2021年钻孔灌注桩气举反循环清孔工艺
钻孔灌注桩(正反循环)施工工艺
工作行为规范系列钻孔灌注桩(正反循环)施工工艺(标准、完整、实用、可修改)编号:FS-QG-68616钻孔灌注桩(正反循环)施工工艺Construction technology of bored cast-in-place pile forward andreverse circulation说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。
泥浆循环护壁是用泥浆循环来保护孔壁,排除土碴而成孔。
一、钻孔灌注桩施工设备、机具要求1、施工设备钻孔施工法分为反循环钻孔施工法和正循环钻孔施工法,地基基础采用泥浆循环护壁,适用于各种土层和基岩施工灌注桩。
正、反循环钻进的主要机械包括钻机、泵组、液压系统及空压机。
2、施工机具:(1)钻头。
正、反循环施工用钻头宜采用三翼或四翼刮刀、笼式钻头、牙轮或滚刀钻头等,钻头外径比钻孔直径小20mm 为宜。
(2)钻杆。
钻杆规格的选择,应依据不同的循环工艺,合理选择确定。
二、钻孔(正、反循环)灌注桩施工工艺要点1、测量定位使用检验、校准合格的经纬仪、水准仪、钢尺。
2、护筒埋设埋设护筒之前应对其桩位用钢尺进行复核,护筒埋设时,护简中心轴线对正测定的桩位中心,其偏差小于等于20mm,并保持护筒的垂直,护筒的四周要用黏土捣实,以起到固定护筒和止水作用。
护筒上口应高出地面200mm,护筒两侧设置吊环,以便吊放、起拔护筒。
3、设备安装:(1)桩机安装时要做到三点一线,即天车、转盘中心、桩孔中心在同一铅垂线上,以保证钻孔垂直度,转盘中心同桩孔中心位置偏差小于等于10mm。
钻机安装必须平稳、牢固,钻进中不得有位移,底座应垫实,在钻进中经常检查。
(2)吊移设备,必须由持有专业执照的起重人员作业,严禁无证操作,吊移钻机时由专人指挥。
(3)设备安装就位之后,应精心调平,安装牢固,作业之前应先试运转,以防止成孔或灌注中途发生机械故障。
(4)所有的机电设备接线要安全可靠,位于运输道路上的电缆应加外套或埋设管道保护。
钻孔灌注桩反循环二次清孔工法讲解
钻孔灌注桩反循环二次清孔工法10钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层114.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
气举反循环清孔工艺
钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
气举反循环清孔工艺
钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
钻孔灌注桩气举反循环清孔工艺
钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程得基础工程、钻孔灌注桩沉渣得清理就是控制桩身质量得关键,传统得钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺得运用,并比较对工程监理质量以及经济效益带来得影响。
[关键词]:钻孔灌注桩、气举反循环、二次清孔一、钻孔灌注桩工艺:传统得钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣、钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池、钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目得。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔、第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定得则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成得环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单得说,正循化清孔得定义就就是沉渣从导管外溢出得清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔得定义就就是沉渣从导管内排出得清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
气举反循环
气举反循环清孔工艺摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5kN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
冲(钻)孔灌注桩气举反循环清孔工法说课讲解
冲(钻)孔灌注桩气举反循环清孔工法目录1、前言 (3)2、特点 (4)3、适用范围 (4)4、工艺原理 (4)5、工艺流程及操作要点 (6)5.1气举反循环清孔工艺流程 (6)5.2气举反循环清孔工艺操作要点 (7)6、机具设备与工艺参数的选择 (8)6.1机具设备 (8)6.2清孔工艺参数的选择 (8)7、质量控制 (9)7.1工程质量标准 (9)7.2质量保证措施 (9)8、安全措施 (10)9、环保措施 (10)10、效益分析 (10)冲(钻)孔灌注桩气举反循环清孔工法1、前言冲(钻)孔灌注桩因承载力大、稳定性好、沉降量小、受施工水位或地下水位高低的影响较小等优点,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
孔底沉渣厚度的控制是冲(钻)孔灌注桩成孔质量的关键,其质量的优劣将直接影响灌注桩的承载力,有效控制孔底沉渣是控制成桩质量的重要环节之一。
一般冲(钻)孔灌注桩施工需要进行两次清孔作业:第一次清孔是在桩孔施工达到设计深度以后,利用原成孔机具进行,其目的是以替换泥浆为主,清除浮渣为辅,以泥浆性能基本达到要求为标准;第二次清孔是在浇灌桩身混凝土之前,利用灌浆导管进行,其目的是以清除沉渣为主,替换泥浆为辅,以孔底沉渣厚度达到设计要求为标准。
在以正循环工艺施工冲(钻)孔灌注桩时,第二次清孔(以下简称二次清孔)一般均利用导管正循环工艺,效果也很好。
但是在施工较大桩径或超长桩的条件下,除非另配大泵,增加泵量,否则清孔效果下降;而在施工以卵砾石层为持力层的条件下,正循环二次清孔更难以将粒径较大的卵石或碎石清除干净。
当然也有改用泵吸反循环进行二次清孔,在上述施工条件下,其效果显著优于正循环,但砂石泵设备较笨重,机具密封性能要求高,设备在桩孔之间搬动安装不便,故障率也相对较高,若连接部件密封性能出现问题时,就可能影响反循环清孔的效果和时间,清孔工作效率不稳定。
鉴于上述两种清孔方法方法所存在的问题,本工法采用气举反循环清孔工艺,既简化施工难度,又提高了清孔效率,并且有效保证施工质量。
气举反循环清孔工艺操作要领.【范本模板】
摘要钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响.关键词——钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩.成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔.第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺.二、正、反循环清孔工艺介绍1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11。
5~12。
5kN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。
冲 钻 孔灌注桩气举反循环清孔工法
目录冲(钻)孔灌注桩气举反循环清孔工法1、前言冲(钻)孔灌注桩因承载力大、稳定性好、沉降量小、受施工水位或地下水位高低的影响较小等优点,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
孔底沉渣厚度的控制是冲(钻)孔灌注桩成孔质量的关键,其质量的优劣将直接影响灌注桩的承载力,有效控制孔底沉渣是控制成桩质量的重要环节之一。
一般冲(钻)孔灌注桩施工需要进行两次清孔作业:第一次清孔是在桩孔施工达到设计深度以后,利用原成孔机具进行,其目的是以替换泥浆为主,清除浮渣为辅,以泥浆性能基本达到要求为标准;第二次清孔是在浇灌桩身混凝土之前,利用灌浆导管进行,其目的是以清除沉渣为主,替换泥浆为辅,以孔底沉渣厚度达到设计要求为标准。
在以正循环工艺施工冲(钻)孔灌注桩时,第二次清孔(以下简称二次清孔)一般均利用导管正循环工艺,效果也很好。
但是在施工较大桩径或超长桩的条件下,除非另配大泵,增加泵量,否则清孔效果下降;而在施工以卵砾石层为持力层的条件下,正循环二次清孔更难以将粒径较大的卵石或碎石清除干净。
当然也有改用泵吸反循环进行二次清孔,在上述施工条件下,其效果显着优于正循环,但砂石泵设备较笨重,机具密封性能要求高,设备在桩孔之间搬动安装不便,故障率也相对较高,若连接部件密封性能出现问题时,就可能影响反循环清孔的效果和时间,清孔工作效率不稳定。
鉴于上述两种清孔方法方法所存在的问题,本工法采用气举反循环清孔工艺,既简化施工难度,又提高了清孔效率,并且有效保证施工质量。
本工法已在多个工程中推广应用,取得了良好的效果。
2、特点此工法清孔能力强、效率高、清孔较彻底,尤其在施工较大桩径或超长桩和施工以卵砾石层为持力层的条件下优势明显;此工法需要的机械设备少,制作简单,操作方便,能够有效提高工作效率。
3、适用范围本工法适用于所有冲(钻)孔灌注桩二次清孔,尤其在施工较大桩径或超长桩的条件下和施工以卵砾石层为持力层的条件下优势明显。
4、工艺原理气举反循环清孔是利用空压机的压缩空气,通过安装在导管内的风管送至桩孔内,高压气与泥浆混合,在导管内形成一种密度小于泥浆的浆气混合物,浆气混合物因其比重小而上升,在导管内混合器底端形成负压,下面的泥浆在负压的作用下上升,并在气压动量的联合作用下,不断补浆,上升至混合器的泥浆与气体形成气浆混合物后继续上升,从而形成流动,因为导管的内断面积大大小于导管外壁与桩壁间的环状断面积,便形成了流速、流量极大的反循环,携带沉渣从导管内反出,排出导管以外。
气举反循环清孔工艺操作要领
气举反循环清孔工艺操作要领(总5页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March摘要钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
关键词——钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度~M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
气举反循环清孔工艺操作要领.
摘要钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
关键词——钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10kN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5kN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。
钻孔灌注桩清孔方法
钻孔灌注桩清孔方法一、正循环清孔法正循环清孔法是通过钻杆将冲洗液(通常为泥浆)压入孔底,携带钻渣从孔口溢出,从而达到清孔的目的。
在施工过程中,首先需要安装好正循环钻进系统,确保泥浆泵、钻杆、钻头等设备连接牢固且密封良好。
然后启动泥浆泵,将泥浆压入钻杆内,从钻头底部喷出。
泥浆在孔内上升的过程中,会将孔底的钻渣悬浮起来,并随着泥浆一起从孔口排出。
正循环清孔法的优点是设备简单,操作方便,适用于各种地层。
但其缺点也比较明显,清孔效率相对较低,对于较大颗粒的钻渣清除效果不佳,且容易造成泥浆的大量流失。
为了提高正循环清孔的效果,可以适当增加泥浆的比重和粘度,以增强其携带钻渣的能力。
同时,控制钻进速度和钻进深度,避免在孔底形成过多的钻渣堆积。
二、反循环清孔法反循环清孔法与正循环清孔法相反,是通过砂石泵或空气吸泥机将孔底的泥浆和钻渣吸出,形成负压,使孔外的新鲜泥浆通过钻杆与孔壁之间的环状间隙流入孔底,从而实现清孔。
反循环清孔法又分为泵吸反循环清孔和气举反循环清孔两种方式。
泵吸反循环清孔是利用砂石泵的抽吸作用,使钻杆内腔形成负压,在大气压的作用下,孔底泥浆和钻渣被吸入钻杆内腔,然后通过砂石泵排出孔外。
这种方法清孔效率高,能迅速清除孔底的沉渣,尤其适用于大直径、深孔的灌注桩清孔。
气举反循环清孔则是利用压缩空气与钻杆内的泥浆混合,形成密度小于泥浆的气浆混合物。
由于压差的作用,气浆混合物迅速上升,从而将孔底的泥浆和钻渣带出孔外。
气举反循环清孔适用于深孔和复杂地层的灌注桩清孔,但设备相对复杂,操作要求较高。
在进行反循环清孔时,要注意控制抽吸的速度和压力,避免对孔壁造成过大的扰动,导致孔壁坍塌。
同时,要保证泥浆的性能满足清孔要求,防止出现塌孔等问题。
三、掏渣清孔法掏渣清孔法是用掏渣筒或抓斗将孔底的钻渣掏出,达到清孔的目的。
这种方法适用于在冲击钻成孔过程中的初步清孔。
在使用掏渣筒时,将其放入孔底,然后旋转或上下提拉,使筒内装满钻渣,再提出孔外倒掉。
气举反循环清孔工艺
钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程得基础工程。
钻孔灌注桩沉渣得清理就是控制桩身质量得关键,传统得钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺、本文就此介绍气举反循环清孔工艺得运用,并比较对工程质量以及经济效益带来得影响。
ﻫ[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:ﻫ传统得钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用、钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
ﻫ钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目得。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
ﻫ第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺ﻫ第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定得则注入泥浆(泥浆密度11、5~12、5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成得环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单得说,正循化清孔得定义就就是沉渣从导管外溢出得清渣工艺。
ﻫ2、反循环清孔工艺从前文所述、顾名思义,反循环清孔得定义就就是沉渣从导管内排出得清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
气举反循环清孔工艺之欧阳物创编
钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻孔灌注桩气举反循环清孔工艺
欧阳光明(2021.03.07)
[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在浙江一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程监理质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩、气举反循环、二次清孔
一、钻孔灌注桩工艺:
传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆
液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:
1、正循环清孔工艺
第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺
从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管内排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
近年来出现的气举反循环法相对工艺更为简单,清孔效果明显,推广较快。
监理工程师论坛/气举反循环清孔是利用空压机的压缩空气,通过安装在导管内的风管送至桩孔内,高压气与泥浆混合,在导管内形成一种密度小于泥浆的浆气混合物,浆气混合物因其比重小而上升,在导管内混合器底端形成负压,下面的泥浆在负压的作用下上升,并在气压动量的联合作用下,不断补浆,上升至混合器的泥浆与气体形成气浆混合物后继续上升,从而形成流动,因为导管的内断面积大大小于
导管外壁与桩壁间的环状断面积,便形成了流速、流量极大的反循环,携带沉渣从导管内反出,排出导管以外。
3、气举反循环清孔工艺设备比较
反循环工艺较正循环工艺而言,增加空压机一台、风管一套。
该风管在二次清孔时安装在导管内,故导管上部相应增加连接阀门,风管下部是气浆混合器。
反循环工艺导致沉渣从导管内反出,导管上部增加三通一套,排至接渣篮。
相对其它反循环清孔工艺,气举反循环工艺的送风管安装在导管内,不像其它反循环清孔工艺在导管外安装风管,减少拔出风管时与钢筋笼牵挂的危险、更保护泥浆护壁,且气浆混合器制作简单,操作更为方便,故更适用于小孔径(直径500-800)钻孔灌注桩。
因气举反循环工艺特点,钻孔灌注桩第一次清孔时并不适用气举反循环清孔工艺了。
否则,须逐节拔出导管,再安装风管,待第一次清空完成后,再次拔出、拆除导管与风管,待钢筋笼就位后,再二次安装风管进行第二次清孔。
这样的后果是增加了作业时间,且由于反循环二次清孔效果较好,这样做也显得毫无必要。
三、气举反循环清孔工艺操作要领
1、导管下放深度以出浆管底距沉淤面300~400mm为宜,风管下放深度一般以气浆混合器至泥浆面距离与孔深之比的0.55~0.65来确定。
2、主要参数:空压机的风量6~9m3/min,导管出水管直径>Φ200mm,送风管直径(水管)Φ25mm,浆气混合器用Φ25mm水
管制作,在1m左右长度范围内打6排孔、每排4个Φ8mm孔即可。
3、开始送风时应先孔内送浆(补浆),停止清孔时应先关气后断浆。
清孔过程中,特别要注意补浆量,严防因补浆不足(水头损失)而造成塌孔。
4、送风量应从小到大,风压应稍大于孔底水头压力,当孔底沉渣较厚、块度较大,或沉淀板结时,可适当加大送风量,并摇动出水管(导管),以利排渣。
5、随着钻渣的排出,孔底沉淤厚度较小,出水管(导管)应同步跟进,以保持管底口与沉淤面的距离。
6、清孔后,孔内泥浆比重应小于1.20,粘度18~20s,孔底沉渣厚度≤5cm。
7、反循环法清孔时所需风压P的计算。
P=γs·h0/1000+ΔP
γs——泥浆比重(KN/m3),一般取1.2
h0——混合器沉没深度(m)
ΔP——供气管道压力损失,一般取0.05~0.1MPa
四、气举反循环清孔速度
气举反循环与正循环在沉渣的冲洗、上返流速存在巨大差异。
气举反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数倍的上返速度。
根据钻探水力学原理,冲洗液在钻孔内的上返速度是钻渣颗粒群悬浮速度的1.2-1.3倍,即Va=(1.2-1.3)Vs。
反循环清孔至钻渣
在导管内运动,使形态各异的钻渣群在有限的空间作悬浮运动,上升速度较快。
由于返浆速度较大,以内径200mm的导管为例,粒径约100-150mm的石块也能清运出来。
这一优点和泵吸反循环清孔工艺相类似,但是泵吸法循环系统复杂,砂石泵故障多是主要缺点;这一优点是空气吸泥机法所不能比拟的,一般通过空气吸泥机法清孔,由于空气混合室构造、送风管距孔底距离较近等原因,只能清出约50mm粒径的石子。
而正循环清孔,冲洗液携带钻渣后进入钻杆与孔壁形成的环形空间上返,由于冲洗液上返断面面积大,上返速度较慢,因此可能部分比重较大渣层颗粒会回落,须反复循环清孔,耽搁时间。
在选用基岩作持力层时,这种情况显得尤为明显。
本单位施工的的某高层建筑桩基施工验证了上述观点。
该工程设计为直径1000钻孔灌注桩,持力层为基岩,桩基入岩深度1300,设计选3根桩试桩,做破坏试验。
当时对第一根桩、第二根桩有意作了对比试验。
第一根桩二次清孔时不安装风管,清孔2小时后,再安装风管,20分钟内,又清理出石渣26kg;第二根桩二次清孔时,安装风管清孔,30分钟内清理完成,对比效果明显。
五、气举反循环清孔质量
通过上述试验已表明,气举反循环清孔由于返浆速度快,清渣效果较好,沉渣层较薄,而沉渣层厚度大小与单桩承载力高低密切相关。
还是以上述的高层建筑桩基为例,该工程3根装在试桩时极限承载力均达到14500KN以上,这在浙江湖州市一带是较为罕见
的。
该工程桩基施工完成后,对桩身质量进行钻芯取样检查,其沉渣厚度在20mm以内,也证明了这一点。
从另一角度,在桩基持力层为基岩的前提下,正循环为了有效的排渣,选用的泥浆(冲洗液)密度较高、浓度较大,势必造成孔内压力大,对孔壁四周作用力也大,孔壁四周泥皮较厚,降低了孔四周摩阻力,也降低了单桩承载力。
故从质量角度来看,应推荐气举反循环清孔工艺。
六、经济效果分析
表面上看,气举反循环工艺增加了设备,增加了工程成本,其实不然,下面从几个方面分析经济效果。
1、沉渣厚度减小,提高单桩承载力,优化桩径,降低工程造价。
单桩承载力的大小,取决于桩周土的摩阻力与桩底端承力,气举反循环清孔过程中形成的泥皮较薄从而使摩阻力增大,桩底沉渣清除较为彻底,无软弱层从而提高桩的端承力,按试桩结果设计时,势必降低桩基工程成本。
2、清渣速度快,缩短工期,降低施工成本。
钻孔灌注桩桩基采用气举反循环法清孔施工时,每根桩清孔约减少2个小时时间,提高了劳动生产率,加快设备周转周期,直接降低了工程施工成本。
3、清渣速度快,泥浆排放量减少,减少环境污染,降低施工清运处理成本。
根据预算定额,废浆排运费约占工程成本8%-10%,每根桩减少2小时排放时间,且气举反循环法清孔渣分离容易,以笔者施工的30米深钻孔灌注桩为例,泥浆排放成本相比以前下降约5%。
七、总结
通过以上分析,从工期、质量、环保、经济等多角度分析,钻孔灌注桩气举反循环二次清孔施工工艺值得推广,其在桩基持力层为基岩、孔径在500-800mm钻孔灌注桩施工中的优越性更是其他工艺无法比拟的。