第四章-受弯构件斜截面受剪承载力计算word版本

合集下载

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算
则按构造要求配置箍筋,否则,按计算配置腹筋
计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆

是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1

第4章-斜截面抗剪计算

第4章-斜截面抗剪计算
抗剪计算
第四章 受弯构件斜截面承载力计算
• 4.1 概述 • 4.2 无腹筋简支梁斜裂缝旳形成 • 4.3 无腹筋梁旳斜截面破坏形态 • 4.4 影响斜截面受剪承载力旳主要原因 • 4.5 斜截面受剪承载力计算 • 4.6 构造要求
1
抗剪计算
4.1 概 述
为了预防受弯构件发生斜截面破坏,应使构件有一种合理旳截面尺 寸,并配置必要旳箍筋。
将明显增大,成为单薄区域;
2、斜裂缝出现后与纵筋相交处E 点纵筋旳拉应力将忽然增大。
s
Ts As
V a As rh0
Mc As rh0
E 点纵筋应力 s 由 C 点旳弯矩 Mc 决定 MC M E 斜裂缝出现后 E 点纵筋旳拉应力将忽然增大。
斜截面破坏为脆性,设计中经过截面尺寸和配置腹筋防止 8
抗剪计算
为临界斜裂缝。临界斜裂缝出现后,梁还能继续增长荷载。最终,剩余
截面缩小,剪压区砼到达砼复合受力时强度而破坏。破坏处可看到诸多
平行旳短裂缝和砼碎渣。与斜拉破坏相比,剪压破坏时旳梁旳承载力较
高。
12
抗剪计算
4.3.2 无腹筋梁沿斜截面破坏旳主要形态
3、斜压破坏
λ<1(均布荷载作用下当跨高比 l / h <3)时发生,常发生斜压破坏。斜裂
点3
tp
最大,
cp
cp
450 tp
点1
点2: 位于受压区内,因为压应力 c 旳存在,主拉应力 tp
减小,而主压应力 cp 增大, tp 旳方向与梁轴线旳夹角不小于45。;
点3: 位于受拉区内,因为拉应力 t 旳存在,主拉应力 tp
增大,而主压应力 cp 减小, tp 旳方向与梁轴线旳夹角不大于45。; 4

第四章 第四节 斜截面受剪承载力计算公式及适用范围

第四章 第四节  斜截面受剪承载力计算公式及适用范围
一般受弯构件
V ≤ Vu = Vcs = 0.7 f t bh0 + 1.25 f yv Asv h0 s
集中荷载作用下的独立梁
Vcs = 1.75 f t bh0 A + f yv sv h0 λ + 1.0 s
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 2、同时配有箍筋和弯起钢筋
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 《规范》采用抗剪承载力试验下限值保证安全 无腹筋梁
V ≤ Vc = 0.7 β h f t bh0
β h = (800 / h0 )1 / 4
有腹筋梁
斜拉破坏 斜压破坏 剪压破坏
构造措施
计算控制
第四节 斜截面受剪承载力计算公式及适用范围 一、计算公式 有腹筋梁 1、仅配有箍筋
下限值
最小配箍率
ρ sv =
Asv ≥ ρ sv,min bs
ρ sv,min = 0.24 f t / f yv
V ≤ Vu = Vcs + Vsb
Vsb = 0.8 f y Asb sin α s
第四节 斜截面受剪承载力计算公式及适用范围 二、适用范围 上限值
最小截面尺寸
hw / b ≤ 4
V ≤ 0.25β c f c bh0
V ≤ 0.2β c f c bh0
Hale Waihona Puke hw / b ≥ 6hw 4 < hw / b < 6 V ≤ 0.025(14 − )β c f c bh0 b

建筑结构-4

建筑结构-4

验算截面限制条件
否 增大 bxh 提高fc
hw 4 , V 0.25 c f c bh0 b hw 6 , V 0.2 c f c bh0 b
是否按计算配腹筋

nAsv1 V 0.7 f t bh0 s 1.25 f yv h0
V 0.7 f t bh0
V 1.75 f t bh0 1.0
习1.钢筋混凝土矩形截面简支梁,b×h=250×550mm, 净跨度5.2m,承受均布荷载设计值66.5kN/m(包括自 重),材料采用C25混凝土、HRB335箍筋,求箍筋用 量。
习2.钢筋混凝土矩形截面简支梁,b×h=200×450mm, 材料采用C20混凝土、HPB235箍筋,承受如图荷载设 计值(包括自重),求箍筋用量。
(二)厚板
均布荷载,无箍筋、弯起钢筋板:
Vu=0.7βhftbh0
其中:βh=(800/h0)1/4 ——截面高度影响系数,h0<800取800, >2000取2000
仅 配 箍 筋 梁 的 设 计 计 算
画剪力图,确定计算位置, 算出各计算截面的剪力 若为集中荷载下的独立梁, 应计算 V集/V总≥75%
1)V≤0.7ftbh0时,应在不需要点外20d及 充分利用点外1.2la截断;V>0.7ftbh0时,应 在不需要点外h0和20d、及充分利用点外 1.2la+h0截断;
2)若上述截断点仍在负弯矩拉区内,应 在不需要点外1.3h0和20d、及充分利用点 外1.2la+1.7h0截断。
思考题: 1.受弯构件斜截面受剪破坏形态及受力 特点(无腹筋、有腹筋)。 2.影响斜截面受剪承载力的主要因素? 3.斜截面受剪承载力计算(基本公式、 适用条件、构造要求)。 4.保证斜截面受弯承载力的构造措施。

第四章 受弯构件斜截面受剪承载力

第四章  受弯构件斜截面受剪承载力

对于均布荷载作用下的简支梁:
l
1 x qlx qx 2 x M l 2 2 ( ) 1 l Vh0 ( ql qx)h 1 2 h0 0 2
跨高比
广义剪跨比
试验表明,对于承受均布荷载的梁,构件跨高比是影响 受剪承载力的主要因素,随着跨高比的增大,受剪承载力 降低。
斜压破坏 一般发生在剪跨比很小或剪跨比虽然 适中,但箍筋配置很多的情况 腹筋未达屈服,梁腹砼即到达抗压 强度发生斜压破坏,承载力取决于砼强 度及截面尺寸,再增加箍筋或弯筋对斜 截面受剪承载力的提高已不起作用。
发生条件
破坏特点
破坏类型
发生条件
无腹筋梁 有腹筋梁
破坏特点
破坏性质
备注
类似于少筋 破坏,设计 时应避免
斜截面破坏应力状态
正截面受弯承载力
KM≤Mu
斜截面受剪承载力KV≤Vu
§4.2 无腹筋梁斜截面的应力状态及破坏形态 无腹筋梁是指不配箍筋和弯起钢筋的梁。 斜裂缝出现后梁内应力状态
剪切破坏时隔离体上的作用力 外力:弯矩、剪力(外荷载 在斜截面AB上引起内力MA 、
VA)
内力:纵向钢筋拉力、砼剪 压面承担剪力与压力 骨料咬合力、纵筋的销栓力 VA
无腹筋梁斜截面受剪破坏形态
剪压破坏 发生条件
剪跨比适中时(一般1≤λ≤3),常发生剪压破 坏
随着荷载增大,先出现垂直裂缝和几根微 细的斜裂缝。荷载增大到一定程度时,其中一 根形成临界斜裂缝。这条裂缝逐渐向斜上方发 展,但仍保留一定受压区而不裂通,剪压区逐 渐减小,直到斜裂缝顶端的混凝土在剪应力和 压应力共同作用下被压碎而破坏。破坏过程比 斜拉破坏缓慢,破坏时的荷载明显高于斜裂缝 出现时的荷载。实质上是残余截面上混凝土的 主压应力超过了混凝土在压力和剪力共同作用 下的抗压强度。

第四章受弯构件斜截面承载力计算

第四章受弯构件斜截面承载力计算
P 剪压破坏 shear compression failure
f
Teacher Chen Hong
⒊斜压破坏(<1)
主压应力的方向沿支座与 荷载作用点的连线。承载 力取决于混凝土的抗压强 度。
P
2019年10月14日星期一
斜压破坏 diagonal compression failure
f
Teacher Chen Hong
Teacher Chen Hong
2019年10月14日星期一
按每根(或每组)钢筋的的面积比例划分出各根(或各组) 钢筋的所提供的受弯承载力Mui,Mui可近似取
M ui

Asi As
Mu
Teacher Chen Hong
2019年10月14日星期一
根据M图的变化将钢筋弯起时需绘制Mu图,使得Mu图
Teacher Chen Hong
2019年10月14日星期一
板的斜截面承载力是满足要求的,所以斜截面承载力主要 是针对于梁和厚板而言的。 斜截面的受弯承载力是通过对纵筋和箍筋的构造要求来保 证的。而斜截面的受剪承载力是在梁具有一个合理截面的 基础上,通过配置腹筋(箍筋+弯起筋)来满足的。
Teacher Chen Hong
Teacher Chen Hong
3>、计算配置腹筋:
A、只配箍筋:
2019年10月14日星期一
确定n ? ? Asv1 ? Asv nAsv1
由 nAsv1 V 0.7 ftbh0 s 1.25 f yvh0nAsv1
s
1.25 f yvh0
V 0.07 ftbh0
2019年10月14日星期一
4-3 保证斜截面受弯承载力 的构造措施

混凝土结构第四章

混凝土结构第四章

二、斜截面受剪破坏的三种主要形态
斜拉破坏
剪压破坏
斜压破坏
4.2 斜截面受剪承载力计算
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,无腹筋梁斜截面上的抗 力有: ①剪压区混凝土承担的剪力Vc和压力C; ②骨料咬合力Va; ③纵向钢筋的销栓力Vd; ④纵向钢筋的拉力T。
一、斜截面的受剪机理
梁的弯剪区段发生剪压破坏时,有腹筋梁斜截面上除存 在上述抗力外,还有腹筋的抗剪承载力。 梁中配置腹筋,可有效地提高斜截面的受剪承载力。 (1) 腹筋的作用 斜裂缝出现以前,腹筋作用很小; 斜裂缝出现以后,腹筋作用增大。 斜截面上的剪力主要有: ① 腹筋直接受剪Vsv和Vsb; ② 腹筋限止斜裂缝的开展, Va Vsv 提高Vc; Tsb ③ 腹筋减小裂缝宽度,提高Va; T
第四章 受弯构件斜截面承载力计算
2.斜裂缝分类: (1)弯剪斜裂缝:在M和V的共同作用下,首先在梁的下部产 生垂直裂缝,然后斜向上延伸,是一种较为常见的裂缝。 特点:裂缝下宽上窄。 (2)腹剪斜裂缝:当梁承受的剪力较 大,或者梁腹部较薄时,首先在截面 中部出现斜裂缝,然后向上、向下 延伸。 特点:裂缝中间宽两头窄。
c
0
M u TZ Tsb Zsb Vsvi Z vi
i 1 n
Vc
C
Vsv
n——与临界斜裂缝相交的箍 筋根数。
T Vu
Vsb
Tsb
三、斜截面受剪承载力的计算公式
(2) 腹筋的作用 梁发生剪压破坏时,与临界斜裂缝相交的箍筋能达到屈服强 度。对弯起钢筋不一定屈服。 (3) 剪跨比的考虑 仅对承受集中荷载或以集中荷载为主的矩形截面独立梁考虑 剪跨比(=a/h0)的影响。其余情况不考虑。

第四章斜截面受剪承载力计算

第四章斜截面受剪承载力计算

纵筋配筋率对梁受剪承载力的影响
第4章 受弯构件斜截面承载力计算
郑州大学
五、弯起钢筋及其强度 bent reinforcement and strength
3
试验表明,在相 同纵向钢筋配筋率下, 弯筋梁的受剪承载力
Vu 钢 /( f t筋 bh0配 ) 筋率 与弯起
A sb 筋 sb 强 bh0
规范规定:
矩形、T形和Ⅰ形截面的受弯构件,其斜截面受剪承载 力应符合下列规定:
ft
仅配箍筋简支梁Vcs实测值与计算值的比较
KV Vu Vcs Vc Vsv
4. 4 受弯构件斜截面受剪承载力计算
第4章 受弯构件斜截面承载力计算
郑州大学
KV Vu Vcs 0.7 f t bh0 1.25 f yv
4.1 概述
第4章 受弯构件斜截面承:
tp cp



2

2
4
2
1 2 arctan( ) 2
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.1 概述
第4章 受弯构件斜截面承载力计算
郑州大学
4.2 受弯构件斜截面上的应力状态与破坏形态
混凝土强度对梁受剪承载力的影响
影响则居于上述两者之间。
4. 3 影响受弯构件斜截面受剪承载力的主要因素
第4章 受弯构件斜截面承载力计算
郑州大学
三、箍筋配筋率及其强度 Stirrup Ratio sv and the Strength of Stirrup
Asv n Asv1 sv bs bs
郑州大学
2.有腹筋梁斜截面的破坏形态与发生条件 破坏形态 斜拉破坏

斜截面受剪承载力

斜截面受剪承载力

4.1.2 无腹筋简支梁斜截面破坏形态
3、斜拉破坏(斜拉破坏录像)
发生条件:m >3。 破坏特点: 斜裂缝一出现梁就破坏,破坏时纵筋屈服,剪压 区混凝土无压碎痕迹。为脆性破坏。承载力取决于混 凝土抗拉强度。
4.1.2 无腹筋简支梁斜截面破坏形态
无腹筋梁的受剪破坏都是脆性的 1.斜拉破坏为受拉脆性破坏,
6、弯起筋初步设计(数量和初步弯起位置)(要求) 如果由弯起筋承担的剪力知道,则由
Vsb (0.75 10 )fsd Asb sins
3
Asb
弯起筋根数
具体弯起过程见下图。
例1(箍筋设计)、等高度矩形截面简支梁, b=200mm,h=600mm,C30,箍筋采用 R235,As=672mm2,as=40mm,ρ=0.6%, 支点剪力Vd=121KN,Vd,h/2=110KN,安全等 级二级。如只配置箍筋,设计箍筋。 如计算跨度为8m,确定整个梁段的箍筋布置 ,并作图
脆性性质最为显著;
2.斜压破坏为受压脆性破坏,
承载力最大;
3.剪压破坏界于受拉和受压脆 性破坏之间,变形最大。
4.1.3 有腹筋简支梁斜裂缝出现后受力状态
一、斜裂缝出现前后的受力特点 裂缝出现前,腹筋拉应力小; 裂缝出现后,与斜裂缝相交的腹筋应力突然增大。 腹筋的存在限制了斜裂缝的发展。
4.1.3 有腹筋简支梁斜裂缝出现前后
V' 弯起筋承担40%
箍筋承担60%
4.3.2 等高度简支梁腹筋的初步设计
5、箍筋设计。
0.6V 1 3 (0.45 103 )bh0 (2 0.6 p) fcu,k sv f sv
sv (sv sv min )
拟定d、n

受弯构件的斜截面承载力

受弯构件的斜截面承载力

局部受压破坏。
3.
剪压破坏界于受拉和受压脆 性破坏之间。
6、影响无腹筋梁斜截面承载力的主要因素
• 剪跨比λ ,在一定范围内,
,抗剪承载力
• 混凝土强度等级
c ,抗剪承载力
• 纵筋配筋率
,抗剪承载力
4.2.2 有腹筋梁的斜截面受剪破坏形态
1、 配置箍筋抗剪
裂缝出现后,形成桁架体系传力机构。
Hale Waihona Puke λ =1.5~3,λ <1.5时, 取λ=1.5 ;
λ > 3时, 取λ=3。
对于有箍筋的梁,是不能把混凝土承担的剪力与箍筋
承担的剪力分开表达的。
2)配有箍筋和弯起筋,梁受剪承载力的计算公式
考虑弯起筋在两破坏时,不能全部发挥作用,公式中系 数取0.8:
Vu=Vcs+Vsb Vsb = 0.8fy · sb · A sin fy — 弯起钢筋抗拉强度设计值,图4-18 弯起钢筋所承担的剪力 按《普通钢筋强度设计值表》取用;
桁 架 模 型
桁架模型也适用于有腹筋梁。 此模型把有斜裂缝的钢筋混凝土梁比拟为一个铰接 桁架,压区混凝土为上弦杆,受拉纵筋为下弦杆,腹筋 为竖向拉杆,斜裂缝间的混凝土则为斜拉杆。如图4-14 所示:
(a) (b)
变 角 桁 架 模 型
450
桁 架 模 型
图4-14
桁架模型
图中: (c)
α —— 混凝土斜压杆的倾角;
剪跨比对有腹筋梁受剪承载力的影响
混凝土强度
斜截面受剪承载力随混凝土的强度等级的提高而提高。 梁斜压破坏时,受剪承载力取决于混凝土的抗压强度。梁 为斜拉破坏时,受剪承载力取决于混凝土的抗拉强度,而 抗拉强度的增加较抗压强度来得缓慢,故混凝土强度的影 响就略小。剪压破坏时,混凝土强度的影响则居于上述两 者之间。

[工学]4-钢筋混凝土受弯构件斜截面抗剪承载力计算

[工学]4-钢筋混凝土受弯构件斜截面抗剪承载力计算
桥梁工程系-杨 剑
一.基本假定 前已述及,受弯构件沿斜截面可能发生斜拉、斜压及剪压三
种剪截破坏形态,而斜拉、斜压破坏将通过构造要求来予以 避免,剪压破坏则通过计算来避免。因此,下面的计算公式 是用来计算剪压破坏时斜截面承载能力的。 影响受剪承载力的因素很多,很难综合考虑,而且受剪破 坏都是脆性的。《规范》是根据大量的试验结果,取具有一 定可靠度(95%)的偏下限经验公式来计算受弯构件抗剪承 载力。
桥梁工程系-杨 剑
Vc ft bh0
¼ô ¿ç ±È
(a) ¼¯ ÖÐ ºÉ ÔØ
桥梁工程系-杨 剑
Vc ft bh0
0.7
ô¼ ¿ç ± È =L0/(4h)
(b) ¾ù ²¼ ºÉ ÔØ
桥梁工程系-杨 剑
三.混凝土强度等级 ◆ 剪切破坏是由于剪压区应力达到复合应力(剪压)状态下 强度而发生的,故混凝土强度对受剪承载力有很大影响。 ◆ 试验表明,随着混凝土强度的提高,Vu与 ft 近似成正比。 ◆ 事实上,斜拉破坏取决于ft ,剪压破坏也基本取决于ft,只 有在剪跨比很小时的斜压破坏取决于fc。 ◆ 而斜压破坏可认为是受剪承载力的上限。
桥梁工程系-杨 剑
Vc/bh0(MPa)
fcu(Mpa)
桥梁工程系-杨 剑
三. 纵筋配筋率 纵筋配筋率越大,受压区面积越大,受剪面积也越大, 并使纵筋的销栓作用也增加。同时,增大纵筋面积还可限 制斜裂缝的开展,增加斜裂缝间的骨料咬合力作用。
Vc f c¢
s
桥梁工程系-杨 剑
四. 箍筋的配筋强度 sv fsv
P
斜拉破坏
f
桥梁工程系-杨 剑
无腹筋斜拉破坏试验录像
桥梁工程系-杨 剑
二. 剪压破坏

受弯构件斜截面承载力计算—受弯构件的斜截面抗剪承载力

受弯构件斜截面承载力计算—受弯构件的斜截面抗剪承载力
《公路钢筋混凝土及预应力钢筋混凝土桥涵设计规范》对配有腹筋的钢筋混凝土 梁斜截面抗剪承载力的计算,采用下述半经验半理论的公式:
0Vd Vu Vcs Vsb
Vcs a1a2a3(0.45 103 )bh0 (2 0.6p) fcu,k svfsv
Vsb (0.75 103 )fsd Asb sin s
当 hw ≤4.0时,属于一般的梁,应满足
b
当 hw ≥6.0时,属于薄腹梁,应满足
b
V 0.25c fcbh0 V 0.2c fcbh0
当4.0< hw<6.0时,应满足
b
V
0.025(14
hw b
)c
fcbh0
箍筋的构造要求
梁截面高度 h
150<h≤300 300<h≤500 500<h≤800
配有箍筋和弯起钢筋梁的斜截面受剪承载力
V
Vu
acv
ftbh0
f yv
Asv s
h0
0.8 fy Asb
sin as
5.公式的适用范围
(1)公式的上限——截面尺寸限制条件
取斜压破坏作为受剪承载力 的 上限。
hw hw
hw
斜压破坏取决于混凝土的抗
压强度和截面尺寸。
b
防止斜压破坏的截面限制条
sv
sv,min
0.24
ft f yv
抗剪承载能力计算基本公式
抗剪承载力的组成
配有箍筋和弯起钢筋的钢筋混凝土梁,当发生剪压破坏时,其抗剪承载
力 的剪抗能剪力能V力u由Vsv斜和裂弯缝起上钢剪筋压的区抗混剪凝能土力的Vsb抗三剪部能分力所Vc组,成与。斜裂缝相交的箍筋
Vu Vc Vsv Vsb
适用条件:多种荷载作用下,其中集中荷载对支座截面或节 点边缘所产生的剪 力值占总剪力值的75%以上时。

第四章 受弯构件斜截面受剪承载力计算

第四章 受弯构件斜截面受剪承载力计算

2主拉应力:tp第4章受弯构件的斜截面承载力教学要求:深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

熟练掌握梁的斜截面受剪承载力计算。

理解梁内纵向钢筋弯起和截断的构造要求。

知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜 截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力 则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1箍筋和弯起钢筋图4-2钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集 中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

1 2 3 44.1架立钢筋箍筋 弯起钢筋劈裂裂縫图4-3主应力轨迹线这种由竖向裂缝发展而成的斜裂缝,称为弯 剪斜裂缝,这种裂缝下宽上细,是最常见的,如图 4-4(b)所示。

4.2.2剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离 a 称为剪跨,剪跨 a与梁截面有效高度 h o 的比值,称为计算截面的剪跨比,简称剪跨比,用入表示,入=a/hoMb=—r主压应力cp主应力的作用方向与构件纵向轴线的夹角 2a 可按下式确定:tg2________ 丿 厂| _亠 ____ 一 ” ”ft图4-4 ⑻腹剪斜裂缝; 斜裂缝(b)弯剪斜裂缝V匸二4———•——二亠久 乂 勺叫 5'矶在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线, 式传递的。

普通混凝土受弯构件斜截面受剪承载力计算

普通混凝土受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算一、有腹筋梁受剪承载力计算基本公式1. 矩形、T 形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为: 0025.17.0h s A f bh f V V sv yv t cs +=≤ (5-6)式中 t f 一混凝土抗拉强度设计值;b 一构件的截面宽度,T 形和Ⅰ形截面取腹板宽度;0h 一截面的有效高度;yv f 一箍筋的抗拉强度设计值;sv A 一配置在同一截面内箍筋各肢的全部截面面积,1sv sv nA A =;n 一在同一截面内箍筋的肢数;1sv A 一单肢箍筋的截面面积;s 一箍筋的间距。

2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算: 000.175.1h s A f bh f V V sv yv t cs ++=≤λ (5-7)式中 λ一剪跨比,可取0/h a =λ,a 为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。

当λ小于 1.5 时,取5.1=λ;当λ大于 3.0 时,取0.3=λ。

独立梁是指不与楼板整浇的梁。

构件中箍筋的数量可以用箍筋配箍率sv ρ表示:bs A sv sv =ρ (5-8)3.当梁内还配置弯起钢筋时,公式(5-4)中s sb y b A f V αsin 8.0=(5-9) 式中y f 一纵筋抗拉强度设计值;sb A 一同一弯起平面内弯起钢筋的截面面积; s α一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取o 45,当梁较高时,可取o60。

剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力一般都能达到屈服强度,但是拉应力可能不均匀。

为此,在弯起钢筋中考虑了应力不均匀系数,取为0.8。

另外,虽然纵筋的销栓作用对斜截面受剪承载力有一定的影响,但其在抵抗受剪破坏中所起的作用较小,所以斜截面受剪承载力计算中没有考虑纵筋的作用。

第四章钢筋混凝土受弯构件斜截面承载力计算

第四章钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算一、填空题:1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生 超过了混凝土的极限抗拉强度而开裂的。

2、斜裂缝破坏的主要形态有:、、,其中属于材料充分利用的是。

3、梁的斜截面承载力随着剪跨比的增大而。

4、梁的斜截面破坏形态主要有三种,其中,以破坏的受力特征为依据建立斜截面承载力的计算公式。

5、随着混凝土强度的提高,其斜截面承载力。

6、随着纵向配筋率的提高,其斜截面承载力。

7、对于情况下作用的简支梁,可以不考虑剪跨比的影响。

对于情况的简支梁,应考虑剪跨比的影响。

8、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为。

9、对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。

10、设置弯起筋的目的是、。

11、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁配置的箍筋应满足。

12、梁设置鸭筋的目的是,它不能承担弯矩。

二、判断题:1、某简支梁上作用集中荷载或作用均布荷载时,该梁的抗剪承载力数值是一样的。

( )2、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。

( )3、梁设置箍筋的主要作用是保证形成良好的钢筋骨架,保证钢筋的正确位置。

( )4、当梁承受的剪力较大时,优先采用仅配置箍筋的方案,主要的原因是设置弯起筋抗剪不经济。

( )5、当梁上作用有均布荷载和集中荷载时,应考虑剪跨比λ的影响,取0Vh M=λ( )6、当剪跨比大于3时或箍筋间距过大时,会发生剪压破坏,其承载力明显大于斜裂缝出现时的承载力。

( )7、当梁支座处允许弯起的受力纵筋不满足斜截面抗剪承载力的要求时,应加大纵筋配筋率。

( )8、当梁支座处设置弯起筋充当支座负筋时,当不满足斜截面抗弯承载力要求时,应加密箍筋。

( )9、梁设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )10、由于梁上的最大剪力值发生在支座边缘处,则各排弯起筋的用量应按支座边缘处的剪力值计算。

第四章 钢筋混凝土受弯构件斜截面承载力计算

第四章 钢筋混凝土受弯构件斜截面承载力计算

配箍率sv
Asv nAsv1 sv bs bs
A Asv——设置在同一截面内的箍筋截面面积; sv nAsv1 Asv1——单肢箍筋截面面积; n——箍筋肢数; s——箍筋沿梁轴向的间距; b——梁宽。
1、仅配箍筋时梁的受剪承载力计算公式:
(1)规范对承受一般荷载的矩形、T形和工形截面的受 弯构件(包括连续梁和约束梁)给出计算公式:
规范对集中荷载作用下(包括作用有多种荷载,且 集中荷载对支座截面或节点边缘所产生的剪力值占 总剪力值的75%以上的情况)的矩形截面独立梁(包 括连续梁和约束梁)给出了计算的公式:
Asv 0.2 Vcs f c bh0 1.25 f yv h0 1.5 s
——计算剪跨比, a / h0 a——集中荷载作用点至支座截面或节点边缘的距离。
<1.4时,取
=1.4;当 >3时,取 =3。
T形和工形截面梁按式(4-4)计算 。
1、仅配箍筋时梁的受剪承载力计算公式:
V
1
d
Vcs 所配的箍筋不能满足抗剪要求。
解决办法:
箍筋加密或加粗; 增大构件截面尺寸; 提高砼强度等级。 纵筋弯起成为斜筋或加焊斜筋;
纵筋可能弯起时,用弯起的纵筋抗剪可收到 较好的经济效果。
Vcs 0.07 f c bh0 1.25 f yv
Asv h0 s
fc—— 砼轴心抗压强度设计值; b —— 矩形截面的宽度 或T形、工形截面的腹板宽 度; h0 ——截面有效高度; fyv——箍筋抗拉强度设计值, 不大于310N/mm2。
试验表明,承受集中荷载为主的矩形截面梁,按式 (4-7) 计算不够安全。
(0.3 f c bh0 ) (0.2 f c bh0 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 受弯构件的斜截面承载力教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。

2熟练掌握梁的斜截面受剪承载力计算。

3理解梁内纵向钢筋弯起和截断的构造要求。

4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。

4.1 概述在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。

工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。

图4-1 箍筋和弯起钢筋图4-2 钢筋弯起处劈裂裂缝工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。

由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。

因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。

弯起钢筋的弯起角宜取45°或60°4.2 斜裂缝、剪跨比及斜截面受剪破坏形态4.2.1 腹剪斜裂缝与弯剪斜裂缝钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。

主拉应力:2242τσσσ++=tp ,主压应力2242τσσσ+-=cp主应力的作用方向与构件纵向轴线的夹角a 可按下式确定:στα22-=tg图4-3 主应力轨迹线图4-4 斜裂缝(a)腹剪斜裂缝;(b)弯剪斜裂缝这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。

4.2.2 剪跨比在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

对于承受集中荷载的简支梁,λ=M/(Vh0)=a/h0,即这时的剪跨比与广义剪跨比相同。

对于承受均布荷载的简支梁,设l为梁的跨度,βl为计算截面离支座的距离,则λ可表达为跨高比l/h0的函数:剪跨比λ反映了截面上正应力σ和剪应力τ的相对比值,在一定程度上也反映了截面上弯矩与剪力的相对比值。

它对无腹筋梁的斜截面受剪破坏形态有着决定性的影响,对斜截面受剪承载力也有着极为重要的影响。

4.2.3 斜截面受剪破坏的三种主要形态1 无腹筋梁的斜截面受剪破坏形态图4-6 主应力迹线分布图在剪跨比小的图4-6(a)中,在集中力到支座之间有虚线所示的主压应力迹线,即力是按斜向短柱的形式传递的。

可见,剪跨比小时,主要是斜向受压而产生斜压破坏。

在剪跨比大的图4-6(c)中,集中力与支座之间没有直接的主压应力迹线,故以弯曲传力为主,产生沿主压应力迹线的斜裂缝,并发展为斜拉破坏。

试验也表明,无腹筋梁的斜截面受剪破坏形态与剪跨比λ有决定性的关系,主要有斜压破坏、剪压破坏和斜拉破坏三种破坏形态。

图4-7斜截面破坏形态(a)斜压破坏;(b)剪压破坏;(c)斜拉破坏(1)斜压破坏(图4-7a)λ<1时,发生斜压破坏。

这种破坏多数发生在剪力大而弯矩小的区段,以及梁腹板很薄的T形截面或I形截面梁内。

破坏时,混凝土被腹剪斜裂缝分割成若干个斜向短柱而压坏,因此受剪承载力取决于混凝土的抗压强度,是斜截面受剪承载力中最大的。

(2)剪压破坏(图4-7b)1≤λ≤3时,常发生剪压破坏。

其破坏特征通常是,在弯剪区段的受拉区边缘先出现一些竖向裂缝,它们沿竖向延伸一小段长度后,就斜向延伸形成一些斜裂缝,而后又产生一条贯穿的较宽的主要斜裂缝,称为临界斜裂缝,临界斜裂缝出现后迅速延伸,使斜截面剪压区的高度缩小,最后导致剪压区的混凝土破坏,使斜截面丧失承载力。

(3)斜拉破坏(图4-7c)λ>3时,常发生斜拉破坏。

其特点是当竖向裂缝一出现,就迅速向受压区斜向伸展,斜截面承载力随之丧失。

破坏荷载与出现斜裂缝时的荷载很接近,破坏过程急骤,破坏前梁变形很小,具有很明显的脆性,其斜截面受剪承载力最小。

图4-8 斜截面破坏的F-f曲线图4-8为三种破坏形态的荷载-挠度(F-f)曲线图。

可见,三种破坏形态的斜截面受剪承载力是不同的,斜压破坏时最大,其次为剪压,斜拉最小。

它们在达到峰值荷载时,跨中挠度都不大,破坏时荷载都会迅速下降,表明它们都属脆性破坏类型,是工程中应尽量避免的。

另外,这三种破坏形态虽然都是属于脆性破坏类型,但脆性程度是不同的。

混凝土的极限拉应变值比极限压应变值小得多,所以斜拉破坏最脆,斜压破坏次之。

为此,规范规定用构造措施,强制性地来防止斜拉、斜压破坏,而对剪压破坏,因其承载力变化幅度相对较大所以是通过计算来防止的。

2 有腹筋梁的斜截面受剪破坏形态配置箍筋的有腹筋梁,它的斜截面受剪破坏形态是以无腹筋梁为基础的,也分为斜压破坏、剪压破坏和斜拉破坏三种破坏形态。

这时,除了剪跨比对斜截面破坏形态有决定性的影响以外,箍筋的配置数量对破坏形态也有很大的影响。

当λ>3,且箍筋配置数量过少时,斜裂缝一旦出现,与斜裂缝相交的箍筋承受不了原来由混凝土所负担的拉力,箍筋立即屈服而不能限制斜裂缝的开展,与无腹筋梁相似,发生斜拉破坏。

如果λ>3,箍筋配置数量适当的话,则可避免斜拉破坏,而转为剪压破坏。

这是因为斜裂缝产生后,与斜裂缝相交的箍筋不会立即受拉屈服,箍筋限制了斜裂缝的开展,避免了斜拉破坏。

箍筋屈服后,斜裂缝迅速向上发展,使斜裂缝上端剩余截面缩小,使剪压区的混凝土在正应力σ和剪应力τ共同作用下产生剪压破坏。

如果箍筋配置数量过多,箍筋应力增长缓慢,在箍筋尚未屈服时,梁腹混凝土就因抗压能力不足而发生斜压破坏。

在薄腹梁中,即使剪跨比较大,也会发生斜压破坏。

所以,对有腹筋梁来说,只要截面尺寸合适,箍筋配置数量适当,使其斜截面受剪破坏成为剪压破坏形态是可能的。

4.3 简支梁斜截面受剪机理4.3.1 带拉杆的梳形拱模型带拉杆的梳形拱模型适用于无腹筋梁。

图4-9 梳状结构图4-10 齿的受力图4-11 拱体的受力4.3.2 拱形桁架模型拱形桁架模型适用于有腹筋梁。

图4-12 拱形桁架模型4.3.3 桁架模型图4-13 桁架模型(a)45°桁架模型;(b)变角桁架模型;(c)变角桁架模型的内力分析4.4 斜截面受剪承载力的计算1 剪跨比随着剪跨比λ的增加,梁的破坏形态按斜压(λ<1)、剪压(1≤λ≤3)和斜拉(λ>3)的顺序演变,其受剪承载力则逐步减弱。

当λ>3时,剪跨比的影响将不明显。

2 混凝土强度斜截面破坏是由混凝土到达极限强度而发生的,故混凝土的强度对梁的受剪承载力影响很大。

3 箍筋的配筋率梁内箍筋的配筋率是指沿梁长,在箍筋的一个间距范围内,箍筋各肢的全部截面面积与混凝土水平截面面积的比值。

图4-14 箍筋的肢数(a)单肢箍;(b)双肢箍;(c)四肢箍图4-15 箍筋的配筋率对梁受剪承载力的影响4 纵筋配筋率纵筋的受剪产生了销栓力,它能限制斜裂缝的伸展,从而使剪压区的高度增大。

所以,纵筋的配筋率越大,梁的受剪承载力也就提高。

5 斜截面上的骨料咬合力斜裂缝处的骨料咬合力对无腹筋梁的斜截面受剪承载力影响较大。

6 截面尺寸和形状(1)截面尺寸的影响截面尺寸对无腹筋梁的受剪承载力有较大的影响,尺寸大的构件,破坏时的平均剪应力比尺寸小的构件要低。

有试验表明,在其他参数(混凝土强度、纵筋配筋率、剪跨比)保持不变时,梁高扩大4倍,破坏时的平均剪应力可下降25%~30%。

对于有腹筋梁,截面尺寸的影响将减小。

(2)截面形状的影响这主要是指T 形梁,其翼缘大小对受剪承载力有影响。

适当增加翼缘宽度,可提高受剪承载力25%,但翼缘过大,增大作用就趋于平缓。

另外,加大梁宽也可提高受剪承载力。

4.4.2 斜截面受剪承载力的计算公式1 基本假设国内外许多学者曾在分析各种破坏机理的基础上,对钢筋混凝土梁的斜截面受剪承载力给出过不少类型的计算公式,但终因问题的复杂性而不能实际应用。

我国规范目前采用的是半理论半经验的实用计算公式。

对于斜压破坏,通常用控制截面的最小尺寸来防止;对于斜拉破坏,则用满足箍筋的最小配筋率条件及构造要求来防止;对于剪压破坏,因其承载力变化幅度较大,必须通过计算,使构件满足一定的斜截面受剪承载力,从而防止剪压破坏。

(1) 梁发生剪压破坏时,斜截面所承受的剪力设计值由三部分组成,见图4-16,即图4-16 受剪承载力的组成(2) 梁剪压破坏时,与斜裂缝相交的箍筋和弯起钢筋的拉应力都达到其屈服强度,但要考虑拉应力可能不均匀,特别是靠近剪压区的箍筋有可能达不到屈服强度。

(3) 斜裂缝处的骨料咬合力和纵筋的销栓力,在无腹筋梁中的作用还较显著,两者承受的剪力可达总剪力的50%~90%,但在有腹筋梁中,由于箍筋的存在,虽然使骨料咬合力和销栓力都有一定程度的提高,但它们的抗剪作用已大都被箍筋所代替,试验表明,它们所承受的剪力仅占总剪力的20%左右。

另外,sb s c u V V V V ++=研究表明,只有当纵向受拉钢筋的配筋率大于1.5%时,骨料咬合力和销栓力才对无腹筋梁的受剪承载力有较明显的影响。

所以为了计算简便,将不计入咬合力和销栓力对受剪承载力的贡献。

(4)截面尺寸的影响主要对无腹筋的受弯构件,故仅在不配箍筋和弯起钢筋的厚板计算时才予以考虑。

(5)剪跨比是影响斜截面承载力的重要因素之一,但为了计算公式应用简便,仅在计算受集中荷载为主的独立梁时才考虑了λ的影响。

2 无腹筋梁混凝土剪压区的受剪承载力试验结果与取值我国《混凝土结构设计规范》规定的受弯构件斜截面受剪承载力的计算公式主要是以无腹筋梁的试验结果为基础的。

图4-17 无腹筋梁混凝土剪压区受剪承载力的试验结果(a)均布荷载作用下;(b)集中荷载作用下3 计算公式(1)仅配置箍筋的矩形、T形和I形截面受弯构件的斜截面受剪承载力设计值(2)当配置箍筋和弯起钢筋时,矩形、T形和I形截面受弯构件的斜截面承载力设计值图4-18 弯起钢筋承担的剪力(3)不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力设计值4对计算公式的说明(1)V cs由二项组成,前一项αcs f t bh0是由混凝土剪压区承担的剪力,后一项f yv A sv sh0中大部分是由箍筋承担的剪力,但有小部分属于混凝土的,因为配置箍筋后,箍筋将抑制斜裂缝的开展,从而提高了混凝土剪压区的受剪承载力,但是究竟提高了多少,很难把它从第二项中分离出来,并且也没有必要。

因此,应该把V cs理解为混凝土剪压区与箍筋共同承担的剪力。

(2)与λ=1.5~3.0相对应的αcs=0.7~0.44,这说明当λ>1.5时,均布荷载作用下的无腹筋独立梁,它的受剪承载力比其他梁的低,λ愈大,降低愈多。

(3)现浇混凝土楼盖和装配整体式混凝土楼盖中的主梁虽然主要承受集中荷载,但不是独立梁,所以除吊车梁和试验梁以外,建筑工程中的独立梁是很少见的。

相关文档
最新文档