《解直角三角形》参考课件2
合集下载
人教版数学九年级下册《 解直角三角形》PPT课件
∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
解直角三角形-ppt课件
,∴
∴CH = ,
∴AH=
∴AB=2AH=
−
.
=
,∵∠B=30°,
=
,
26.3 解直角三角形
重 ■题型 解双直角三角形
难
例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一
题
型
点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.
突
∴S
AB·AE= ×4×4 =8 ,
CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=
,
.
(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=
AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积
方
法
割补法是求不规则图形面积问题的最常用方法,割补法
技
巧 包含三个方面的内容:一是分割原有图形成规则图形;二
点
拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,
=
2
=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
《解直角三角形》-完整版PPT课件
整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
《解直角三角形》教学PPT课件【青岛版九年级数学上册】 (2)
1.锐角三角函数的意义,Rt△ABC 中,设∠C=90°,∠α 为 Rt△ABC 的一个锐角,则:
∠α的对边 ∠α的正弦 sinα=____斜__边______;
∠α的邻边 ∠α 的余弦 cosα=_____斜__边_____;
∠α的对边 ∠α的正切 tanα=__∠__α_的__邻__边___.
锐角三角函数和解直角三角形
1.利用相似的直角三角形,探索并认识锐角三角函数(sinA, cosA,tanA),知道30°,45°,60°角的三角函数值.
2.
3.能用锐角三角函数解直角三角形,能用相关知识解决一些 简单的实际问题.
(_3_)_边s_in_与A__=角__的c_o_s关_B_系=__:ac_,__c_o_s_A_=__s_i_n_B_=__bc_,__t_a_n_A_=__ab_,___ta_n_B_= ___ba____.
5.直角三角形的边角关系在现实生活中有着广泛的应用,它经 常涉及测量、工程、航海、航空等,其中包括了一些概念,一定 要根据题意明白其中的含义才能正确解题.
2.解直角三角形的类型和解法
命题点1:求锐角三角函数值 (2015·山西)如图,在网格中,小正方形的边长均为1,点A,B, C都在格点上,则∠ABC的正切值是( )D
A.2
25 B. 5
5 C. 5
1 D.2
命题点2:解直角三角形的实际应用 1.如图,某地建高速公路,要从B地向C地修一座隧道(B,C在 同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热 气球从C地出发,垂直上升100 m到A处,在A处观察B地的俯角为 30°,则B,C两地之间的距离为( A )
3.同角三角函数之间的关系:
sin2α+cos2α=____1;
《解直角三角形》课件2
b , b= 30 , tan B = a ∴ a b 30 ≈ 64 o tanB tan25
∵
在直角三角形的6个元素中, 直角是已知元素,如果再 知道一条边和第三个元素, 那么三角形的所有元素就 都可以确定下来。
如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 AD = 4 3 ,求Rt△ABC的面积。
问题(1)当梯子与地面所成的角a为75°时, 梯子顶端与地面的距离是使用这个梯子所能攀到 的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A= 75°,斜边AB=6,求∠A的对边BC的长. BC 由 sin A = 得 AB BC = AB sin A = 6× sin75 由计算器求得 sin75°≈0.97
在Rt△ABC中,∠A, ∠B, ∠C,岁对应得便分别 是a,b,c,根据下面条件求出直角三角形的其他元 素(角度精确到1°) ( 2) a = 6 2 , b = 6 6 (1)a=19,c = 19 2 (2)解:在Rt△ABC 中 (1)解:在Rt△ABC 中, b=6 6 ∵∠C=90°,a = 6 2 , ∠C=90° 6 6 ∵a=19 c = 19 2 tanB = = 3 6 2 2 2 ∴b = c - a =19 2 2
∵ AC=BC ∴ AD=0.5AB=10 ∠ACD=0.5∠ACB 又 CD=19.2
AD 10 tan ACD = = ≈ 0.52 CD 19.2
∴ ∠ACD=27.74°
∴ ∠ACB=55.48°3. 如图所示,一棵大树在一次强烈的地震中于离 地面10米处折断倒下,树顶落在离树根24米处.大树在 折断之前高多少?
九
年
级
数
学
(
∵
在直角三角形的6个元素中, 直角是已知元素,如果再 知道一条边和第三个元素, 那么三角形的所有元素就 都可以确定下来。
如图,在Rt△ABC中,∠C=90°,AC=6, ∠BAC的平分线 AD = 4 3 ,求Rt△ABC的面积。
问题(1)当梯子与地面所成的角a为75°时, 梯子顶端与地面的距离是使用这个梯子所能攀到 的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A= 75°,斜边AB=6,求∠A的对边BC的长. BC 由 sin A = 得 AB BC = AB sin A = 6× sin75 由计算器求得 sin75°≈0.97
在Rt△ABC中,∠A, ∠B, ∠C,岁对应得便分别 是a,b,c,根据下面条件求出直角三角形的其他元 素(角度精确到1°) ( 2) a = 6 2 , b = 6 6 (1)a=19,c = 19 2 (2)解:在Rt△ABC 中 (1)解:在Rt△ABC 中, b=6 6 ∵∠C=90°,a = 6 2 , ∠C=90° 6 6 ∵a=19 c = 19 2 tanB = = 3 6 2 2 2 ∴b = c - a =19 2 2
∵ AC=BC ∴ AD=0.5AB=10 ∠ACD=0.5∠ACB 又 CD=19.2
AD 10 tan ACD = = ≈ 0.52 CD 19.2
∴ ∠ACD=27.74°
∴ ∠ACB=55.48°3. 如图所示,一棵大树在一次强烈的地震中于离 地面10米处折断倒下,树顶落在离树根24米处.大树在 折断之前高多少?
九
年
级
数
学
(
《解直角三角形的应用》PPT教学课件(第2课时)
象为数学问题.
2、视线、水平线、物体的高构成直角三角形,已知仰角(俯角)和另一边,
利用解直角三角形的知识就可以求出物体的高度.
3、弄清仰角、俯角的定义,根据题意画出几何图形,将实际问题中的数量
关系归结到直角三角形中来求解.
课堂小结
解答含有方位角问题的方法
解决与方位角有关的实际问题时,必须先在每个位置中心建立方向
解直角三角形的
26.4
应用
第2课时
知识回顾
直角三角形中诸元素之间的关系:
(1)三边之间的关系:a2+b2=c2 (勾股定理);
Bቤተ መጻሕፍቲ ባይዱ
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sin A
a
b
a
, cos A , tan A .
c
c
b
c
A
a
b
C
情景导入
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
方案Ⅱ:从A地开车穿越草地沿AC方向到牧民区C。
已知汽车在公路上行驶的速度是在草地上行驶速度的3倍。
(1)求牧民区到公路的最短距离?
解析:设CD=x千米,由题意,得∠CBD=300, ∠CAD=450,
∴AD=CD=x千米
3
在Rt△BCD中,tan300= 3 =,∴BD= 3x千米.
∵AB=40千米,AD+BD=AB,
1
tan
,因此 α≈26.57°.
2
C
在Rt△ABC中,
∠B=90°,∠A=26.57°,AC=240m,
因此 sin
BC BC
.
AC 240
2、视线、水平线、物体的高构成直角三角形,已知仰角(俯角)和另一边,
利用解直角三角形的知识就可以求出物体的高度.
3、弄清仰角、俯角的定义,根据题意画出几何图形,将实际问题中的数量
关系归结到直角三角形中来求解.
课堂小结
解答含有方位角问题的方法
解决与方位角有关的实际问题时,必须先在每个位置中心建立方向
解直角三角形的
26.4
应用
第2课时
知识回顾
直角三角形中诸元素之间的关系:
(1)三边之间的关系:a2+b2=c2 (勾股定理);
Bቤተ መጻሕፍቲ ባይዱ
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sin A
a
b
a
, cos A , tan A .
c
c
b
c
A
a
b
C
情景导入
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
方案Ⅱ:从A地开车穿越草地沿AC方向到牧民区C。
已知汽车在公路上行驶的速度是在草地上行驶速度的3倍。
(1)求牧民区到公路的最短距离?
解析:设CD=x千米,由题意,得∠CBD=300, ∠CAD=450,
∴AD=CD=x千米
3
在Rt△BCD中,tan300= 3 =,∴BD= 3x千米.
∵AB=40千米,AD+BD=AB,
1
tan
,因此 α≈26.57°.
2
C
在Rt△ABC中,
∠B=90°,∠A=26.57°,AC=240m,
因此 sin
BC BC
.
AC 240
2-4解直角三角形++课件鲁教版数学九年级上册
能 (1)根∠A=60°,∠B=30°,
两角
你能求出这个三角形的其他元素吗?
不能
你发现 了什么
在直角三角形的六个元素中,除直角外,如果 知道两个元素, (其中至少有一个是边),
就可以求出其余三个元素.
例题分析
例1 如图,在Rt△ABC中,∠C=90°, a= 4 , c =8 ,解这个直角三角形.
在Rt△ABC 中,∠C=90°. (1)已知a,b,怎样求∠A的度数? (2)已知a,c,怎样求∠A的度数? (3)已知b,c,怎样求∠A的度数? 由此你能总结一下已知两边解直角三角形的方法吗? 与同伴进行交流.
跟踪练习
在Rt△ABC 中,∠C=90°. (1)已知c=26,b=24,求a的长和∠B的度数(用 三角函数表示`); (2)已知a=5,b 5 3 ,求c和∠A,∠B的度数.
(1)三边之间的关系: a2+b2=c2(勾股定理);
(2)锐角之间的关系: ∠ A+ ∠ B= 90º;
B
(3)边角之间的关系: 锐角三角函数
sinA= a c
cosA= b c
tanA= a b
c a
在直角三角形中,由已知元素求未知元素的 过程, 叫做解直角三角形.
A
bC
探究1
问题1:在直角三角形中,除直角外,还有哪些元素? 两个角,三条边.
锐角a
三角函数 sin a cos a tan a
30°
1 2 3 2
3 3
45°
2 2
2 2
1
60°
3 2
1 2
3
对于sinα与tanα,角度越大,函数值也越大;(带正) 对于cosα,角度越大,函数值越小。
复习巩固
《解直角三角形(第2课时)》课件 (共29张PPT)
B
α=30° 120 D β=60°
A
C
P
Q
α O·
1. 如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同 时施工,从AC上的一点B取∠ABD = 140°,BD = 520m,∠D=50°,那 么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m) A B 140° C E
50° D
3. 如图,太阳光与地面成60度角,一棵倾斜的大树 AB与地面成30度角,这时测得大树在地面上的影长 为10m,请你求出大树的高.
P
30°
A
200米
45°
O
B
L U D
合作与探究
变题2:如图,直升飞机在高为200米的大楼AB 左侧P点处,测得大楼的顶部仰角为45°,测得 大楼底部俯角为30°,求飞机与大楼之间的水 A 平距离.
P
45° 30°
200米 D
O
B
例2:热气球的探测器 显示,从热气球看阳光 宾馆顶部的仰角为 30°,看它的底部的俯 角为60°,热气球与阳 光宾馆的水平距离为 120m,阳光宾馆有多 高?
A
a
b
C
温故而知新
如图,Rt△ABC中,∠C=90°,
(1)若∠A=30°,BC=3,则AC= 3 3 (2)若∠B=60°,AC=3,则BC=
3
(3)若∠A=α°,AC=3,则BC= 3 tan
m (4)若∠A=α°,BC=m,则AC= tan
B
A
┌ C
例题 例4: 2008年10月15日“神舟”7号载人航天飞船发射 成功.当飞船完成变轨后,就在离地球表面350km的 圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到地球上的点 在什么位置?这样的最远点与P点的距离是多少? (地球半径约为6 400km,结果精确到0.1km) F
解直角三角形(共30张)PPT课件
比例性质应用
利用相似三角形中对应边 之间的比例关系进行计算。
实际应用举例
测量问题
利用相似三角形原理解决 测量中的实际问题,如测 量建筑物高度、河宽等。
航海问题
在航海中,利用相似三角 形原理解决船只定位、航 向确定等问题。
物理问题
在物理实验中,利用相似 三角形原理解决光学、力 学等问题,如光的折射、 力的合成与分解等。
利用相似三角形求边长
通过已知边长和相似比,可以求出未知边长。
利用相似三角形求角度
通过已知角度和相似关系,可以求出未知角度。
利用相似三角形求面积
通过已知面积和相似比,可以求出未知面积。
相似比计算方法和技巧
01
02
03
直接计算法
根据已知条件直接计算相 似比。
间接计算法
通过引入辅助线或构造特 殊图形来计算相似比。
解直角三角形(共30张)PPT课 件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 三角函数在解直角三角形中应用 • 相似三角形在解直角三角形中作用
目录
• 复杂图形中解直角三角形策略探讨 • 拓展延伸:非直角三角形解法探讨
01
直角三角形基本概念与性 质
直角三角形定义及特点
有一个角为90度的三角形称为直角三角形。
案例三
在三角形中解直角三角形问题。 通过作高线构造直角三角形,并
结合相似性质进行求解。
总结归纳与提高建议
总结归纳
在复杂图形中解直角三角形的关键在于构造直角三角形并利用 已知条件进行推理和计算。通过添加辅助线、利用相似性质和 三角函数关系等方法,可以有效地解决这类问题。
提高建议
为了更好地掌握解直角三角形的技巧和方法,建议多做相关练 习题并总结归纳经验。同时,也可以学习一些高级的数学知识 和技巧,如三角函数恒等式、极坐标等,以便更好地应对复杂 的数学问题。
沪科版数学九年级上册23.2第3课时方位角与解直角三角形 课件(共25张PPT)
知识点1 方向角方位角:指北或指南方向与目标方向线所成的小于90°的水平角,叫_______.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
方位角
北偏东
解:分两种情况:(1)如图①,在Rt△BDC中,CD=30 km,BC=60 km,∴∠B=30°.∵PB=PC,∴∠BCP=∠B=30°.∴在Rt△CDP中,∠CPD=∠B+∠BCP=60°. km,在Rt△ADC中,∵∠A=45°,∴AD=DC=30 km. km.
第23章 解直角三角形
23.2 解直角三角形及其应用
第3课时 方位角与解直角三角形
学习目标
学习重难点
重点
难点
1.理解并掌握方向角的概念.2.把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
方向角的概念;方向角的辨别与使用.
运用解直角三角形知识解决方向角问题.
回顾复习
归纳小结
解直角三角形的关键是找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作辅助线构筑直角三角形(作某边上的高是常用的辅助线);当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题化归为直角三角形中的边角关系.
同学们再见!
授课老师:
时间:2024年9月1日
例2 如图所示,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时又测得该岛在北偏东30°方向上,已知在岛C周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无触礁危险?试说明理由.
方位角
北偏东
解:分两种情况:(1)如图①,在Rt△BDC中,CD=30 km,BC=60 km,∴∠B=30°.∵PB=PC,∴∠BCP=∠B=30°.∴在Rt△CDP中,∠CPD=∠B+∠BCP=60°. km,在Rt△ADC中,∵∠A=45°,∴AD=DC=30 km. km.
第23章 解直角三角形
23.2 解直角三角形及其应用
第3课时 方位角与解直角三角形
学习目标
学习重难点
重点
难点
1.理解并掌握方向角的概念.2.把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
方向角的概念;方向角的辨别与使用.
运用解直角三角形知识解决方向角问题.
回顾复习
归纳小结
解直角三角形的关键是找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作辅助线构筑直角三角形(作某边上的高是常用的辅助线);当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题化归为直角三角形中的边角关系.
同学们再见!
授课老师:
时间:2024年9月1日
例2 如图所示,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时又测得该岛在北偏东30°方向上,已知在岛C周围9海里的区域内有暗礁,若继续向正东方向航行,该货船有无触礁危险?试说明理由.
26.4 解直角三角形的应用 - 第2课时坡度、坡角问题课件(共17张PPT)
第二十六章 解直角三角形
26.4 解直角三角形的应用
第2课时 坡度、坡角问题
学习目标
学习重难点
重点
难点
1..加强对坡度、坡角、坡面概念的理解和认识,了解坡度与坡面陡峭程度间的关系.2.能把一些较复杂的图形转化为解直角三角形的问题.3.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.
第3题图
第4题图
B
A
5.水库拦水坝的横断面是四边形ABCD,AD∥BC,背水坡CD的坡比i=1∶1,已知背水坡的坡长CD=24 m,则背水坡的坡角α为____,拦水坝的高度为_______ m.6.如图,在坡比为i=1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是______米.
创设情境
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
新知引入
如图,在筑坝、开渠、挖河和修路时,设计图纸上都要注明斜坡的倾斜程度.我们通常把坡面的垂直高度h和水平宽度l的比叫做坡面的坡度(或坡比),坡面与水平面的夹角α叫做坡角.显然,tanα=.
知识点 坡度、坡角
例题示范
第1题图
第2题图
B
C
3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A. 米 B. 米 C.5sinα 米 D. 米4.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. 米 B.12米 C. 米 D.10米
坡度、坡角、坡面的概念,了解坡度与坡面陡峭程度间的关系.
26.4 解直角三角形的应用
第2课时 坡度、坡角问题
学习目标
学习重难点
重点
难点
1..加强对坡度、坡角、坡面概念的理解和认识,了解坡度与坡面陡峭程度间的关系.2.能把一些较复杂的图形转化为解直角三角形的问题.3.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.
第3题图
第4题图
B
A
5.水库拦水坝的横断面是四边形ABCD,AD∥BC,背水坡CD的坡比i=1∶1,已知背水坡的坡长CD=24 m,则背水坡的坡角α为____,拦水坝的高度为_______ m.6.如图,在坡比为i=1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是______米.
创设情境
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
新知引入
如图,在筑坝、开渠、挖河和修路时,设计图纸上都要注明斜坡的倾斜程度.我们通常把坡面的垂直高度h和水平宽度l的比叫做坡面的坡度(或坡比),坡面与水平面的夹角α叫做坡角.显然,tanα=.
知识点 坡度、坡角
例题示范
第1题图
第2题图
B
C
3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )A. 米 B. 米 C.5sinα 米 D. 米4.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上.如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为( )A. 米 B.12米 C. 米 D.10米
坡度、坡角、坡面的概念,了解坡度与坡面陡峭程度间的关系.
浙教版九年级下册 1.3 解直角三角形 课件(共42张PPT)
3.5 5
=0.7,
∴α≈350.
答:斜面钢条a的长度约为6.1米,坡角约为350.
特别强调:
在解直角三角形的过程中,常会遇到近似计
算,本书除特别说明外,边长保留四个有效数 字,角度精确到1′.
解直角三角形,只有下面两种情况: (1)已知两条边; (2)已知一条边和一个锐角 (必须有一个条件是边)
钢条的长度a和倾角a 吗?
L
变化:已知平顶屋面的宽度
L和坡顶的设计倾角α(如
述例题中,我们都是利用直角三角 形中的已知边、角来求出另外一些的边角. 像这样,
******************************** 在直角三角形中,由已知的一些
因此 AB=AE+EF+BF
≈6.72+12.51+7.90 ≈27.13(米).
图 19.4.6
答:路基下底的宽约为27.13米.
如图,沿水库拦水坝的背水坡将坝面加宽两 米,坡度由原来的1:2改成1:2.5,已知原背水坡 长BD=13.4米,
求: (1)原背水坡的坡角 和加宽后的背水
坡的坡角
(1)c=10,∠A=30°
B
(2)b=4,∠B=72°
(3)a=5, c=7
C
A
(4)a=20,sinA= 1
2
应用练习
如图东西两炮台A、B相距2000米,同时发现入侵敌 舰C,炮台A测得敌舰C在它的南偏东40゜的方向,炮台B 测得敌舰C在它的正南方,试求敌舰与两炮台的距离.
(精确到1米)
本题是已知
面的夹角叫做坡角,记作a,有i= h = tan a. l
显然,坡度越大,坡角a就越大,坡面就越陡.
试一试
1、如图
1)若h=2cm, l=5cm,则i= 2 ; 5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 6 ,解这个直角三角形.
解:∵tanA=
BC AC
=
6=
2
3,
A
2
∴∠A=60°,
C
∴∠B=90°-∠A=90°-60°=30°.
2 ,BC
6
B
AC =2 AC = 2 2 .
课程讲授
1 已知两边解直角三角形
练一练:在△ACB中,∠C=90°,AB=4,AC=3,欲求
∠A的值,最适宜的做法是( C )
A.计算tanA的值求出 B.计算sinA的值求出 C.计算cosA的值求出 D.先根据sinB求出∠B,再利用90°-∠B求出
课程讲授
2 已知一边和一锐角解直角三角形
例 如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,
解这个直角三角形 (结果保留小数点后一位).
解:∠A=90°-∠B=90°-35°=55°.
如何求出塔的倾斜角度?
sinA=
BC AB
将实际问题抽象成熟悉的数学问题
课程讲授
1 已知两边解直角三角形
B
对边 a
c 斜边
C
b 邻边 A
定义:一般地,直角三角形中,除直角外,还有五
个元素,即三条边和两个锐角.由直角三角形中的 已知元素,求出其余未知元素的过程,叫做解直角 三角形.
课程讲授
1 已知两边解直角三角形
解:(2)∵a= 8 15 ,c=16 15 ,
∴ b c2 a2 24 5 .
∵sinA=
a c
=
1 2
,
∴∠A=30°,
∴∠B=90°-∠A=60°.
随堂练习
6.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形: (1)∠B=45°,c=14;
解:(1)∵∠B=45°,c=14,∠C=90°,
∴∠A=45°,
a b 14 7 2 2
(2)b=15,∠B=60°.
解:(2)∵∠C=90°,∠B=60°,
∴∠A=30°.
∵b=15,
∴c= b sinB
= si1n560°= 10
3,
a=
b tanB
=
ta1n560=° 5
3,
课堂小结
解直角 三角形
概念
由直角三角形中的已知元素,求出其余未知元 素的过程,叫做解直角三角形.
问题2:在直角三角形中,知道五个元素之中的几个, 就可以求其余元素?
B
对边 a
C
c 斜边
b 邻边 A
在直角三角形中,除直角外有5个元素 (即3条边、2个锐角),只要知道其中的2个 元素(至少有1个是边),就可以求出其余的 3个未知元素.
课程讲授
1 已知两边解直角三角形
例 如图,在Rt△ABC中,∠C = 90°,AC =
随堂练习
1.在Rt△ABC中,∠C=90°,BC=3,AC=3,则∠B的度数
为( C )
A.90° B.60° C.45° D.30°
随堂练习
2.如果等腰三角形的底角为30°,腰长为6 cm,那么这个三
角形的面积为( B )
A.4.5 cm2 B. 9 3 cm2 C. 18 3 cm2 D.36 cm2
第一章 直角三角形的边角关系
1.4 解直角三角形
新知导入 课程讲授
随堂练习 课堂小结
知识要点
1.已知两边解直角三角形 2.已知一边和一锐角解直角三角形
新知导入
看一看:观察下图中的图形,试着发现解决问题的规律。
CB A
比萨斜塔从地基到塔顶高58.36m,从 地面到塔顶高55m,钟楼墙体在地面上的 宽度是4.09m,倾斜角度3.99°,偏离地基 外沿2.5m,顶层突出4.5m。
随堂练习
5.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形: (1)a= 2 6 ,b= 6 2 ;
解:(1)∵a= 2 6 ,b= 6 2 ,
∴ c a2 b2 96 4 6 .
∵sinA=
a c
=
1 2
,
∴∠A=30°,
∴∠B=90°-∠A=60°.
随堂练习
5.在Rt△ABC中,∠C=90°,根据下列条件解直角三角形: (2)a= 8 15 ,c=16 15 .
随堂练习
3.在Rt△ABC中,∠C=90°. (1)若c= 6 2 ,a=6,则b=___6___,∠B=__4_5_°__,∠A=__4_5_°__; (2)若a= 4 3 ,b=4,则∠A=__6_0_°__,∠B=__3_0_°__,c=___8___.
4.在Rt△ABC中,∠C=90°.
(1)若∠B=60°,BC= 2 ,则∠A=__3_0_°__,AC=____6__,AB=__2__2__; (2)若∠A=45°,AB=2,则∠B=__4_5_°__,AC=____2__.
问题1:在直角三角形中,除了直角外的五个元素之间 有哪些关系?
B
对边 a
c 斜边
C
b 邻边 A
三边之间的关系: a2+b2=__c_2__;
锐角之间的关系: ∠A+∠B=__9_0_°_;
边角之间的关系:
a
b
a
sinA=___c__,cosA=__c___,tanA=___b__.
课程讲授
1 已知两边解直角三角形
A
∵tanB=
b a
,
c
b
20
∴a=
b tanB
=
ta2n035°≈
28.6 ,
C
35° a
B
∵sinB=
b c
,
∴ c=
b sinB
=
si2n035°≈
34.9 .
课程讲授
2 已知一边和一锐角解直角三角形
练一练:在Rt△ABC中,∠C=90°,∠B=35°,
AB=3,则BC的长为( C )
A.3sin35° B.2cos35° C.3cos35° D.3tan35°
应用
已知两边解直角三角形 已知一边和一锐角解直角三角形