2015年功率半导体器件行业简析

合集下载

2015全球半导体设备制造商发展汇总

2015全球半导体设备制造商发展汇总

2011年全球半导体设备制造商发展概况上海科学技术情报研究所董瑞青2013-01-28关键字:全球半导体设备制造商发展概况浏览量:1601半导体设备是半导体产业发展的基础,也是半导体产业价值链顶端的“皇冠”。

从全球范围看,美国、日本、荷兰等国家是世界半导体装备制造的三大强国,全球知名的半导体设备制造商主要集中在上述国家。

如表1所示,2011年世界前十六大半导体设备生产商中,有美国企业7家,日本企业6家,荷兰企业2家,德国企业1家,其中荷兰阿斯麦(ASML)以78.8亿美元的销售额位居全球第一,美国应用材料公司以74.4亿美元的销售额位居第二,日本东京电子销售额为62.0亿美元,位列第三;从企业主要的半导体设备产品看,美国主要控制等离子刻蚀设备、离子注入机、薄膜沉积设备、掩膜板制造设备、检测设备、测试设备、表面处理设备等,日本则主要控制光刻机、刻蚀设备、单晶圆沉积设备、晶圆清洗设备、涂胶机/显影机、退火设备、检测设备、测试设备、氧化设备等,而荷兰则在高端光刻机、外延反应器、垂直扩散炉等领域处于领导地位。

从国内看,近年来,在国家科技重大专项支持下,我国集成电路装备产业发展取得了显著进展。

上海中微半导体的90nm-65nm等离子体介质刻蚀机、45nm-32nm等离子体介质刻蚀机及北方微电子装备的65nm硅栅刻蚀机已通过12英寸片生产线的考核验证,并实现销售。

上海微电子装备的先进封装光刻机进入江苏长电科技集团的集成电路封装生产线正式使用。

七星华创的12英寸氧化炉也进入大线试用。

中科信12英寸大角度离子注入机已完成3台样机组装,正在进行测试验证。

盛美半导体的12英寸单晶圆兆声波清洗机已进入韩国海力士12英寸晶圆生产线的使用,并取得了韩国海力士本部的书面认证。

资料来源:VLSI research inc。

参考文献:[1] VLSI research公司网站.[①] MEMS(微机电系统),是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。

功率半导体器件发展概述

功率半导体器件发展概述

功率半导体器件发展概述
原创
近几十年来,随着半导体技术及其相关应用的快速发展,半导体器件的性能也在不断提升。

首先,高功率半导体器件是指采用半导体材料制造的器件,其最大功率能力达到千瓦以上,能够满足电子设备发电、传输、控制等各种高功率应用需求。

高功率半导体器件在现代电子产品中有着越来越重要的地位,功率晶体管、功率MOSFET、IGBT、SCR、二极管、交流电动机控制器等是最重要的几种高功率半导体器件。

这些器件在现代社会发挥了重要作用,参与设计了大功率的电子设备和装置,如电源、励磁技术、变频装置、UPS等,有效地改善了电子设备的性能,为现代电子设备及相关应用提供了有效的支持。

高功率半导体器件的发展历程可以追溯到上世纪50年代,当时科学家发明出了可调谐晶体管和功率晶体管,但其最大功率并不能达到千瓦。

在1960年,科学家又发明出功率MOSFET,用于高功率电子设备设计,从而有效降低了设备整体尺寸,加快了技术迭代速度。

功率半导体开关行业市场现状分析及未来三到五年发展趋势报告

功率半导体开关行业市场现状分析及未来三到五年发展趋势报告

功率半导体开关行业市场现状分析及未来三到五年发展趋势报告As of now, the power semiconductor switch industry is experiencing robust growth due to the increasing demand for energy-efficient devices in various applications such as industrial, automotive, consumer electronics, and renewable energy systems. The market is driven by the need for higher power density, improved performance, and reliability in power electronic systems.The power semiconductor switch market is witnessing a shift towards wide bandgap (WBG) materials such as silicon carbide (SiC) and gallium nitride (GaN) due to their superior properties compared to traditional silicon-based devices. This transition is expected to continue over the next few years, driving the market growth.In addition, the increasing adoption of electric vehicles (EVs) and the growing emphasis on renewable energy sources are contributing to the expansion of the power semiconductor switch market. EVs require efficient power electronic systems, andrenewable energy systems rely on power semiconductor devices for power conversion and conditioning.Furthermore, advancements in technology such as the development of advanced packaging techniques, integration of power modules, and the rise of Industry 4.0 are expected to shape the future of the power semiconductor switch industry. These technological advancements will lead to enhanced efficiency, miniaturization, and improved thermal performance of power semiconductor devices.In the next three to five years, the power semiconductor switch market is anticipated to witness significant growth in the Asia Pacific region, particularly in countries like China, Japan, and South Korea. The rapid industrialization, urbanization, and infrastructure development in these regions will drive the demand for power electronic devices across various sectors.Moreover, the increasing focus on energy efficiency, coupled with government initiatives to promote clean energy, will fuel the demand for power semiconductor switches in thecoming years. This trend is expected to accelerate the deployment of smart grid systems, energy storage solutions, and electric vehicle infrastructure, thereby creating opportunities for the power semiconductor switch market.With the ongoing technological innovations and the shift towards WBG materials, the power semiconductor switch industry is poised for substantial growth in the near future. The market players are investing in research and development activities to introduce innovative products and gain a competitive edge. Overall, the industry is set to witness dynamic changes and emerge as a key enabler for the advancement of power electronic systems across various applications.中文:截至目前,功率半导体开关行业正经历着强劲增长,原因在于各种应用领域对节能设备的需求不断增加,如工业、汽车、消费电子和可再生能源系统。

功率半导体器件简介演示

功率半导体器件简介演示
功率半导体器件简介 演示
汇报人: 日期:
目 录
• 功率半导体器件概述 • 功率二极管 • 功率晶体管 • 功率场效应管 • 功率半导体器件的制造工艺流程 • 功率半导体器件的发展趋势和市场前景
01
功率半导体器件概述
功率半导体器件的定义
功率半导体器件是一种用于电能转换和控制的重要电子器件,它能够实现电能的 转换、控制和放大等功能。
新能源汽车及充电设施需 求
新能源汽车及充电设施的快速发展,对功率 半导体器件的需求不断增加,同时对功率半 导体器件的性能和可靠性也提出了更高的要
求,如高耐压、高效率、高可靠性等。
国际竞争加剧市场整合
国际巨头垄断市场
全球功率半导体市场主要由国际巨头所 垄断,如美国德州仪器(TI)、美国英特 尔(Intel)、日本富士通(Fujitsu)等 ,这些企业在技术研发、品牌和市场渠 道等方面具有较大优势,占据了市场的 主要份额。
金属电极
在PN结上添加两个金属电 极,一个是阳极,另一个 是阴极。
封装
将PN结和金属电极封装在 固体介质中,以保护其免 受环境影响。
功率二极管的特性
伏安特性
功率二极管的伏安特性曲线展示其电 压与电流之间的关系。
反向恢复时间
功率二极管在从一个状态转换到另一 个状态所需的时间。
额定电流
在规定温度下,二极管能够安全通过 的最大电流。
VS
国内企业逐步崛起
随着国内电子信息技术的发展,国内功率 半导体企业逐渐崛起,如中国电子科技集 团公司(CETC)、杭州士兰微电子股份 有限公司(Silan)等,这些企业在国家 政策支持和技术积累下,逐渐提升自身技 术水平和产品质量,逐步扩大市场份额。
THANKS

2015年中国电子信息制造业发展形势全分析

2015年中国电子信息制造业发展形势全分析

2015年中国电子信息制造业发展形势全分析展望2015年,我国电子信息制造业与中国宏观形势走向一致,从外部环境、整体产业、细分行业、产业转型四方面呈现出新常态。

尤其是2014年以来,产业突如其来的出口负增长态势,对2015年产业发展埋下了严峻的基调。

展望2015年,我国电子信息制造业与中国宏观形势走向一致,从外部环境、整体产业、细分行业、产业转型四方面呈现出新常态。

尤其是2014年以来,产业突如其来的出口负增长态势,对2015年产业发展埋下了严峻的基调。

但同时,应看到集成电路政策效应的显现,以及智能硬件和跨界转型的加速,将为产业注入新鲜活力。

我国电子信息制造业由大变强的历史任务面临严峻挑战,但也呈现新的契机。

一、对2015年形势的基本判断(一)外部环境新常态:国内外宏观经济普遍降温全球经济仍然处于低位徘徊,不同经济体面临挑战各异。

国际货币基金组织(IMF)将2015年全球经济增速预期由4.0%下调至3.8%。

由于法德等核心国经济回暖以及希腊逆转颓废态势,三季度欧元区和欧盟GDP同比增速都好于预期。

但由于通货紧缩压力上升,以及希腊政府仍面临着确保主权债务的一系列挑战,2015年欧元区表现仍然令人担忧;由于长期经济结构失衡和石油能源收入下降,俄罗斯经济下行风险增强,而其他新兴经济体也面临通缩压力,难以开启高速增长。

有国际机构调查显示,38%的受访者认为全球经济正在恶化,达到两年来的最低谷。

中国经济也将在波折中低位运行,各行业领域皆面临下行压力。

从2014年我国经济趋势看,从一季度的低位增长至二季度增速(7.5%)回升,再至三季度(7.3%)的下降,可以看出,虽然货币政策、基础建设投资项目等政策引导产生了明显成效,但是由于基础脆弱,预计2015年经济基本面仍然难以出现明显回升。

特别值得关注的是,房地产市场长期拐点的来临,对我国经济全面转型提出了紧迫要求。

由于缺乏显著的增长点,预期2014年全年GDP 增速将处于7.2%-7.5%区间,2015年中国经济增速可能继续小幅下降,至7%左右。

功率器件简要介绍

功率器件简要介绍

一功率半导体简介功率半导体器件种类很多,器件不同特性决定了它们不同得应用范围,常用半导体器件得特性如下三图所示。

目前来说,最常用得功率半导体器件为功率MOSFET与IGBT。

总得来说,MOSFET得输出功率小,工作频率高,但由于它导通电阻大得缘故,功耗也大。

但它得功耗随工作频率增加幅度变化很小,故MOSFET更适合于高频场合,主要应用于计算机、消费电子、网络通信、汽车电子、工业控制与电力设备领域。

IGBT得输出功率一般10KW~1000KW之间,低频时功耗小,但随着工作频率得增加,开关损耗急剧上升,使得它得工作频率不可能高于功率MOSFET,IGBT主要应用于通信、工业、医疗、家电、照明、交通、新能源、半导体生产设备、航空航天以及国防等领域。

图1、1 功率半导体器件得工作频率范围及其功率控制容量图1、2 功率半导体器件工作频率及电压范围图1、3 功率半导体器件工作频率及电流范围二不同结构得功率MOSFET特性介绍功率MOSFET得优点主要有驱动功率小、驱动电路简单、开关速度快、工作频率高,随着工艺得日渐成熟、制造成本越来越低,功率MOSFET应用范围越来越广泛。

我们下面主要介绍一些不同结构得MOSFET得特性。

VVMOSFET图2、1 VVMOS结构示意图VVMOS采用各向异性腐蚀在硅表面制作V 形槽,V形槽穿透P与N+连续扩散得表面,槽得角度由硅得晶体结构决定,而器件沟道长度取决于连续扩散得深度。

在这种结构中,表面沟道由V 形槽中得栅电压控制,电子从表面沟道出来后乡下流到漏区。

由于存在这样一个轻掺杂得漂移区且电流向下流动,可以提高耐压而并不消耗表面得面积。

这种结构提高了硅片得利用率,器件得频率特性得到很大得改善。

同时存在下列问题:1,V形槽面之下沟道中得电子迁移率降低;2,在V槽得顶端存在很强得电场,严重影响器件击穿电压得提高;3,器件导通电阻很大;4,V槽得腐蚀不易控制,栅氧暴露,易受离子玷污,造成阈值电压不稳定,可靠性下降。

功率半导体器件发展概述

功率半导体器件发展概述

中国电工技术学会电力电子学会第十届学术年会论文集
相互交叠的 SJ 结构中的电场分布,使传统 VDMOS 中 击穿盾关系,所以,国际 上对横向 SJ(SJ-LDMOS)研究也是一个热点。
图 1 纵向 Super Junction 结构
功率半导体器件的半导体衬底材料是影响功率器件 发展的基础,下面分别以目前应用和研究最广泛的硅基 和 SOI(SOI,Silicon-On-Insulator)基为例对功率器件的发 展作简单的概述。 2.1 硅基功率器件
硅基功率器件是第一代半导体功率器件,在对硅、
锗材料以及与之形成界面的氧化物、硅/金属研究成熟的 基础上,出现了功率晶闸管、功率二极管、功率 MOS、 IGBT 等。功率二极管是功率半导体器件的重要分支。目 前商业化的功率二极管主要是 PiN 功率二极管和肖特基 势垒功率二极管(SBD)[2]。前者有着耐高压、大电流、 低泄漏电流和低导通损耗的优点,但电导调制效应在漂 移区中产生的大量少数载流子降低了关断速度,限制了 电力电子系统向高频化方向发展。具有多数载流子特性 的肖特基势垒功率二极管有着极高的开关频率,但其串 联的漂移区电阻有着与器件耐压成 2.5 次方的矛盾关系, 阻碍了肖特基势垒功率二极管的高压大电流应用,加之 肖特基势垒功率二极管极差的高温特性、大的泄漏电流 和软击穿特性,使得硅肖特基势垒功率二极管通常只工 作在 200 伏以下的电压范围内。
SOI 高压器件作为 SOI SPIC 的核心器件,其击穿电 压取决于横向击穿电压和纵向击穿电压的较低者。由于 常规 SOI 结构埋层限制耗尽区向衬底扩展,衬底不能参 与耐压,同时基于隔离和散热的考虑,顶层硅和埋氧层 都不能做得太厚,因而 SOI 器件的纵向耐压成为限制 SOI 技术在功率集成电路领域应用的主要因素。在最近的 20 年中人们提出了一系列的新技术和新结构[9-10],分别从 横向和纵向来提高 SOI 高压器件的击穿电压。我们通过 对 SOI 中介质层中电场和击穿电压的分析,提出了一种 提高器件纵向耐压的新技术-介质场增强技术(EnbilfBuried Insulator Layer Field),这种技术通过在传统 SOI 埋层(I 层)中引入低介电系数的材料或通过使用图形化 的结构突破了传统 SOI 结构中受界面电荷为零时的 3 倍 电场关系,通过 Enbilf 技术,使 I 层中的电场大大提高, 纵向击穿电压达到设计的要求。 3 SJ(Super Junction)型功率半导体器件发展展望

功率半导体的优劣势分析-功率半导体器件用途功率半导体器件概述

功率半导体的优劣势分析-功率半导体器件用途功率半导体器件概述

功率半导体的优劣势分析-功率半导体器件用途功率半导体器件概述功率半导体器件是指能够承受较高功率水平,并且能够在高频率下工作的半导体器件。

它们在电子设备中起着至关重要的作用,广泛应用于交流电动机控制、电源管理、照明、医疗设备和电动汽车等领域。

本文将对功率半导体器件的优势和劣势进行分析,并讨论其在不同应用中的用途。

首先,功率半导体器件的优势之一是高效能和精确控制,使其能够在各种高功率应用中提供高效能的表现。

功率半导体器件具有低导通电阻和低开关损耗的特点,能够显著提高电能转换的效率。

此外,功率半导体器件具有高速开关和快速恢复的特点,能够实现精确的控制和响应时间,提高设备的性能和可靠性。

其次,功率半导体器件在高电压和高电流应用中具有较好的耐压和耐流能力。

这使得它们能够在较恶劣的工作环境中长期稳定地工作。

功率半导体器件通常具有较高的工作温度范围和较低的封装电阻,能够在高温环境下维持良好的性能。

此外,功率半导体器件的结构和材料设计使其能够承受大电流冲击和高电压应力,在高压和大电流的条件下仍能保证良好的工作状态。

另外,功率半导体器件具有较小的体积和重量。

相比于传统的电力设备,功率半导体器件的尺寸和重量大大减小,这减轻了设备的体积和重量,提高了设备的灵活性和可移动性。

功率半导体器件的小尺寸和轻量化还有助于减少电子设备的冷却需求,降低设备的散热成本。

然而,功率半导体器件也存在一些劣势需要考虑。

首先是价格较高。

功率半导体器件通常由复杂、高精度的制造工艺制成,这使得其成本较高。

另外,功率半导体器件的可靠性要求较高,需要进行严格的质量控制和测试,也会增加成本。

其次,功率半导体器件在高功率应用中容易受到热失控的影响。

高功率应用中的大电流和高电压造成的热损耗会导致功率半导体器件过热,降低其性能和寿命。

因此,需要进行有效的散热和温度控制,以确保功率半导体器件的正常工作。

此外,功率半导体器件的响应速度较快,在一些应用中可能会引起电磁干扰问题。

功率半导体行业深度研究报告

功率半导体行业深度研究报告

功率半导体行业深度研究报告报告综述:功率半导体是电子装置核心器件,应用广泛且分散。

功率半导体是电子装置电能转换与电路控制的核心,本质上是通过利用半导体的单向导电性实现电源开关和电力转换的功能。

功能半导体包括功率IC和功率器件,是系统应用的核心器件,战略地位十分突出。

功率半导体具体用途是变频、变相、变压、逆变、整流、增幅、开关等。

从产品种类看,根据统计数据,2019 年功率半导体最大的细分领域是功率IC,占比54.30%,MOSFET占比16.40%,IGBT占比12.40%,功率二极管/整流桥占比14.80%。

下游应用多点开花,功率半导体国产替代空间广阔。

功率半导体的应用领域非常广泛,根据Yole数据,2019 年全球功率半导体器件市场规模为175 亿美元。

从下游应用来看,汽车、工业和消费电子是前三大终端市场,根据中商产业研究院数据,2019 年汽车领域占全球功率半导体市场的35.4%,工业领域占比为26.8%,消费电子占比为13.2%。

受益于新能源汽车、5G基站、变频家电等下游需求强劲,叠加“新基建”、第三代半导体等政策全力助推,快充充电头、光伏/风电装机、特高压、城际高铁交通对功率器件的需求也快速扩张,功率器件迎来景气周期,Yole预测到2025 年全球功率器件市场或达225 亿美元,2019-2025 年CAGR为 4.28%。

从竞争格局看,行业龙头为英飞凌、安森美、意法半导体等欧美大厂,目前中国功率半导体市场约占全球四成,大陆厂商以二极管、中低压MOSFET、晶闸管等产品为主,整体呈现中高端产品供给不足、约九成依赖进口的态势,国内以斯达半导、捷捷微电、新洁能等为代表的的功率厂商相继实现技术突破,日渐崛起,国产替代空间广阔。

第三代半导体前景广阔,国内企业加码布局。

半导体性能要求不断提高,在高温、强辐射、大功率环境下,第一、二代半导体材料效果不佳,以SiC和GaN为代表的的第三代半导体材料崭露头角。

大功率半导体技术现状及其进展

大功率半导体技术现状及其进展

大功率半导体技术现状及其进展摘要:在1957年晶闸管的发明使得牵引传动技术正式步入了电子技术时代,随后60多年的发展带动了大功率半导体行业逐步开发出全新材料的器件。

近几年,大功率半导体技术逐步围绕着功率转换以提高技术水平,通过不断优化功率半导体器件结构和细节工艺,以提高大功率半导体的功率容量和功率密度,在降低功率损耗的同时,提高能源转换效率。

本文在简单介绍了现在硅基大功率半导体器件的发展过程及新器件研究的进展基础上,分析了在当前技术背景下大功率半导体技术发展所面临的全新挑战。

关键词:功率半导体器件;晶闸管;绝缘栅双极晶体管正文:功率半导体器件的发展不断带动了能源技术的发展,同时也推动了轨道牵引传动技术的进步,在1957年晶闸管发明后,交直传动技术获得了前所未有的发展,随后1965年第一台晶闸管整流机车的问世,带动了全球单相工频交流电网电气化的发展高潮。

在步入20世纪70年代后,大功率晶闸管的出现使得交流传动技术逐步取代了之前应用极为广泛的交直传动技术。

随后,在20世纪90年代中期,伴随着高压IGBT技术的的不断完善,交流传动功率开关也逐步由IGBT取代,尤其在城市轨道高速交通等领域获得广泛使用。

通过60多年的发展功率,半导体技术已经开始逐步探索归集材料的物理极限,为此,全新的宽禁带材料和新型器件受到了更多学者的关注。

一、功率半导体器件的演变历史在1949年美国贝尔实验室发明出世界第一只竹鸡双极型晶体管后,不仅集成电路由此开始了漫长的发展旅程,功率半导体也从样由此起源,基极作为控制,即通过较小的输入电流来控制集电极和发射间存在的电流和电压。

但通过时间发展,锗基BJT热稳定方面存在比较明显的缺陷。

为此,在经过一段时间发展后,到了20世纪60年代,硅基BJT取代了之前所使用的锗基BTJ。

此外,在功率半导体发展过程中,也曾出现过功率BTJ。

与其他类型相比,功率BTJ拥有极低的饱和降压和极低的生产成本,但是其在使用过程中驱动功率较大和热稳定性差的问题,导致其逐渐被历史所淘汰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年功率半导体器件行业简析
一、行业的定义与分类 (2)
二、行业的发展历史和现状 (3)
三、行业规模 (4)
四、行业的周期性 (6)
五、进入本行业的壁垒 (6)
1、技术壁垒 (6)
2、客户服务壁垒 (7)
六、行业风险因素 (7)
1、投入不足 (7)
2、质量意识差 (8)
七、影响行业未来发展趋势的因素 (8)
1、电子元器件微型化 (8)
2、电子元器件集成化 (9)
3、产业政策大力支持 (9)
一、行业的定义与分类
功率半导体器件是进行电能(功率)处理的半导体产品,典型的功率处理功能包括变频、变压、变流、功率放大和功率管理等,是弱电控制与强电运行间的桥梁,其中大部分是既能耐高压也能承受大电流。

半导体产业的发展始于分立器件,所谓“分立”,一般是指被封装的半导体器件仅含单一元件(为了产品应用需要,部分分立器件封装实际上包含二个或多个元件或器件),它必须和其它类型的元件相结合,才能提供类似放大或开关等基本电学功能。

从产品结构来分,功率半导体分立器件可分为二极管、三极管、功率晶体管、功率集成电路等几大类产品,其中功率晶体管包括有MOSFET和IGBT等。

从功率处理能力来分,功率半导体分立器件可分为四大类,包括低压小功率分立器件(电压低于200V,电流小于200mA)、中功率分立器件(电压低于200V,电流小于5A)、大功率分立器件(电压低于500V,电流小于40A)、高压特大功率分立器件(电压低于2,000V,电流小于40A)。

每个电子产品均离不开功率半导体技术。

功率半导体的目的是使电能更高效、更节能、更环保并给使用者提供更多方便。

如通过变频来调速,使变频空调在节能50-70%的同时,更环保、更安静、让人更舒适。

人们希望便携式电子产品一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。

正是由于功率半导体能将“粗电”变为“精电”,因此它是。

相关文档
最新文档