第二章指令系统

合集下载

系统结构讲义-2

系统结构讲义-2

码元分配:从树根开始,对每个中间结点的左右2个分支边各赋予
一位代码“0”和“1”(“0”在哪一侧不限)。读出从根结点到任一片树叶 的路径上依次出现的代码位就排成了这个事件(即指令)的完整编码。 由于频度高的事件较晚被合并,它的编码位数也就较少,符合Huffman压 缩原则。
上面所说的频度值就是各事件实际出现次数的百分比, 它是理论出现概率的近似值。 例:假设一台模型计算机共有7种不同的操作码,已 知各种操作码在程序中出现的概率如下表,利用Huffman 编码法进行操作码编码。 指令 概率 I1 0.45 I2 0.30 I3 0.15 I4 0.05 I5 0.03 I6 0.01 I7 0.01
第二章 指令系统
2.3 指令格式的优化设计
指令格式的优化是指如何用最短的二进制位数表示指令的操作码信息和 地址码信息,使指令的平均字长最短,同时便于译码。
指令的组成 操作码 地址码
1) 指令的操作种类。 2) 所用操作数数据 类型。
1) 操作数地址。 2) 地址附加信息。 3) 寻址方式。
指令格式的优化设计目标: 1) 使程序中指令的平均字长最短,节省程序的存储空间。 2) 指令格式要规整,减少硬件译码的复杂程度。
1632和64位固定32位指令时钟频率随技术发展而变化随技术发展而变化寄存器堆824个通用寄存器32192个分离的整数和浮点寄存器堆指令系统规模和类型约300条多于48种指令类型大都基于寄存器寻址方式约12种包含间接变址寻址35种只有取存寻址存储器高速缓存设计较早使用合一高速缓存有些使用分离高速缓存大多数使用分离的数据和指令高速缓存cpi及平均cpi120个周期平均4个简单操作1个周期平均约15个cpu控制大多数用微程序控制有些使用硬连线控制大多数用硬连线控制没有控制存储器代表性商品化处理器intelx86vax8600ibm390mc68040intelpentiumamd486和cyrix686sunultrasparcmipsr10000powerpc604hppa8000digitalalpha21164混合混合ciscriscciscrisc体系结构体系结构pentiumpropentiumpro处理器的处理器的ciscriscciscrisc体系结构体系结构分分基于基于riscrisc核心核心dbab将将x86x86代码转化为代码转化为riscrisc指令指令

微机原理指令系统的学习

微机原理指令系统的学习

;此时传送的操作数在数据段中,其偏移地址是 SI寄存器中的内容加上0200H 变址寻址可以有多种格式:
MOV AX, [BX+0A00H]
MOV AX, TAB[DI] 如:MOV AX, 0200H+[BX]
假设DS:3000H, BX: 1000H 则操作数所在地址:
高8位: 31201H 低8位: 31200H
存储器
格式:IN AL , PORT IN AX, PORT
功能:从PORT口输入数据到AL(AX)。
格式:OUT PORT , AL OUT PORT, AX
功能20:20/7/将17 AL(AX)中的内容从PORT口输出。
33
IN AL, 40H
OUT 40H , AL
8位
IN AX, 40H
功能: (OPRD2) OPRD1
•CPU内部寄存器之间数据的传送(除CS、IP)
•立即数传送至CPU内部的通用寄存器组
•CPU内部的寄存器(除CS、IP)与存储器(所有寻 址方式)之间
•能实现用立即数给存储单元赋值
2020/7/17
25
注意: • CS,IP不能作为目的操作数 MOV CS, AX • 两个段寄存器间不能直接传送 MOV SS, DS • 立即数不能直接传送给段寄存器 MOV DS,2000H • 内存单元间不能直接传送 MOV [SI], [2000H] • 立即数不能作为目的操作数 MOV 1000H, AX
而执行POP BX后,栈顶的物理地址是:
20190H+2H=20192H
2020/7/17
30
2020/7/17
31
3. 交换指令XCHG 格式:XCHG OPRD1, OPRD2

计算机组成原理 MIPS

计算机组成原理 MIPS
i
k
c j
字对齐方式下的存储器访问
速度较高 接口较简单
CPU
寄存器 Byte3
Byte2
Byte1
Byte0
2020/11/20
Byte3 Byte2 Byte1 Byte0 存储器
字不对齐方式下的存储器访问
节省空间 访存速度慢 接口复杂
CPU
寄存器 Byte3 Byte2 Byte1 Byte0
操作码 地址码 1 地址码 2 地址码 3
例1 设某台计算机有100条指令, (1) 采用固定长度操作码编码,试设计其操作码的编码。 (2) 假如这100条指令中有10条指令的使用概率达到90%,其余 90条指令的使用概率为10%。试采用不等长编码设计操作码。
解:
(1) 采用固定长度操作码编码时,需要7位操作码。 取其中的100个代码作为指令操作码,可以用 0000000到1100011之间的代码代表100条指令,即
2020/11/20
访存次数问题
– Char c; – Short int i,j; – int k;
int i Int k
Char c Short j Int k
字对齐方式下的数据存储
2020/11/20
空间浪费问题
– Char c; – Short int i,j; – int k;
零地址指令
操作码
地址码
1111 1100 0000 0000~1111 1100 0000
指令的格式
R1
ADD load
2020/11/20
三、指令长度
固定长度
– 取指快、译码简单。 – 单字长、双字长、多字长
可变长度
– 可提高编码效率 四、指令助记符

单片机课件第二章 ARM体系结构

单片机课件第二章 ARM体系结构

2.5
ARM微处理器指令系统
2.5.1 基本寻址方式
寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地 址的方式,ARM处理器有9 种基本寻址方式。
1.寄存器寻址
操作数的值在寄存器中,指令中的地址码字段给出的是寄存器编 号,指令执行时直接取出寄存器值操作。
例如指令: MOV R1,R2 SUB R0,R1,R2
11111
系统模式
PC,R14~R0,CPSR(ARM v4及以上版本)
并非所有的模式位组合都能定义一种有效的处理器模式。其他组合的 结果不可预知。
2.2 ARM微处理器的寄存器结构
2.2.4 Thumb状态的寄存器集
2.2 ARM微处理器的寄存器结构
2.2.4 Thumb状态的寄存器集
Thumb 状态的寄存器在ARM 状态的寄存器上的映射


在Thumb状态下,程序计数器PC(Program Counter)使用位[1]选 择另一个半字。ARM处理器在两种工作状态之间可以切换。
Thumb状态:当操作数PSR控制位T为1时,执行BX指令进入Thumb 状态。如果处理器在Thumb状态进入异常,则当异常处理(IRQ、 FIQ、Undef、Abort和SWI)返回时,自动转换到Thumb状态。(异 常都是在ARM 状态中执行) ARM状态:当操作数PSR控制位T为0时,执行BX指令进入ARM状态 ;处理器发生异常(IRQ、FIQ、Reset、Undef、Abort和SWI)。在 此情况下,把PC内容复制到异常模式的链接寄存器中,并且异常处 理将从异常向量地址开始。
sys(系统模式):运行具有特权的操作系统任务。

und(未定义指令中止模式):当未定义的指令执行时进入该 模式,可用于支持硬件协处理器的软件仿真。

《微型计算机系统原理及应用》课后答案_(第3版)清华大学出版社__杨素行

《微型计算机系统原理及应用》课后答案_(第3版)清华大学出版社__杨素行

第一章 微型计算机基础题1-1 计算机发展至今,经历了哪几代?答:电子管计算机、晶体管计算机、集成电路计算机、超大规模集成电路计算机、非冯诺伊曼计算机和神经计算机。

题1-2 微机系统由哪几部分组成?微处理器、微机、微机系统的关系是什么? 答:1、微机系统分硬件和软件,硬件包括CPU、存储器、输入输出设备和输入输出接口,软件包括系统软件和应用软件。

2、微处理器是指微机的核心芯片CPU;微处理器、存储器和输入输出设备组成微机;微机、外部设备和计算机软件组成微机系统。

题1-3 微机的分类方法包括哪几种?各用在什么应用领域中?答:按微处理器的位数,可分为1位、4位、8位、32位和64位机等。

按功能和机构可分为单片机和多片机。

按组装方式可分为单板机和多板机。

单片机在工业过程控制、智能化仪器仪表和家用电器中得到了广泛的应用。

单板机可用于过程控制、各种仪器仪表、机器的单机控制、数据处理等。

题1-4 微处理器有哪几部分组成?各部分的功能是什么?答:微处理器包括运算器、控制器和寄存器三个主要部分。

运算器的功能是完成数据的算术和逻辑运算;控制器的功能是根据指令的要求,对微型计算机各部分发出相应的控制信息,使它们协调工作,从而完成对整个系统的控制;寄存器用来存放经常使用的数据。

题1-5 微处理器的发展经历了哪几代?Pentium系列微处理器采用了哪些先进的技术?答:第一代4位或低档8位微处理器、第二代中高档8位微处理器、第三代16位微处理器、第四代32位微处理器、第五代64位微处理器、第六代64位高档微处理器。

Pentium系列微处理器采用了多项先进的技术,如:RISC技术、超级流水线技术、超标量结构技术、MMX技术、动态分支预测技术、超顺序执行技术、双独立总线DIB技术、一级高速缓冲存储器采用双cache结构、二级高速缓冲存储器达256KB或512KB、支持多微处理器等。

题1-6 何为微处理器的系统总线?有几种?功能是什么?答: 系统总线是传送信息的公共导线,微型计算机各部分之间是用系统总线连接的。

第二章 80868088寻址方式和指令系统

第二章 80868088寻址方式和指令系统

(5)奇偶标志PF
用于反映运算结果中“1”的个数。如果“1”的个数为偶数,则OF被置1,否则OF被清0。
(6)辅助进位标志AF
在字节操作时,如发生低半字节向高半字节进位或借位;在字操作时,如发生低字节向高字 节进位或借位,则辅助进位标志AF被置1,否则AF被清0。
②状态控制标志
(1)方向标志DF
方向标志决定着串操作指令执行时,有关指针寄存器调整方向。 当DF为1时,串操作指令按减方式改变有关的存储器指针值, 当DF为0时,串操作指令按加方式 改变有关的存储器指针值。
其中:存储单元的物理地址是12345H, 标出的:两个重叠段的段值分别是:1002H和1233H, 在对应段内的偏移分别是2325H和0015H。
采用段值和偏移构成逻辑地址后,段值由段寄存器给出,偏移可由指令指针IP、堆栈指针SP 和其他可作为存储器指针使用的寄存器(SI、DI、BX和BP)给出,偏移还可直接用16位数给 出。
图中指令存放在代码段中,OP表示该指令的操作码部分 再例如: MOV AL,5 则指令执行后,(AL)=05H
MOV BX,3064H 则指令执行后, (BX)=3064H
2、寄存器寻址方式
操作数在CPU内部的寄存器中,指令指定寄存器号。
对于16位操作数数,寄存器可以是:
AX、BX、CX、DX、SI、DI、SP和BP等;
指令中不使用物理地址,而是使用逻辑地址,由总线接口单元BIU按需要根据段值和偏移自动 形成20位物理址。
3、段寄存器的引用
由于8086/8088CPU有四个段寄存器,可保存四个段值。所以可同时使用四个段值,但这四个 段有所分工。
在取指令的时候,自动引用代码段寄存器CS,再加上由IP所给出的16位偏移,得到要取指令 的物理地址。

计算机系统结构第2章

计算机系统结构第2章

计算机系统结构第2章第⼆章指令系统第⼀节指令系统设计概述⼀、指令系统概述1、指令系统的设计、应⽤及实现(1)指令系统的设计*机器指令:计算机硬件实现的运算或操作的命令;第i 种格式:OP i A 1A 2编码⽰例:00110 000~111 000~111功能⽰例:A 1←(A 1)+(A 2)第j 种格式:OP j A 编码⽰例:10110 000~111功能⽰例:A←(A)+1*指令系统设计:定义所有机器指令的格式(含编码)。

*指令系统:所有机器指令的集合;第1种:第2种:…第n 种:OP 1A 1A 2OP 2A OP n A 1A 2…(2)指令系统的应⽤第i种指令应⽤⽰例a:00110 000 001 功能AH←(AH)+(AL)⽰例b:00110 011 000 功能BL←(BL)+(AH)应⽤程序⽰例:从主存地址为2000H开始的100个元素累加求和机器指令格式机器指令程序汇编程序1011wreg data 1011001001100100 CX←1001011100100000000 00100000LP:BX←2000H1011000000000000 AL←0 0000000w mod reg r/m 0000000100000111AL←AL+[BX] 01000reg 01000001 BX←BX+1 11100010 disp 11100010 11111000 LOOP LP*指令系统应⽤:按指令格式要求,根据应⽤需要、编写程序中的指令(即指令格式的实例)。

(3)指令系统的实现指令功能实现步骤—ID 对IR 的OP 译码,⽤输出信号控制某⼀部件⼯作;ID 对IR 的A 译码,⽤输出信号控制相关REG 的读/写;信号有效时间由时序部件及该指令功能实现步骤决定。

指令操作或运算—部件功能实现及数据传递等的组合。

*指令系统实现:按指令格式要求,⽤硬件实现指令功能。

*设计/应⽤实现三者关系:类似C 语⾔设计、⽤C 语⾔编程、C 语⾔编译及执⾏平台!☆指令系统的实质—软件与硬件之间的界⾯(“约定”)!指令译码器ID I OP A 内部总线CPU ID D 功能部件1功能部件n …寄存器1寄存器m…指令寄存器IR :……存储总线MAR/MDR2、指令系统涉及内容(1)指令格式包含信息分析第i种指令格式:OP i A1A2②数据:(A1)=OP i⽀持类型的地址为A1的数据①操作:A1←(A1) OP i(A2) 或A 2←(A2) OP i(A1)硬件⽀持的数据类型(含数据长度)可存放数据部件类型、部件的编址⽅式部件中同⼀数据地址的表⽰⽅式(2)涉及内容*指令集结构:指令集总体框架,如存放部件、寄存器数量;*指令集功能:⽀持操作的类型;*数据表⽰:操作⽀持的数据类型、数据存储格式等。

计算机系统结构 第二章自考练习题答案

计算机系统结构 第二章自考练习题答案

第二章数据表示与指令系统历年真题精选1. 计算机中优先使用的操作码编码方法是( C )。

A. BCD码B. ASCII码C. 扩展操作码D. 哈夫曼编码=16,除尾符之外的尾数机器位数为8位时,可表示的规格化最大尾2.浮点数尾数基值rm数值为( D )。

A. 1/2B. 15/16C. 1/256D. 255/2563. 自定义数据表示包括(标志符)数据表示和(数据描述符)两类。

4. 引入数据表示的两条基本原则是:一看系统的效率是否有提高;二看数据表示的(通用)性和(利用)率是否高。

5. 简述设计RISC的一般原则。

6. 简述程序的动态再定位的思想。

7. 浮点数表示,阶码用二进制表示,除阶符之外的阶码位数p=3,尾数基值用十进制表示,除尾符外的尾数二进制位数m=8,计算非负阶、规格化、正尾数时,(1)可表示的最小尾数值;(2)可表示的最大值;(3)可表示的尾数个数。

8. (1)要将浮点数尾数下溢处理成K—1位结果,则ROM表的单元数和字长各是多少并简述ROM表各单元所填的内容与其地址之间的规则。

(2)若3位数,其最低位为下溢处理前的附加位,现将其下溢处理成2位结果,设计使下溢处理平均误差接近于零的ROM表,以表明地址单元与其内容的关系。

同步强化练习一.单项选择题。

1. 程序员编写程序时使用的地址是( D )。

A.主存地址 B.有效地址 C.辅存实地址 D.逻辑地址2. 在尾数下溢处理方法中,平均误差最大的是( B )。

A.舍入法 B.截断法 C.恒置“1”法 D.ROM查表法3. 数据表示指的是( C )。

A .应用中要用到的数据元素之间的结构关系B .软件要处理的信息单元之间的结构关系C .机器硬件能识别和引用的数据类型D .高级语言中的数据类型说明语句4. 标志符数据表示中的标志建立由( A )。

A .编译程序完成B .操作系统完成C .高级语言编程时完成D .汇编语言编程时完成5. 堆栈型机器比通用型机器优越的是( C )。

计算机组成原理

计算机组成原理

第二章 计算机组成原理2.1 计算机的组成与分类 2.1.1 计算机的发展与作用一、 计算机的发展过去很长时间人们都按照计算机主机所使用的元器件,为计算机划代。

二、计算机的巨大作用1开拓了人类认识自然、改造自然的新资源 2增添了人类发展科学技术的新手段 3提供了人类创造文化的新工具 4引起了人类的工作与生活方式的变化2.1.2 计算机系统的组成● 硬件:计算机系统中所有实际物理装置的总称● 软件:在计算机中运行的各种程序和相关的数据及文档 程序:用来向计算机指出应如何一步步地进行规定的操作 数据:程序处理的对象深入到各行各业,家庭和个人开始使用计算机软件工程、分布式计算、网络软件等开始广泛使用CPU :LSI 、VLSI 内存:LSI 、VLSI 的半导体存储器20世纪70年代中期以来第4代在科学计算、数据处理、工业控制等领域得到广泛应用操作系统,数据库管理系统等开始使用CPU :SSI ,MSI 内存:SSI ,MSI 半导体存储器60年代中期~70年代初期第3代开始广泛应用于数据处理领域使用FORTRAN 等高级程序设计语言CPU :晶体管 内存:磁芯50年代中后期~60年代中期 第2代 科学计算和工程计算使用机器语言和汇编语言编写程序CPU :电子管 内存:磁鼓20世纪40年代中期~50年代末期 第1代 主要应用 配置的软件 主要元器件 年 代 代 别文档:提供给用于使用的操作说明、技术资料等它们都是软件不可缺少的组成部分计算机硬件组成示意图一、输入设备●输入(input)指把信息(程序,数据,信息)送入计算机的过程(名词)向计算机输入的内容输入设备,用来向计算机输入信息的设备输入到计算机中的信息都使用二进制中的“0”和“1”两个符号来表示输入设备类别●按照输入信息的类型划分●数字和文字输入设备(键盘、写字板等)●位置和命令输入设备(鼠标器、触摸屏等)●图形输入设备(扫描仪,数码相机等)●声音输入设备(话筒,MIDI演奏器等)●视频输入设备(摄像机)●温度、压力输入设备(温度、压力传感器)二、中央处理器CPU●处理器能高速地进行算术运算和逻辑运算,负责对输入信息进行各种处理●微处理器简称μP或MP,通常指使用单片大规模集成电路制成的、具有运算和控制功能的处理器包含运算器和控制器。

MCS51_Exp

MCS51_Exp

第二章指令系统和汇编语言程序设计实验本章实验主要包括指令系统和汇编语言程序设计两部分。

采用软件模拟调试的方法,目的在于通过这些实验可以使学生巩固所学知识,加深对MCS-51单片机内部结构、指令系统的理解,更进一步掌握汇编语言程序设计的方法和技巧。

第一节指令系统实验实验一熟悉键盘操作及数传指令编程设计一、实验目的1.熟悉软件模拟调试的环境及键盘操作。

2.掌握汇编语言程序设计的方法,加深对指令的理解。

3.学会软件模拟调试和察看修改观察项的方法。

二、实验内容印证数据传送指令的功能、寻址方式以及PC指针、SP指针、DPTR指针、Ri指针分别对代码段、堆栈段、外扩数据存储器段、位寻址区等不同存储器的访问方式。

三、实验步骤1.进入调试软件环境,输入源程序;2.汇编源程序;3.用单步方式运行程序;4.检查并记录各寄存器和存储单元内容的变化。

四、程序清单1.内部RAM数据传送需要查看的数据有30H,31H,A,R0等。

ORG 0000HMOV R0,#30HMOV 30H,#45HMOV 31H,#46HMOV R2,30HMOV 02H,31HMOV A,#87HMOV 0E0H,30HMOV 30H,AMOV 31H,@R0SJMP $END2.外部数据传送需要查看的数据有外部数据存储器单元2000H,外部程序存储器单元2001H。

ORG 0000HMOV A,#89HMOV DPTR,#2000HMOVX @DPTR,AINC DPTRCLR AMOVC A,@A+DPTRSJMP $ORG 2000HDB 44HDB 78HDB 67HEND3.堆栈操作需要查看的数据有50H、51H、A及SP指针和堆栈区中数据随PUSH和POP指令执行后的变化情况和数据的存放次序等。

1)可用于保护现场和恢复现场的程序ORG 0000HMOV SP,#5FHMOV 50H,#3BHMOV 51H,#2FHMOV A,#12HPUSH 50HPUSH 51HPUSH ACCPOP 0E0HPOP 51HPOP 50HSJMP $END2)可用于数据交换的程序ORG 0100HMOV SP,#6FHMOV 50H,#3BHMOV 51H,#2FHPUSH 50HPUSH 51HPOP 50HPOP 51HSJMP $END4.数据交换记录每条指令运行后的结果,从而加深对各种不同的交换指令的理解。

PIC单片机指令系统和汇编语言程序设计

PIC单片机指令系统和汇编语言程序设计

第二章PIC单片机指令系统和汇编语言程序设计2.1 指令系统概述2.1.1 指令的表示方法1.机器指令的表示方法:指令用于规定计算机的基本操作。

一台计算机所能执行的指令集合就是它的指令系统。

指令共有两种表示方法,分别是机器语言表示方法和汇编语言表示方法。

不同种类的单片机有不同的一套命令(即所谓“指令系统”)。

2.汇编语言的表示方法:汇编语言是对机器语言的改进,它采用便于人们记忆的一些符号(例如简化的英文单词)来表示操作码、操作数和地址码等。

通常把表示指令的符号称之为助记符。

3.PIC16F87X单片机指令:PIC16F87X单片机采用精简指令集(RISC)结构,指令效率高,功能强。

它的指令为单字的宽字位(14)指令,由此生成的程序代码短。

指令条数少,仅有35条。

(1)面向字节操作类(2)面向位操作类(3)常数操作和控制类操作。

2.1.2PIC单片机指令的寻址方式1.寄存器间接寻址:所谓寄存器间接寻址指的是通过寄存器F0、F4来实现。

实际的寄存器地址放在F4的低5位中,通过F0来进行间接寻址。

INDF不是物理上实际存在的寄存器,而任何寻址INDF的指令都是以FSR寄存器内容为地址的RAM单元中存放着参加运算或操作的数据。

2.立即数寻址:所谓立即寻址就是操作数在指令中直接给出。

通常把出现在指令中的操作数称之为立即数,因此就把这种寻址方式称之为立即寻址。

3.直接寻址:指令中操作数以其所在存储单元地址的形式给出,就称之为直接寻址。

这种方式是对任何一寄存器直接寻址访问。

4.位寻址:这种寻址方式是对寄存器中的任一位(bit)进行操作。

2.1.3指令符号的意义说明1.PIC汇编语言指令格式PIC系列微控制器汇编语言指令与MCS-51系列单片机汇编语言一样,每条汇编语言指令由4个部分组成,其书写格式如下:标号操作码助记符操作数1,操作数2;注释2.指令符号的意义说明:在PIC系列单片机指令中常把数据存储器RAM当作寄存器来使用(处理)并用字母f(或F)表示。

第二章 第二章可编程序控制器的结构和工作原理

第二章  第二章可编程序控制器的结构和工作原理

第二章可编程序控制器的结构和工作原理2.1 可编程序控制器的组成与基本结构PLC是微机技术和继电器常规控制概念相结合的产物,从广义上讲,PLC 也是一种计算机系统,只不过它比一般计算机具有更强的与工业过程相连接的输入/输出接口,具有更适用于控制要求的编程语言,具有更适应于工业环境的抗干扰性能。

因此,PLC是一种工业控制用的专用计算机,它的实际组成与一般微型计算机系统基本相同,也是由硬件系统和软件系统两大部分组成。

一、可编程序控制器的硬件系统PLC的硬件系统由主机系统、输入/输出扩展环节及外部设备组成。

1. 主机系统图2.1 PLC结构示意图(1) 微处理器单元(Central Processing Unit,CPU)。

CPU是PLC的核心部分,它包括微处理器和控制接口电路。

微处理器是PLC的运算控制中心,由它实现逻辑运算,协调控制系统内部各部分的工作。

它的运行是按照系统程序所赋予的任务进行的。

(2) 存储器。

存储器是PLC存放系统程序、用户程序和运行数据的单元。

它包括只读存储器(ROM)和随机存取存储器(RAM)。

只读存储器(ROM)在使用过程中只能取出不能存储,而随机存取存储器(RAM)在使用过程中能随时取出和存储。

(3) 输入/输出模块单元。

PLC的对外功能主要是通过各类接口模块的外接线,实现对工业设备和生产过程的检测与控制。

通过各种输入/输出接口模块,PLC既可检测到所需的过程信息,又可将处理结果传送给外部过程,驱动各种执行机构,实现工业生产过程的控制。

通过输入模块单元,PLC能够得到生产过程的各种参数;通过输出模块单元,PLC能够把运算处理的结果送至工业过程现场的执行机构实现控制。

为适应工业过程现场对不同输入/输出信号的匹配要求,PLC配置了各种类型的输入/输出模块单元。

(4) I/O扩展接口。

I/O扩展接口是PLC主机为了扩展输入/输出点数和类型的部件,输入/输出扩展单元、远程输入/输出扩展单元、智能输入/输出单元等都通过它与主机相连。

第二章 计算机组成原理知识点

第二章 计算机组成原理知识点

第二章计算机组成原理2.1计算机的组成与分类2.1.1计算机的发展与作用作用:①速度快,通用性强②具有多种多样的信息处理能力,不仅能进行复杂的数学运算,而且能对图像,文字和声音等多种形式的信息进行获取,编辑,转换,存储,展现等处理③信息存储容量大,存取速度高④具有互联,互通和互操作的特性,计算机网络不仅能进行信息的交流与共享,还可借助网络上的其他计算机协同完成复杂的信息处理任务。

2.1.2 计算机的逻辑组成计算机系统由硬件和软件两部分组成。

硬件是计算机系统中所有实际物理装置的总称。

软件是指计算机中运行的各种程序及其处理的数据和相关的文档。

CPU,内存存储器,总线等构成计算机的“主机”输入/输出设备和外存储器称为“外设”承担系统软件和应用软件运行任务的处理器称为“中央处理器”使用多个CPU实现超高速计算的技术称为“并行处理”总线是用于在CPU,内存,外存和各种输入输出设备之间传输信息并协调它们工作的一种部件(含传输线和控制电路)计算机系统中的I/O设备一般都通过I/O接口与各自的控制器连接,然后由控制器与I/O总线相连2.1.3计算机的分类巨型机,大型机,服务器,个人计算机,嵌入式计算机微处理器(µP或MP),通常指使用单片大规模集成电路制成的,具有运算和控制功能的部件SOC:单个集成电路芯片中包含微处理器,存储器,输入/输出控制与接口电路,电子系统模拟电路,数字/模拟混合电路和无线通信使用的射频电路2.2 CPU的结构与原理2.2.1 CPU的作用与组成匈牙利数学家冯·诺依曼的“存储程序控制”原理CPU的根本任务是执行指令CPU的组成:寄存器组(用来临时存放参加运算的数据和运算得到的中间结果),运算器:也称算术逻辑部件(ALU),控制器:指令计数器(用来存放CPU正在执行的指令的地址)和指令寄存器(用来保存当前正在执行的指令)2.2.2 指令与指令系统指令是构成程序对的基本单位,采用二进制表示,指令由操作码和操作数地址组成,CPU所能执行的全部指令称为指令系统2.2.3 CPU的性能指标字长,主频,CPU总线速度,高速缓存的容量与结构,指令系统,逻辑结构,内核个数 TFLOPS(万亿条浮点指令/秒)MIPS(百万条定点指令/秒),MFLOPS(百万条浮点指令/秒)2.3 PC主机的组成2.3.1 主板,芯片组与BIOSCPU芯片和内存条分别通过主板上的CPU插座和存储器插槽安装在主板上,PC机常用外围设备通过扩充卡或I/O接口与主板相连,扩充卡借助卡上的印刷插头插在主板上的PCI总线插槽中主板上还有两块特别有用的集成电路:一块是闪烁存储我,其中存放的是BIOS,它是PC机软件中最基础的部分,没有它机器就无法启动,另一个集成电路芯片是CMOS存储器,其中存放者与计算机系统相关的一些参数(称为配置信息),包括当前的日期和时间,开机口令,已安装的光驱和硬盘的个数及类型等,CMOS 芯片是一种易失性存储器,它由主板上的电池供电,即使计算机关机后它也不会丢失所存储的信息芯片组由北桥芯片(MCH)和南桥芯片(ICH)组成,CPU时钟信号由芯片组提供芯片组还决定了主板上所能安装的内存最大容量,速度及可使用的内存条的类型每次机器加电时,CPU首先执行BIOS程序,它具有诊断计算机故障和加载操作系统并启动其运行的功能BIOS:加电自检程序,引导装入程序,CMOS设置程序,基本外围设备的驱动程序内存储器由称为存储器芯片的半导体集成电路组成,RAM目前多采用MOS型半导体集成电路芯片制成DRAM:电路简单,集成度高,功耗小,成本低SRAM:电路复杂,集成度低,功耗大,成本高每个存储单元都有一个地址,CPU按地址对存储器进行访问存储器的存取时间指的是从CPU给出存储器地址开始到存储器读出数据并送回到CPU所需要的时间解决主存速度慢的方法是:①采用cache存储器②改进存储器芯片的电路与工艺,并对DRAM的存储控制技术进行改进2.3.3 I/O总线与I/O接口CPU芯片与北桥芯片相互连接总线称为CPU总线(前端总线FSB),I/O设备控制器与CPU,存储器之间相互交换信息,传输数据的一组公用信号线称为I/O总线,总线上有三类信号:数据信号,地址信号和控制信号总线带宽(MB/S)=(数据线宽度/8)X总线工作频率(MHZ)X每个总线周期的传输次数PCI-E是PC机I/O总线的一种新标准,采用高速串行传输USB电源(5V,100mA~500Ma) USB3.0的电流是1A2.4常用输入设备扫描仪的性能指标:①扫描仪的光学分辨率:普通家用扫描仪分辨率在1600~3200dpi②色彩位数③扫描幅面④与主机的接口2.5 常用输出设备显示器的刷新频率越高,图像的稳定性越好,响应时间越小越好。

《指令系统》PPT课件

《指令系统》PPT课件

例:
已知:(DS)=2100H,(DI)=2000H
指令: MOV AX,[DI] ;AX ((DI))
物理地址=(DS)× 16 + (DI)
是一个内存 单元地址
=2100H × 16 + 2000H
=21000H + 2000H
=23000H
指令结果:将23000H单元内容送AL中,
将23001H单元内容送AH中。
22
2020/11/14
例:
将数据段的变量WVAR(即该变量名指示的内存单元数据)送至 AX寄存器 变量指示内存的一个数据,直接引用变量名就是采用直接寻址方式 变量应该在数据段进行定义,常用的变量定义伪指令 DB和 DW分别表示定义
字节变量和字变量 变量一经定义便具有逻辑地址和类型属性
23
南京理工大学动力学院
2009年
1
2020/11/14
第二章 8086/8088 指令系统
2.1 概述 2.2 寻址方式 2.3 数据传送指令 2.4 算术运算指令 2.5 逻辑运算指令 2.6 串操作指令 2.7 程序控制指令
2
2020/11/14
•指令是微处理器执行某种操作的命令。 •微处理器全部指令的集合称为指令系统(指令集)
将数据段中由BX指定偏移地址处的内存数据送至 AX寄存器 汇编指令: MOV AX, [BX]; 指令功能:AX←DS : [ BX ]; 该指令中有效地址存放于BX寄存器中,而数据则存放在数据段内存单元中,
假设BX内容设置为2000H,则该指令等同于 MOV AX, [2000H]
28
2020/11/14
一方面,会影响处理器执行指令的速度和效率 另一方面,对程序设计也很重要

plc指令系统及编程语言 (1)

plc指令系统及编程语言 (1)

第二章 PLC 指令系统及编程语言2.2 指令系统CP1系列PLC 具有较丰富的指令集,按功能大致可分为两大类:基本指令和特殊功能指令。

CP1系列PLC 的指令功能与FX 系列的大同小异,基于篇幅关系,之列不予以详述。

CP1系列PLC 指令一般由助记符和操作数两部分组成,助记符表示CUP 执行此命令式所能完成的功能,操作数则指出执行该指令时CPU 的操作对象。

操作数既可以是通道号和继电器编号,也可以是DM 区和立即数。

立即数既可以用十进制数表示,也可以用十六进制数表示。

在指令执行过程中,可能影响执行指令的系统标志有:ER (错误标志)、CY (进位标志)、EQ (相等标志)、GR (大于标志)和LE (小于标志)等。

2.2.1 基本指令CP1系列PLC 的基本逻辑指令与FX 系列PLC 较为相似,梯形图表达方式也大致相同,这里列表表示出CP1系列PLC 的基本逻辑指令,如表2-1所示。

在下文中,我们又对PLC 指令系统中的暂存继电器(TR )指令、定时器指令、计数器指令及功能指令做了大致介绍,以使读者对PLC 指令系统有一个大致的认识。

表2-1 CP1系列PLC 的基本逻辑指令 指令名称指令符 功能 操作数 取LD 读入逻辑行或电路块的第一个常开接点 00000~01915 20000~25507 HR0000~1915 AR0000~1515 LR0000~1515 TIM/CNT000~127 TR0~7 *TR 仅用于LD 指令 取反LD NOT 读入逻辑行或电路块的第一个常闭接点 与AND 串联一个常开接点 与非AND NOT 串联一个常闭接点 或OR 并联一个常开接点 或非OR NOT 并联一个常闭接点 电路块与AND LD 串联一个电路块 无 电路块或OR LD 并联一个电路块 输出OUT 输出逻辑行的运算结果 00000~01915 20000~25507 HR0000~1915 AR0000~1515LR0000~1515TIM/CNT000~127TR0~7*TR 仅用于OUT输出求反OUT NOT 求反输出逻辑行的运算结果 置位 SET 置继电器状态为接通 复位 RSET 使继电器复位为断开1.暂存继电器(TR )指令的应用在梯形图程序中如果有几个分支输出,并且分支后面还有触点串联时,前面的逻辑 指令就不能直接写出其指令程序,这时需要用TR 来暂时保存分支点的状态,然后再进行编程。

第2章 指令系统及汇编语言程序设计答案

第2章 指令系统及汇编语言程序设计答案

第2章指令系统及汇编语言程序设计一.选择题1.(D) 2.(A) 3.(C) 4.(D) 5.(A) 6.(D)7.(C) 8.(C) 9.(C) 10.(D) 11.(D) 12.(C)13.(C) 14.(A) 15.(A) 16.(D) 17.(B) 18.(C)19.(C) 20.(C) 21.(D) 22.(D) 23.(D) 24.(C)25.(A) 26.(A) 27.(B) 28.(C) 29.(B) 30.(D)31.(B) 32.(C) 33.(C) 34.(A) 35.(C) 36.(D)37.(D) 38.(A) 39.(B) 40.(C) 41.(D) 42.(D)43.(B) 44.(C) 45.(C) 46.(B) 47.(B) 48.(D)49.(A) 50.(B) 51.(A) 52.(C)二、判断题1.× 2.× 3.× 4.√ 5.√ 6.√ 7.×8.× 9.×10.√ 11.× 12.× 13.× 14.× 15.× 16.√17.√18.√19.× 20.× 21.× 22.√ 23.× 24.√ 25.√26.√三、填空题1.53F30H2. 0 ; 0; 0; 13.操作码;操作数4. ZF=05.SS6. 1234H,0FFEH7.立即四、阅读程序1.38(或26H)2.将以10100H起始的50个单元的内容传送至以10200H起始的50个单元中3.将数据段中以2000H起始的100个单元中的内容清零4.统计以BUFFER为首址的100个单元中数字为1的个数存入ARRAY单元5.统计N字中0的个数6.将N的内容拆为两部分分别存入BH,BL中7.AX=0008H8.AL=34H9.AX=23H10.AX=0004H11.AX=0055H12.将从键盘接受到的两个字符拼在一起13.BH=0FFH,BL=0EH14.AX=000FH15.AL=15H,AF=1,BL=0FH16.90H17.向屏幕上依次输出0,1,…。

第二章 MCS-51指令系统及汇编语言程序设计

第二章  MCS-51指令系统及汇编语言程序设计

XCH A, direct 1 1 0 0 0 1 0 1
6.半字节交换指令
助记符 XCHD A, @Ri 机器码 1101011r 功能 ; (A3~0)((Ri)3~0), i=0,1
数据传送类指令
数据传送类指令的助记符有: MOV、MOVX、MOVC XCH、XCHD PUSH、POP
寄存器C MCS-51 传送指令 示意图 寄存器 R7~R0 直接地址 direct 直接地址 direct 寄存器 DPTR 立即数 #data
例:设外部数据存储器2097H单元中内容 为80H,在执行下列指令后,则A中的内容 为80H。 MOV P2, #20H MOV R0, #97H MOVX A, @R0
Ⅱ.由Ri内容指示外部数据存储器地址 (2)累加器内容送外部数据存储器
助记符 MOVX @Ri, A 目标 源 机器码 11110011 功能 ; ((Ri)+(P2))←A, i=0,1
二、直接寻址
紧跟在操作码后的是操作数的直接地址。 该方式中操作数存储的空间有三种:
1.内部数据存储器的低1 ; (70H)→A 2.位地址空间 例:MOV C, 00H ; 直接位00H内容→ 进位位 MOV 00H → 3.特殊功用功能寄存器 *只能用直接寻址方式进行访问。 例: MOV IE, #85 ; 立即数85H →中断允许寄存器
执行该指令时: 1.P3.6引脚上输出WR有效信号 2. Ri包含的低8位地址由P0口输出,高8位地址信息 由P2口输出。 3.累加器A的内容由P0口输出。 4.P0口作分时复用。
3.程序存储器内容送累加器
该类指令常用于查表。 (1)PC作基址寄存器
助记符 MOVC A, @A+PC 目标 源 机器码 10000011 功能 ; PC←PC+1 A ←((A)+(PC))

第二章PLC基本指令系统

第二章PLC基本指令系统

第二章S7-200 PLC的基本指令本章重点:<1)了解SIEMENS S7-200 PLC的软器件特点。

<2)掌握SIEMENS S7-200 PLC的指令系统的功能以及编程的方法。

本章的能力要求:通过学习,使学生具有灵活应用SIEMENS S7-200 PLC 指令进行编程的能力。

一、基本逻辑指令LD<load):常开触点逻辑运算开始。

A<And):常开触点串联连接。

O<Or):常开触点并联连接。

= <Out):线圈驱动。

图2-1 基本逻辑指令应用1. 指令使用说明:1)LD指令用于与输入母线相连的触点,在分支电路块的开始处也要使用LD指令。

2)触点的串/并联用A/O指令,线圈的驱动总是放在最右边,用=<Out)指令。

3)LD、A、O指令的操作元件<操作数)可为I,Q,M,SM,T,C,V,S。

=<Out)指令的操作元件<操作数)一般可为Q,M,SM,T,C,V,S。

4)在PLC中,用于常闭触点的基本逻辑指令为:LDN<Load Not):常闭触点逻辑运算开始。

AN<And Not):常闭触点串联。

ON<Or Not):常闭触点并联。

2. 指令使用注意问题1)在程序中不要用=<Out)指令去驱动实际的输入<I),因为I的状态应由实际输入器件的状态来决定。

2)尽量避免双线圈输出<即同一线圈多次使用)。

二、复杂的逻辑指令1.电路块的串/并联OLD<Or Load):电路块的并联。

ALD<And Load):电路块的串联。

每个电路块开始用LD、LDN指令,OLD指令用于电路块的并联,ALD指令用于电路块的串联,OLD及ALD指令均没有操作元件。

图2-2 串并联练习:根据下列梯形图写出指令表。

图2-3 练习12、逻辑堆栈的操作LPS<LogicPush):逻辑入栈指令<分支电路开始指令)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1.
2.
例3. 一个处理机共有10条指令I1到I10,各 指令在程序中出现的概率如下:0.25, 0.20,0.15,0.10,0.08,0.08,0.05, 0.04,0.03,0.02 采用Huffman编码编写这10条指令的操作 码,并计算操作码的平均长度和信息冗余 量 分别采用2/8和3/7扩展编码法编写这10条 指令的操作码,并计算平均长度和信息冗 余量
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
利用Huffman树进行操作码编码
Huffman编码操作码
采用Huffman编码法的操作码平均长度为: (实际长度) H
规整 译码简单 浪费信息量(操作码的总长位数增加)

主要优点:


主要缺点:


优化操作码编码的目的:节省程序存储空间 例如:Burroughs公司的B-1700机
2. Huffman编码基本概念


1952年,哈夫曼提出电报报文编码方式, 减少报文长度,缩短报文传送时间。 将出现概率最大的事件用最少的位来表示, 而概率较小的事件用较多的位表示,达到 平均编码位数缩短的目的。 哈夫曼压缩可用于程序、存储空间、图 像、声音等压缩。
1.
4. 5.
6.
最后得到的根节点的概率值为1 每个新节点都有两个分支,分别用带有箭头 的线表示,并分别用一位代码“0”和“1”标 注 从根节点开始,延箭头所指方向寻找到达属 于该指令概率节点的最短路径,把沿线所经 过的代码排列起来就得到了这条指令的操作 码编码
利用Huffman树进行操作码编码

指令系统的设计必须由软件设计人员和硬 件设计人员共同完成 指令系统发展相当缓慢,需要用软件来填 补的东西就越来越多
本章主要内容
2.1 数据表示 2.2 寻址方式(不考) 2.3 指令格式设计 2.4 指令功能设计
2.队列、阵列、链 表、栈、向量、串、整数、布尔数、字符等 计算机系统结构研究的首要问题:哪些数据类型 用硬件实现,哪些数据类型用软件实现及其实现 方法 数据表示的定义:

复杂数据类型:


硬件实现,代价大 软件实现,效率低 软硬件结合方式效果好 例如:用字节编址和字节运算指令支持字符串数据表 示;用变址寻址方式支持向量数据表示

设计计算机系统时,对于数据类型:

确定哪些数据类型全部用硬件实现,即数据表示 确定哪些数据类型用软件实现,即数据结构 确定哪些数据类型由软硬件共同实现,并确定软硬比 例关系
本章主要内容
2.1 数据表示 2.2 寻址技术 2.3 指令格式优化设计 2.4 指令格式功能设计
2.2 寻址技术

寻找操作数及其地址的技术称为寻址技 术

编址方式 寻址方式 定位方式

重点:寻址方式的选择
2.2.1 编址方式
对各种存储设备进行编码的方法 1. 编址单位


常用的编址单位:字节编址(多数)、字编址、位编 址、块编址等 三个零地址空间:通用寄存器、主存储器、输入输出 设备独立编址 两个零地址空间:主存储器与输入输出设备统一编址 一个零地址空间:最低端是通用寄存器,最高端是输 入输出设备,中间为主存储器
数据表示是指计算机硬件能够直接识别,可以被指令系 统直接调用的那些数据类型 例如:定点、逻辑、浮点、十进制、字符、字符串、堆 栈和向量等

数据结构:
面向系统软件和应用领域所需处理的数据类型


除了数据表示之外的所有数据类型,都是 数据结构要研究的内容 数据表示和数据结构是数据类型的子集 确定哪些数据类型用数据表示实现,哪些 数据类型用数据结构实现,是软件与硬件 的取舍问题
i 1 7
0.15 2.737 0.05 4.322 0.03 5.059 0.01 6.644 0.01 6.644 =1.95 (位)
采用3位固定长操作码的信息冗余量为: H 1.97 R 1 1 35% 3 log 2 7 Huffman编码的信息冗余量仅为: 1.95 R 1 1.0% 1.97 与3位固定长操作码的信息冗余量35%相比要小得多
2.3 指令格式的优化设计
2.3.1 指令的组成 2.3.2 操作码的优化设计 2.3.3 地址码的优化设计
2.3.3 地址码的优化设计

地址码个数的选择


地址码个数通常有3个、2个、1个及0个4种 情况 评价指令中地址码个数应该取多少的标准主 要有两个:
1. 2.
程序存储容量,包括操作码和地址码 程序执行速度,以程序执行过程中访问主存的 信息量代表

静态定位:
在程序装入主存储器的过程中随机进行地址变换,确 定指令和数据的主存物理地址的称为静态定位方式

动态定位:
在程序执行过程中,当访问到相应的指令或数据时才 进行地址变换,确定指令和数据的主存物理地址的称 为动态定位方式
本章主要内容
2.1 数据表示 2.2 寻址技术(不考) 2.3 指令格式设计 2.4 指令功能设计
p
i 1
7
i
li 0.45 1 0.30 2 0.15 3
0.05 4 0.03 5 0.01 6 0.01 6 1.97(位) 操作码的最短平均长度为:(理论长度) H pi log 2 pi 0.45 1.152 0.30 1.737
第二章 指令系统
上海大学计算机学院

在机器上直接运行的程序是由指令组成的 指令系统是软件和硬件之间的一个主要分 界面,也是它们之间相互沟通的一座桥梁
硬件设计人员采用各种手段实现指令系统,而软件设计 人员则使用这些指令系统编写系统软件和应用软件,用 这些软件来填补指令系统与人们习惯的使用方式之间的 语义差距

确定数据表示子集是计算机系统设计人员要解决 的难题之一。 从原理上讲,计算机系统结构只要有了最简单的 数据表示,就能够用软件实现其他各种数据类型 确定数据表示的原则



缩短程序的运行时间 减少CPU与主存储器之间的通信量 数据表示的通用性和利用率

数据表示在不断发展

例如:矩阵、树、图、表等已经开始用于数据表示中
1-2-3-5编码法操作码平均最短长度: H 0.45 1 0.30 2 0.15 3 (0.05 0.03 0.01 0.01) 5 2.00 1-2-3-5编码法信息冗余量:R 1 H (0.45 0.30 0.15) 2 (0.05 0.03 0.01 0.01) 4 2.20 2-4等长扩展编码法信息冗余量为: 1.95 R 1 11.4% 2.20 1.95 2.5% 2.00 2-4等长扩展编码法操作码平均最短长度:
操作数描述:
数据的类型:定点数、浮点数、复数、字符、字 符串、逻辑数、向量 进位制:2进制、10进制、16进制 数据字长:字、半字、双字、字节
2.3.2 操作码的设计

操作码的三种编码方法:

固定长度 Huffman编码 扩展编码
1. 固定长度编码

定长定域:

log 2 n n种指令,操作码位数 IBM公司的大中型机:最左边8位为操作码 Intel公司的Intanium处理机:14位定长操作码

通过一个典型例子来分析

关于地址码个数的结论(记住结论即可)



对于一般商用处理机,采用多寄存器结构的 二地址指令是最理想的 如果强调硬件结构简单,并且以连续运算 (如求累加和等)为主,宜采用一地址结构 对于以向量、矩阵运算为主的处理机,最好 采用三地址结构。部分RISC处理机也采用三 地址指令 对于解决递归问题为主的处理机,宜采用零 地址结构,编程容易,节省程序存储量
OPC M OPC M, M OPC M, M, M

面向堆栈的寻址方式:
OPC ; 运算型指令 OPC M; 数据传送型指令
2. 寄存器寻址 主要优点:指令字长短,指令执行速度快,支持 向量和矩阵等运算 主要缺点:不利于优化编译,现场切换困难,硬 件复杂 3. 堆栈寻址方式 主要优点:支持高级语言,有利与编译程序,节 省存储空间,支持程序的嵌套和递归调用,支持 中断处理 主要缺点:运算速度比较低,栈顶部分设计成一 个高速的寄存器堆
2.2.3 定位方式

程序的主存物理地址在什么时间确定?采用什么 方式实现 程序需要定位的主要原因

程序的独立性 程序的模块化设计 数据结构在程序运行过程中,其大小往往是变化的 有些程序本身很大,大于分配给它的主存物理空间
主要定位方式

直接定位方式:
在程序装入主存储器之前,程序中的指令和数据的主 存物理地址就已经确定了的称为直接定位方式
3. 扩展编码法

Huffman操作码的主要缺点:

操作码长度很不规整,硬件译码困难 与地址码共同组成固定长的指令比较困难


扩展编码法:由固定长操作码与Huffman编 码法相结合形成 例4. 将例3改为1-2-3-5扩展编码法及2-4等长 扩展编码法,分别求操作码最短平均长度 及其信息冗余量
将复杂的数据类型用数据表示实现,系统的硬件 成本较高


例1:计算C = A + B,A、B、C均为200×200的 矩阵,分析在一般的计算机上和在向量计算机上 运算的区别 解:如果在没有向量数据表示的计算机上实现, 一般需要6条指令,其中有4条指令要循环4万次, 因此,CPU与主存的通信量: 取指令:2+4×40,000条 读或写数据:3×40,000条 共要访问主存:7×40,000次以上 如果有向量数据表示,只需一条指令 减少访问主存(取指令)次数4×40,000次
相关文档
最新文档