0,可得:2a 1 010>0,a 1 010+a 1 011<0,∴a 1 010>0,a 1 011<0,∴A 正确B 错误.又等差数列{a n }为递减数列, 且a 1 010+a 1 011<0,∴|a 1 010|<|a 1 011|,∴C 错误.而对任意正整数n ,都有|a n |≥|a k |,则k 的值为1 010.故D 正确.故选AD .]二、填空题7.已知在数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.27 [由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.] 8.若数列{}a n 的前n 项和为S n =n 2-3n +1()n ∈N *,则该数列的通项公式为a n =________.⎩⎪⎨⎪⎧ -1 ()n =12n -4()n ≥2 [由题意可知,当n =1时,a 1=S 1=12-3×1+1=-1; 当n ≥2时,a n =S n -S n -1=()n 2-3n +1-⎣⎡⎦⎤()n -12-3()n -1+1=2n -4. 又a 1=-1不满足a n =2n -4.因此,a n =⎩⎪⎨⎪⎧ -1()n =1,2n -4()n ≥2.] 三、解答题9.已知等差数列{a n }中,a 10=30,a 20=50.(1)求数列的通项公式;(2)若S n =242,求n .[解] (1)设数列{a n }的首项为a 1,公差为d . 则⎩⎪⎨⎪⎧ a 10=a 1+9d =30,a 20=a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12,d =2,∴a n =a 1+(n -1)d =12+(n -1)×2=10+2n .(2)由S n =na 1+n (n -1)2d 以及a 1=12,d =2,S n =242,得方程242=12n +n (n -1)2×2,即n 2+11n -242=0,解得n =11或n =-22(舍去).故n =11.10.已知数列{}a n 的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)求S n 和a n .[解] (1)证明:当n ≥2时,a n =S n -S n -1=-2S n S n -1,①∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *),由①式得1S n -1S n -1=2(n ≥2). ∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2. (2)由(1)知,1S n=2+2(n -1)=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=-12n (n -1), 当n =1时,a 1=S 1=12不适合上式.所以,a n =⎩⎪⎨⎪⎧ 12,n =1,-12n (n -1),n ≥2.11.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?[解] (1)S n =na 1+n (n -1)2d =12n +n (n -1)2×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-⎝ ⎛⎭⎪⎫n -1322+1694,n ∈N *, ∴当n =6或7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减.{S n }有最大值,最大项是S 6,S 7,S 6=S 7=42.(3)由图象得{S n }中有12项大于零.。
数列的前n项和练习题
数列的求和训练1.错位相减法求和:如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 1.求和21123n n S x x nx -=++++2.求和:n n an a a a S ++++= 323212.裂项相消法求和:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
1.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( ) A .1 B .56 C .16 D .1302.已知数列}{n a 的通项公式为1(1)n a n n =+,求前n 项的和;3.已知数列}{n a 的通项公式为n a =12n +,设13242111n n n T a a a a a a +=+++⋅⋅⋅,求n T .4.求)(,32114321132112111*N n n∈+++++++++++++++。
5.已知等差数列}{n a 满足02=a , 1086-=+a a .(1)求数列}{n a 的通项公式及n S(2)求数列}2{1-n n a 的前n 项和6.已知等差数列}{n a 满足:26,7753=+=a a a ,}{n a 的前n 项和n S(1)求n a 及n S(2)令112-=n n a b (+∈N n ),求数列}{n b 前n 项和n T7.已知数列{}n a 中,,31=a 前n 和1)1)(1(21-++=n n a n S ①求证:数列{}n a 是等差数列 ②求数列{}n a 的通项公式 ③设数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立?若存在,求M 的最小值,若不存在,试说明理由。
解:①∵1)1)(1(21-++=n na n S []n n n n n n n n n n n n n n n a n a n na a n a n a n a n na a n a n S S a a n S )1()2()1(1)2()1(1)1()1)(1()1)(2(211)1)(2(2111212111111+-+=-+∴-+=+∴-+=++-++=-=∴-++=∴+++++++++++整理得,nn n n n n a a a a a n a n +=∴++=+∴++++21212))(1()1(2 ∴数列{}n a 为等差数列。
(完整版)等差数列前n项和练习题.docx
差数列前 n 项和1、.在等差数列{ a n }中,已知 a 1 =2,a 2 +a 3 =13, a 4 +a 5 +a 6 等于 ()A.40B.42C.43D.452、 s n 是等差数列{ a n }的前 n 和,已知 a 1 =3, a 5 =11, s 7 等于 ()A . 13B. 35C. 49D. 633、已知 { a n } 等差数列, a 1a 3a 5 105, a 2a 4 a 6 99 , a 20 等于( )A. -1B. 1C. 3D.74、已知等差数列aaa4aa10它的前 10 的和S 10()n 足24, 35A .138B . 135C . 95D . 235、 S n 是等差数列 a n 的前 n 和,若 S 735, a 4 ( )(A) 8 (B) 7(C) 6(D) 56、已知某等差数列共有 10 ,其奇数 之和 15,偶数 之和30, 其公差 ( )A.5B.4C. 3D. 2 7、在等差数列 {a n } 中, a 1+a 9= 10, a 5 的 ()8、 等差数列 { a n } 的前 n 和 S n ,若 a 1=- 11,a 4+ a 6=- 6, 当 S n 取最小 , n 等于 ( )A .6B .7C .8D . 99、已知 a 1= 1, a 8=6, S 8 等于 ()A .25B .26C .27D .2810、在等差数列 {a n } 中, a 2+a 5=19,S 5=40, a 10=()A .24B .27C .29D .4811、若一个等差数列的前 3 的和 34,最后 3 的和 146,且所有 的和 390, 个数列有 ( )A .13B .12C .11D .1012、 数列 {a n 的首1=- ,且 足n + 1= n +∈ * ) ,1 + 2+⋯+ 17} a 7 a a 2(n N a aa= ________.13、在等差数列 { a n } 中, a 3 7, a 5 a 2 6 , a 6 __________ __ .14、 等差数列 S n a n的前 n 和 ,若 S 972 , a 2a 4 a 9 =15 、公差不为零的等差数列{ a n} 的前 n 项和为S n.若a42a3 a7 ,S832 ,求a n及 S n。
等差数列的前n项和练习题及答案解析
1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390答案:C2.已知a 1=1,a 8=6,则S 8等于( )A .25B .26C .27D .28答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎨⎧ a 1+5d =123a 1+3d =12?⎩⎨⎧a 1=2,d =2.故a n =2n . 答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.解:d =a 7-a 57-5=20-142=3, a 1=a 5-4d =14-12=2,所以S 5=5?a 1+a 5?2=5?2+14?2=40. 一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )A .12B .10C .8D .6 解析:选=a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )A .24B .27C .29D .48解析:选C.由已知⎩⎨⎧ 2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29. 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )A .12B .24C .36D .48解析:选=10?a 1+a 10?2=5(a 2+a 9)=120.∴a 2+a 9=24. 4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99. ∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,①a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =?a1+a n ?·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于() A .9 B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=nn +1,即150165=nn +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________. 解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1.又∵a 5+a 12=a 1+a 16=-9,∴S 16=16?a 1+a 16?2=8(a 1+a 16)=-72.答案:-72三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).(1)写出该数列的第3项;(2)判断74是否在该数列中.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎨⎧ -24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎨⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎨⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n ?n -1?2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22. 因为S n =n ?a 1+a n ?2=286,所以n =26. (2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.。
等差数列的前n项和公式专项练习
等差数列求和练习[A 组 基础巩固]1.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-1解析:由题意,得⎩⎪⎨⎪⎧ a n =11,S n =35,即⎩⎨⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1.答案:D2.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .2 解析:由S 2=4,S 4=20,得2a 1+d =4,4a 1+6d =20,解得d =3.答案:C3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. 答案:C4.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15解析:由S 5=5a 3=25,∴a 3=5.∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.答案:B5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6解析:当n =1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n )-[(n -1) 2-9(n -1)]=2n -10.综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k =8.答案:B6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. 答案:277.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n =________.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d =10,a 1=-80. ∴S n =-80n +n (n -1)2×10=0, ∴-80n +5n (n -1)=0,n =17.答案:178.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13(a 1+a 13)2=13×8=104. 答案:1049.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .解析:(1)由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4. ∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.解析:(1)设{a n }的首项,公差分别为a 1,d . 则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32⎝⎛⎭⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17B .S 15C .S 13D .S 7 解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.答案:C2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d =a m +1-a m =1,由S m =(a 1+a m )m 2=0, 知a 1=-a m =-2,a m =-2+(m -1)=2,解得m =5.答案:C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________. 解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59, ∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 答案:14.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n >6),则数列的项数n =________,a 9+a 10=________.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324,∴n =18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36. 答案:18 365.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 解析:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎡ -32(n -1)2+ ⎦⎤2052(n -1)=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n =3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n ,当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502, 所以T n=⎩⎨⎧ -32n 2+2052n (n ≤34),32n 2-2052n +3 502(n ≥35).6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解析:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n ·(n -1)2×12=14n 2-94n .。
等差数列的前n项和练习-含答案
课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26.3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知条件得:⎩⎪⎨⎪⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎪⎨⎪⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎪⎨⎪⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n ,所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎪⎨⎪⎧122a +12b =84,202a +20b =460,整理得⎩⎪⎨⎪⎧12a +b =7,20a +b =23.解之得a =2,b =-17,所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列,所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B 【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C【解析】 由已知⎩⎪⎨⎪⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( )A .等差数列B .非等差数列C .常数列D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎪⎨⎪⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9【答案】 A【解析】 ⎩⎪⎨⎪⎧a 1=-11,a 4+a 6=-6,∴⎩⎪⎨⎪⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n .=(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34,a n +a n -1+a n -2+a n -3+a n -4=146,∴5(a 1+a n )=180,a 1+a n =36,S n =n (a 1+a n )2=n ×362=234.∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7C .6D .5【答案】 D 【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S nT n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21.S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎪⎨⎪⎧a 1+5d =12a 1+d =4,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44.(2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022,解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36,∴S n =(a 1+a n )n 2=36+40-4n 2·n =-2n 2+38n=-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +,∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180.方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n ,点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180.方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,有⎩⎪⎨⎪⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎪⎨⎪⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大. ∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180.【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。
数列求前n项和方法汇总及练习(含答案)
数列求和方法汇总及经典练习(含答案)一、公式法:利用以下公式求数列的和 1.d n n na a a n Sn n 2)1(2)(11-+=+=({}n a 为等差数列)2.qqa a q q a Sn n n --=--=11)1(11 (1≠q )或)1(1==q na Sn ({}n a 为等比数列) 3.6)12)(1(3212222++=+⋅⋅⋅⋅⋅⋅⋅+++n n n n4.23333]2)1([321+=+⋅⋅⋅⋅⋅⋅⋅+++n n n 等公式 例已知数列{}n a ,其中()12111,3,22n n n a a a a a n +-===+≥,记数列{}n a 的前n 项和为n S ,数列{}ln n S 的前n 项和为n U ,求n U 。
解:由题意,{}n a 是首项为1,公差为2的等差数列前n 项和()211212n n S n n ++-=⋅=,2ln ln 2ln n S n n ==()()2ln1ln 2ln 2ln !n U n n =+++=二、分组求和法对于数列{}n a ,若⋅⋅⋅⋅⋅⋅±±=nn nC b a 且数列{}n b 、{}n c ……都能求出其前n 项的和,则在求{}n a 前n 项和时,可采用该法例如:求和:999.09999.0999.099.09.0个n Sn ⋅⋅⋅+⋅⋅⋅⋅⋅⋅++++= 解:设n n na --=⋅⋅⋅⋅⋅⋅=10199.09个 n a a a a a Sn +⋅⋅⋅⋅⋅⋅++++=∴4321)101()101()101()101()101(4321n ------+⋅⋅⋅⋅⋅⋅+-+-+-+-=)1010101010()111(43211n n -----+⋅⋅⋅⋅⋅⋅++++-+⋅⋅⋅⋅⋅⋅++=相加个 )101(91n n ---= 三、倒序相加法(或倒序相乘法)将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,S n 表示从第一项依次到第n 项的和,然后又将S n 表示成第n 项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。
高中数学-数列求前n项和方法汇总及练习(含答案)
高中数学-数列求和方法汇总及经典练习(含答案)一、公式法:利用以下公式求数列的和 1.d n n na a a n Snn 2)1(2)(11-+=+=({}n a 为等差数列)2.qqa a q q a Sn n n --=--=11)1(11 (1≠q )或)1(1==q na Sn ({}n a 为等比数列) 3.6)12)(1(3212222++=+⋅⋅⋅⋅⋅⋅⋅+++n n n n4.23333]2)1([321+=+⋅⋅⋅⋅⋅⋅⋅+++n n n 等公式例已知数列{}n a ,其中()12111,3,22n n n a a a a a n +-===+≥,记数列{}n a 的前n 项和为n S ,数列{}ln n S 的前n 项和为n U ,求n U 。
解:由题意,{}n a 是首项为1,公差为2的等差数列 前n 项和()211212n n S n n ++-=⋅=,2ln ln 2ln n S n n ==()()2ln1ln 2ln 2ln !n U n n =+++=L二、分组求和法对于数列{}n a ,若⋅⋅⋅⋅⋅⋅±±=n n n C b a 且数列{}n b 、{}n c ……都能求出其前n 项的和,则在求{}n a 前n 项和时,可采用该法例如:求和:321999.09999.0999.099.09.0个n Sn ⋅⋅⋅+⋅⋅⋅⋅⋅⋅++++= 解:设n n na --=⋅⋅⋅⋅⋅⋅=10199.0943421个 n a a a a a Sn +⋅⋅⋅⋅⋅⋅++++=∴4321)101()101()101()101()101(4321n------+⋅⋅⋅⋅⋅⋅+-+-+-+-=)1010101010()111(43211n n -----+⋅⋅⋅⋅⋅⋅++++-+⋅⋅⋅⋅⋅⋅++=4434421相加个 )101(91n n ---= 三、倒序相加法(或倒序相乘法)将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,S n 表示从第一项依次到第n 项的和,然后又将S n 表示成第n 项依次反序到第一项的和,将所得两式相加,由此得到S n 的一种求和方法。
等差数列的前n项和公式习题
【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3【例2】 在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解 由已知,第一个数列的通项为a n =3n -1;第二个数列的通项为b N =5N -3 若a m =b N ,则有3n -1=5N -3即=+ n N 213()N - 若满足n 为正整数,必须有N =3k +1(k 为非负整数).又2≤5N -3≤197,即1≤N ≤40,所以N =1,4,7,…,40 n=1,6,11,…,66∴ 两数列相同项的和为2+17+32+…+197=1393【例3】 选择题:实数a ,b ,5a ,7,3b ,…,c 组成等差数列,且a +b +5a +7+3b +…+c =2500,则a ,b ,c 的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d① 前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1 ⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数. 【例5】 已知等差数列{a n }中,S 3=21,S 6=24,求数列{|a n |}的前n 项和T n . 解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11 由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例6】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和. 解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d =5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例7】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,=【例8】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于[ ] A 1B C D ....23199299200301解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b nn n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++【例9】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例10】 求证:前n 项和为4n 2+3n 的数列是等差数列.证 设这个数列的第n 项为a n ,前n 项和为S n .当n ≥2时,a n =S n -S n-1∴a n =(4n 2+3n)-[4(n -1)2+3(n -1)]=8n -1当n=1时,a 1=S 1=4+3=7由以上两种情况可知,对所有的自然数n ,都有a n =8n -1又a n+1-a n =[8(n +1)-1]-(8n -1)=8∴这个数列是首项为7,公差为8的等差数列.【例11】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例12】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d =1725d d =29817162∴a n =25+(n -1)(-2)=-2n +27∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系.由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。
等差数列前n项和基础练习题(附答案)
等差数列的前n 项和基础练习题一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .632.等差数列{a n }中,S 10=4S 5,则a 1d等于( ) A.12B .2 C.14 D .43.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9B .-11C .-13D .-154.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( )A .63B .45C .36D .275.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-17.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A .nB .n 2C .2n +1D .2n -18.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .19.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .610.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) 311111.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1B .-1C .2 D.1212.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题13.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.14.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.15.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.16.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题17.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .18.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .19.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数为?20.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.21.已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n. 22.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.参考答案与解析一、选择题1.C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=49. 2.A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ), ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12. 3.D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 4.B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.5.B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665. 6.B解析 由⎩⎨⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a 2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.7. D8. B解析 等差数列前n 项和S n 的形式为:S n =an 2+bn ,∴λ=-1.解析 由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10;由5<2k -10<8,得7.5<k <9,∴k =8.10.A解析 方法一S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d , S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11.A解析 由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 12.C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5. 二、填空题13.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.14.6512解析a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.15.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165, S 偶=n (a 2+a 2n )2=150. ∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10.解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m 3m 成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.三、解答题17.解 由⎩⎪⎨⎪⎧ a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.18.解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =715a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1, ∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .19.解析a nb n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1 =7(n +1)+12n +1=7+12n +1, ∴n =1,2,3,5,11.20.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.21.解 由S 2=16,S 4=24,得⎩⎨⎧ 2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧ 2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n =2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).22.解 (1)根据题意,有:⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3. (2)∵d <0,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。
等差数列与前n项和练习试题(可编辑修改word版)
第1 讲等差数列及其前n 项和一、填空题1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=.2.设等差数列{a }的前n 项和为S ,若S4 -S3=1,则公差为.n n12 93.在等差数列{a n}中,a1>0,S4=S9,则S n取最大值时,n=.4.在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=. 5.设等差数列{a n}的公差为正数,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=.6.已知数列{a n}的前n 项和为S n=2n2+pn,a7=11.若a k+a k+1>12,则正整数k 的最小值为.7.已知数列{a n}满足递推关系式a n=2a n+2n-1(n∈N*),且a n+λ 为等差数{ 2n }+1列,则λ的值是.8.已知数列{a n}为等差数列,S n为其前n 项和,a7-a5=4,a11=21,S k=9,则k=.10.已知f(x)是定义在R 上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成立.数列{a n}满足a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=.二、解答题1.已知等差数列{a n}的前三项为a-1,4,2a,记前n 项和为S n.(1)设S k=2 550,求a 和k 的值;(2)设b n=S n,求b +b +b +…+b 的值.3 7 114n-1n12.已知数列{a n}的通项公式为a n=2n,若a3,a5分别为等差数列{b n}的第3 项和第5 项,试求数列{b n}的通项公式及前n 项和S n.13.在等差数列{a n}中,公差d>0,前n 项和为S n,a2·a3=45,a1+a5=18.(1)求数列{a n}的通项公式;(2)令b n=S n(n∈N*),是否存在一个非零常数c,使数列{b n}也为等差数列?n+c若存在,求出c 的值;若不存在,请说明理由.第2 讲等比数列及其前n 项和一、填空题1.设数列{a n2}前n项和为S n,a1=t,a2=t2,S n+2-(t+1)S n+1+tS n=0,则{a n}是数列,通项a n=.解析由S n+2-(t+1)S n+1+tS n=0,得S n+2-S n+1=t(S n+1-S n),所以a n+2=ta,所以a n+2=t,又a2=t,n+1a n+1 a1所以{a n}成等比数列,且a n=t·t n-1=t n.答案等比t n2.等比数列{a }的前n 项和为S 8a +a =0,则S6=.n n, 2 5S34 2 2 2 8 8 解 ∵8a 2+a 5=8a 1q +a 1q 4=a 1q (8+q 3)=0 ∴q =-2∴S 6=1-q 6=1+q 3=-7.S 3 1-q 3 答案 -73. 数列{a n }为正项等比数列,若 a 2=2,且 a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前 4 项和 S 4= .解析 由 a 1q =2,a 1q n -1+a 1q n =6a 1q n -2,得 q n -1+q n =6q n -2,所以 q 2+q =6.又 q >0,所以 q =2,a 1=1.所以 S =a 11-q 4=1-24=15.1-q 1-2答案 154. 已知等比数列{a n }的前 n 项和 S n =t ·5n -2-1,则实数 t 的值为.5解析 ∵a 1=S 1=1t -1,a 2=S 2-S 1=4t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数 5 5 5 列 知 4t 2= 1t 1 ×4t ,显然 t ≠0,所以 t =5.(5 ) (5- )5答案 55. 已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足 a n ·a n +1·a n +2≥1的最大正整数 n 的值为.8解析 由等比数列的性质,得 4=a 2·a 4=a 32(a 3>0),所以 a 3=2,所以 a 1+a 2=14-a 3=12,于是由Error!解得Error!所以 a n =8·(1)n -1=(1)n -4. 于是由 a n ·a n +1·a n +2=a n +3 1=(1)3(n -3)=(1)n -3≥1,得 n -3≤1,即 n ≤4.33答案 46.在等比数列{a n }中,a n >0,若 a 1·a 2·…·a 7·a 8=16,则 a 4+a 5 的最小值为.解析 由已知 a 1a 2·…·a 7a 8=(a 4a 5)4=16,所以 a 4a 5=2,又 a 4+a 5≥2 a 4a 5=22(当且仅当 a 4=a 5= 答案 2 2时取等号).所以 a 4+a 5 的最小值为 2 2.7. 已知递增的等比数列{a }中,a +a =3,a ·a =2,则a 13=.n 2 8 3 7a 10解析 ∵{a n }是递增的等比数列,∴a 3a 7=a 2a 8=2, 又∵a 2+a 8=3,∴a 2,a 8 是方程 x 2-3x +2=0 的两根,则 a 2=1,a 8=2,∴q 6= a 8=2,∴q 3=a 22,∴a 13=q 3= 2.a 10答案8. 设 1=a 1≤a 2≤…≤a 7,其中 a 1,a 3,a 5,a 7 成公比为 q 的等比数列,a 2,a 4,a 6成公差为 1 的等差数列,则 q 的最小值为.解析 由题意知 a 3=q ,a 5=q 2,a 7=q 3 且 q ≥1,a 4=a 2+1,a 6=a 2+2 且a 2≥1,那么有 q 2≥2 且 q 3≥3.故 q ≥3 3,即 q 的最小值为3 3. 答 案二、解答题11.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(1) 求数列{a n }的通项公式;(2) 设数列{a n +b n }是首项为 1,公比为 c 的等比数列,求{b n }的前 n 项和 S n .解 (1)设等差数列{a n }的公差是 d .依题意 a 3+a 8-(a 2+a 7)=2d =-6,从而 d =-3.22nn由 a 2+a 7=2a 1+7d =-23,解得 a 1=-1. 所以数列{a n }的通项公式为 a n =-3n +2.(2)由数列{a n +b n }是首项为 1,公比为 c 的等比数列, 得 a n +b n =c n -1,即-3n +2+b n =c n -1, 所以 b n =3n -2+c n -1.所以 S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1) =n3n -1+(1+c +c 2+…+c n -1). 2从而当 c =1 时,S =n 3n -1+n =3n 2+n . 2 2当 c ≠1 时,S n =n3n -1+1-c n . 2 1-c12. 设各项均为正数的等比数列{a n }的前 n 项和为 S n ,S 4=1,S 8=17.(1)求数列{a n }的通项公式;( 2)是否存在最小的正整数 m ,使得 n ≥m 时,a n >2 011恒成立?若存在,求15出 m ;若不存在,请说明理由.解 (1)设{a }的公比为 q ,由 S =1,S =17 知 q ≠1,所以得a1q 4-1=1, n48a 1q 8-1=17. q-1q -1相除得q 8-1=17,解得 q 4=16.所以 q =2 或 q =-2(舍去). q 4-1由 q =2 可得 a = 1 ,所以 a =2n -1.1n15 15 (2)由 a =2n -1>2 011,得 2n -1>2 011,而 210<2 011<211,所以 n -1≥11, 1515即 n ≥12.2 011恒成立.因此,存在最小的正整数m=12,使得n≥m 时,a n>1513.已知公差大于零的等差数列{a n}的前n项和为S n,且满足a2·a4=65,a1+a5=18.(1)求数列{a n}的通项公式a n.(2)若1<i<21,a1,a i,a21是某等比数列的连续三项,求i 的值;(3)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)因为a1+a5=a2+a4=18,又a2·a4=65,所以a2,a4是方程x2-18x+65=0 的两个根.又公差d>0,所以a2<a4.所以a2=5,a4=13. 所以Error!解得a1=1,d=4.所以a n=4n-3.(2)由1<i<21,a1,a i,a21是某等比数列的连续三项,所以a1·a21=a2i,即1·81=(4i-3)2,解得i=3.(3)由(1)知,S n=n·1+n n-1·4=2n2-n.2假设存在常数k,使数列{ S n+kn}为等差数列,由等差数列通项公式,可设S n+kn=an+b,得2n2+(k-1)n=an2+2abn+b 恒成立,可得a=2,b=0,k=1.所以存在k=1 使得{ S n+kn}为等差数列.第3 讲等差数列、等比数列与数列求和一、填空题1.设{a n}是公差不为0 的等差数列,a1=2 且a1,a3,a6成等比数列,则{a n}的前 n 项和 S n = .解析 由题意设等差数列公差为 d ,则 a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6 成等比数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得 2d 2-d =0.∵ d ≠0,∴d =1,∴S =na +n n -1d =n 2+7n .n 12 2 4 4答案 n 2+7n4 42. 数列{a n }的通项公式a n=1,若前 n 项的和为 10,则项数为 .n + n +1解析 ∵a n = 答案 1201= n + n +1n +1- n ,∴S n = n +1-1=10,∴n =120.3. 已知等差数列{a n }的前 n 项和为 S n ,a 5=5,S 5=15,则数列{ 1}的前 100a n a n +1项和为.解析 ∵a =5,S =15,∴5a 1+a 5=15, 即 a =1.5512 ∴d =a 5-a 1=1,∴a =n .∴ 1 =1 =1- 1 .设数列 1 的前5-1n 项和为 T n .na n a n +1 n n +1 nn +1{a n a n +1}∴T 100=(1-1)+(11)+…+(1 )=1- 1 =100.2 3 答案 100101100 101 101 1014.已知数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且 a 20+b 20=60.则{a n +b n } 的前 20 项的和为.解析 由题意知{a n +b n }也为等差数列,所以{a n +b n }的前 20 项和为:S 20= 20a 1+b 1+a 20+b 20=20 × 5+7+60=720.2 22 - - 1c d n22 1 an a n+1答案7205.已知等比数列{a n}的前n项和S n=2n-1,则a12+a2+…+a n2=.解析当n=1 时,a1=S1=1,当n≥2 时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,又∵a1=1 适合上式.∴a n=2n-1,∴a n2=4n-1.∴数列{a n2}是以a21=1 为首项,以4 为公比的等比数列.∴a12+a2+…+a n2=1·1-4n=1(4n-1).答案1(4n-1)31-4 36.定义运算:|a b|=ad-bc,若数列{a}满足|a1 1|=1 且| 3 3 |=12(n∈N*),则a3=,数列{a n}的通项公式为a n=.解析由题意得a1-1=1,3a n+1-3a n=12 即a1=2,a n+1-a n=4.∴{a n}是以2 为首项,4 为公差的等差数列,∴a n=2+4(n-1)=4n-2,a3=4×3-2=10.答案10 4n-27.在等比数列{a n}中,a1=1,a4=-4,则公比q=;|a1|+|a2|+…+|a n|=2.解析∵a 4=q3=-8,∴q=-2.∴a =1·(-2)n-1,na1 21n1-2∴|a n|=2n-2,∴|a1|+|a2|+…+|a n|=2 =2n-1-1.1-2 2 答案-2 2n-1-128.已知S n是等差数列{a n}的前n 项和,且S11=35+S6,则S17的值为.解析因S11=35+S6,得11a1+11 × 10d=35+6a1+6 × 5d,即a1+8d=2 27,所以S17=17a1+17 × 16d=17(a1+8d)=17×7=119.2答案1199.等差数列{a n}的公差不为零,a4=7,a1,a2,a5成等比数列,数列{T n}满足条件T n=a2+a4+a8+…+a2n,则T n=.解析设{a n}的公差为d≠0,由a1,a2,a5成等比数列,得a2=a1a5,即(7-2d)2=(7-3d)(7+d)所以d=2 或d=0(舍去).所以a n=7+(n-4)×2=2n-1.又a2n=2·2n-1=2n+1-1,故T n=(22-1)+(23-1)+(24-1)+…+(2n+1-1)=(22+23+…+2n+1)-n=2n+2-n-4.答案2n+2-n-410.数列{a n}的通项公式a n=2n-1,如果b n=2n,那么{b n}的前n 项和a n+a n+1为.解析b n=2n n=2n+1-1-2n-1,a n+a n+1所以b1+b2+…+b n=22-1-2-1+23-1-22-1+…+-2n-1=2n+1-1-1.答案二、解答题2n+1-1-111.已知{a n}为等差数列,且a3=-6,a6=0.2n+1-1n (1) 求{a n }的通项公式;(2) 若等比数列{b n }满足 b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前 n 项和公式. 解 (1)设等差数列{a n }的公差为 d .因为 a 3=-6,a 6=0,所以Error!解得 a 1=-10,d =2.所以 a n =-10+(n -1)·2=2n -12.(2)设等比数列{b n }的公比为 q .因为 b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,即 q =3.所以{b }的前 n 项和公式为 S =b 11-q n =4(1-3n ). n n1-q 13.记公差 d ≠0 的等差数列{a n }的前 n 项和为 S n ,已知 a 1=2+ 2,S 3=12+3(1) 求数列{a n }的通项公式 a n 及前 n 项和 S n .(2) 已知等比数列{b nk },b n + 2=a n ,n 1=1,n 2=3,求 n k .(3) 问数列{a n }中是否存在互不相同的三项构成等比数列,说明理由.解 (1)因为 a 1=2+ 所以 d =2.2,S 3=3a 1+3d =12+3 2,所 以 a n =a 1+(n -1)d =2n + 2,S =n a 1+a n =n 2+( 22+1)n . (2) 因为 b n =a n - 所以 bn k =2n k .2=2n ,2.又因为数列{bn }的首项bn =b =2,公比q=b 3=3,k 1 1b1 所以bn k=2·3k-1.所以2n k=2·3k-1,则n k=3k-1.(3)假设存在三项a r,a s,a t成等比数列,则a2s=a r·a t,即有(2s+2)2=(2r+2)(2t+2),整理得(rt-s2) 2=2s-r-t.若rt-s2≠0,则2=2s-r-t,rt-s2因为r,s,t∈N*,所以2s-r-t是有理数,这与rt-s22为无理数矛盾;若rt-s2=0,则2s-r-t=0,从而可得r=s=t,这与r<s<t 矛盾.综上可知,不存在满足题意的三项a r,a s,a t.。
等比数列的前n项和典型例题含解答
倒序相加法
总结词
将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。
详细描述
首先将等比数列倒序写,然后正序和倒序分别求和,最后取两者和的一半。这种方法适 用于公比q满足q≠1的情况。
错位相减法
总结词
将等比数列的一项乘以公比的负一次方 后错位相减,得到一个等差数列,再求 和。
VS
详细描述
$frac{a_5}{a_4} = frac{32}{-16} = 2$
由于相邻两项之比相等, 所以这个数列是等比数列。04CHAPTER
等比数列前n项和的实际应 用
在金融中的应用
贷款还款
等比数列前n项和公式常用于计算 贷款的分期还款额,例如房屋贷 款、汽车贷款等。
投资回报
在投资领域,等比数列前n项和公 式可用于计算复利,即投资的利 息或收益会逐年增长。
化。
元素周期表
元素周期表中的元素按照原 子序数排列,形成等差数列 ,而元素的某些性质则可能 呈现等比数列的变化趋势。
05
CHAPTER
等比数列前n项和的练习题 及答案
练习题一及答案
题目:求等比数列 1, 2, 4, 8, ... 的前n项和。
等比数列的前n项和公式为
将 $a_1 = 1$ 和 $r = 2$ 代入公式,得到
在此添加您的文本16字
等比数列的前n项和公式为
在此添加您的文本16字
$S_n = frac{a_1(1 - r^n)}{1 - r}$
在此添加您的文本16字
将 $a_1 = frac{1}{2}$ 和 $r = frac{1}{2}$ 代入公式,得 到
在此添加您的文本16字
$S_n = frac{frac{1}{2}(1 - (frac{1}{2})^n)}{1 frac{1}{2}} = 1 - (frac{1}{2})^n$
数列通项数列前n项和的求法例题练习测试
通项公式和前n 项和一、新课讲授: 求数列前N 项和的方法1.公式法(1) 等差数列前n 项和:特别的,当前n 项的个数为奇数时,S 2k 1 (2k 1)ga k 1,即前n 项和为中间项乘以项数。
这个公 .■一 "I 式在很多时候可以简化运算。
(2) 等比数列前n 项和: q=1 时,S n na i q 1, S n &11 q,特别要注意对公比的讨论1 q(3) 其他公式较常见公式:3、S nk 3 Jn(n 1)]2 k 1 22•错位相减法II这种方法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{a n ・ b n } 的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例 3]求和:S n 1 3x 5x 2 7x 3 (2n 1)x n 1 ............... ①•…[例4]求数列2二,%前n 项的和.2 22 23 2n练习:求:S H =1+5x+9f+ ••…+(4n-3)/1-1答案:当 x=1 时,Si=1+5+9+••…+ (4n-3) =2n 2-n1、S n1n(n 1)2、S n 21n(n 1)(2 n 1) 6[例 1]已知 log 3X —,求 x x 2 x 3log 2 3[例 2]设 S n = 1+2+3+…+n n€ N *,求 的前n 项和.(nS n32)S n 1的最大值.当 x 工 1 时,S n =11-x [4x(1-和- ~ -3) x °]3. 倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把 它与原数列相加,就可以得到n 个(ai a n ).[例 5]求 sin 1 21 sin 22 sin 23 sin 2 88 sin 289 的值4. 分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、 等比或常见的数列,然后分别求和,再将其合并即可 •11 1[例6]求数列的前n 项和:1 1,一 4,—7, ,-^y 3n 2,a a a111 1练习:求数列12,2 4,38'???,(n 2?),???的前n 项和。