2018高考数学小题专练-全国I卷理科
18年高考真题——理科数学(全国1卷)
2018年普通高等学校招生全国统一考试数学(理)(全国I 卷)一.选择题(共12 小题,每小题 5 分,共60 分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.设1 iz 2i1 i,则| z|()(A)0 (B)12(C)1 (D) 22.已知集合 2A x | x x 2 0 ,则e R A ()(A )x| 1 x 2 (B)x| 1 x 2 (C)x| x 1 x | x 2 (D)x |x 1 x|x 2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如右饼图。
则下面结论中不正确的是()(A )新农村建设后,种植收入减少(B)新农村建设后,其他收入增加了一倍以上(C)新农村建设后,养殖收入增加了一倍(D)新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列a n 的前n项和,若3S3 S2 S4 ,a1 2,则a5 ()(A )12 (B)10 (C)10 (D)125.设函数 3 1 2f x x a x ax,若f x 为奇函数,则曲线y f x 在点0,0 处的切线方程为()(A)y 2x (B)y x (C)y 2x (D)y x 6.在ABC 中,AD 为BC 边上的中线, E 为AD 的中点,则EB ()(A )3 1AB AC (B)4 41 3AB AC (C)4 43 1AB AC (D)4 41 3AB AC4 47.已知正方体的棱长为1,每条棱所在直线与平面所成的角相等,则截此正方体所得截面面积的最大值为()(A )3 34 (B)2 33(C)3 24(D)328.设抛物线 C : 2 4y x 的焦点为F ,过点2,0 且斜率为23的直线与 C交于M , N 两点,则FM FN ()(A)5 (B)6 (C)7 (D)89.已知函数f xxe xln x x 0,g x f x x a 。
2018年高考全国卷I-理科数学试题及参考答案
G (0, 1, 1 t ) ,则 JE ( t , 0, t ) , JI (0, 1 t , t 1) , EI (t , 1 t , 1) , i j k | JE JI | 1 t (1 t ) 3 , t 0 t EG (t 1, 1, t ) ,所以有 S EJI 2 2 2 0 1 t t 1
理科数学试题及参考答案 第 4 页(共 9 页)
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
x 2 y 2 0 13. 若 , y 满足约束条间 x y 1 0 , 则 z 3x 2 y 的 y 0
最大值为 【解析】 :满足约束条所描述的如右图阴影部分所示,当直线 z 3 x 2 y 过 (2, 0) 时, z 取得 最大值,为 z max 6 14. 记 S n 为数列 {a n } 的前 n 项和,若 S n 2 a n 1 ,则 S 6 【解析】 :若 S n 2 a n 1 ,则 S n 1 2 a n 1 1 ,得 a n 2( a n a n 1 ) ,即 q
2 2 4 2 2 5 ,选择 B 选项。
理科数学试题及参考答案 第 2 页(共 9 页)
8. 设抛物线 C : y 2 4 x 的焦点为 F,过点 ( 2, 0) 且斜率为
FM FN =
A. 5 B. 6 C. 7 【解析】 :如右图所示,直线的方程为 l : y
则下面结论中不正确的是 A. 新农材建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加了一倍 D. 新农材建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
2018年高考全国卷1理科数学试题及答案[2]
2018年高考全国卷1理科数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考全国卷1理科数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考全国卷1理科数学试题及答案(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC-B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A 33B 23C 32D 3 二、填空题:本题共4小题,每小题5分,共20分。
【数学】2018年高考真题——全国Ⅰ卷(理)(精校版)
2018年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.设z=+2i,则|z|等于()A.0 B.C.1 D.答案 C解析∵z=+2i=+2i=+2i=i,∴|z|=1.故选C.2.已知集合A=,则∁R A等于()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案 B解析∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前,农村的经济收入为a,则新农村建设后,农村的经济收入为2a.新农村建设前后,各项收入的对比如下表:故选A.4.记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5等于()A.-12 B.-10C.10 D.12答案 B解析设等差数列{a n}的公差为d,由3S3=S2+S4,得3=2a1+×d+4a1+×d,将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d=2+4×(-3)=-10.故选B.5.设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2x B.y=-xC.y=2x D.y=x答案 D解析方法一∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.方法二∵f(x)=x3+(a-1)x2+ax为奇函数,∴f′(x)=3x2+2(a-1)x+a为偶函数,∴a=1,即f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.6.在△ABC中,AD为BC边上的中线,E为AD的中点,则等于()A.-B.-C.+D.+答案 A解析作出示意图如图所示.=+=+=×(+)+(-)=-.故选A.7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正(主)视图上的对应点为A,圆柱表面上的点N在侧(左)视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2答案 B解析先画出圆柱的直观图,根据题中的三视图可知,点M,N的位置如图①所示.圆柱的侧面展开图及M,N的位置(N为OP的四等分点)如图②所示,连接MN,则图中MN 即为M到N的最短路径.|ON|=×16=4,|OM|=2,∴|MN|===2.故选B.8.设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·等于()A.5 B.6 C.7 D.8答案 D解析由题意知直线MN的方程为y=(x+2),联立直线与抛物线的方程,得解得或不妨设点M的坐标为(1,2),点N的坐标为(4,4).又∵抛物线的焦点为F(1,0),∴=(0,2),=(3,4).∴·=0×3+2×4=8.故选D.9.已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是() A.[-1,0) B.[0,+∞)C.[-1,+∞) D.[1,+∞)答案 C解析令h(x)=-x-a,则g(x)=f(x)-h(x).在同一坐标系中画出y=f(x),y=h(x)图象的示意图,如图所示.若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平移y=h(x)的图象可知,当直线y=-x-a过点(0,1)时,有2个交点,此时1=-0-a,a=-1.当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合题意;当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意.综上,a的取值范围为[-1,+∞).故选C.10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案 A解析∵S△ABC=AB·AC,以AB为直径的半圆的面积为π·=AB2,以AC为直径的半圆的面积为π·=AC2,以BC为直径的半圆的面积为π·=BC2,∴SⅠ=AB·AC,SⅢ=BC2-AB·AC,SⅡ=-=AB·AC.∴SⅠ=SⅡ.由几何概型概率公式得p1=,p2=.∴p1=p2.故选A.11.已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|等于()A.B.3 C.2D.4答案 B解析由已知得双曲线的两条渐近线方程为y=±x.设两渐近线的夹角为2α,则有tan α==,所以α=30°.所以∠MON=2α=60°.又△OMN为直角三角形,由于双曲线具有对称性,不妨设MN⊥ON,如图所示.在Rt△ONF中,|OF|=2,则|ON|=.则在Rt△OMN中,|MN|=|ON|·tan 2α=·tan 60°=3.故选B.12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A. B.C. D.答案 A解析如图所示,在正方体ABCD-A1B1C1D1中,平面AB1D1与棱A1A,A1B1,A1D1所成的角都相等,又正方体的其余棱都分别与A1A,A1B1,A1D1平行,故正方体ABCD-A1B1C1D1的每条棱所在直线与平面AB1D1所成的角都相等.取棱AB,BB1,B1C1,C1D1,DD1,AD的中点E,F,G,H,M,N,则正六边形EFGHMN 所在平面与平面AB1D1平行且面积最大,此截面面积为S正六边形EFGHMN=6×××sin 60°=.故选A.二、填空题13.若x,y满足约束条件则z=3x+2y的最大值为________.答案 6解析作出满足约束条件的可行域如图阴影部分所示.由z=3x+2y,得y=-x+.作直线l0:y=-x,平移直线l0,当直线y=-x+过点(2,0)时,z取最大值,z max=3×2+2×0=6.14.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=________.答案-63解析∵S n=2a n+1,当n≥2时,S n-1=2a n-1+1,∴a n=S n-S n-1=2a n-2a n-1(n≥2),即a n=2a n-1(n≥2).当n=1时,a1=S1=2a1+1,得a1=-1.∴数列{a n}是首项a1=-1,公比q=2的等比数列,∴S n===1-2n,∴S6=1-26=-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)答案16解析方法一按参加的女生人数可分两类:只有1位女生参加有种,有2位女生参加有种.故所求选法共有+=2×6+4=16(种).方法二间接法.从2位女生,4位男生中选3人,共有种情况,没有女生参加的情况有种,故所求选法共有-=20-4=16(种).16.已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是________.答案-解析f′(x)=2cos x+2cos 2x=2cos x+2(2cos2x-1)=2(2cos2x+cos x-1)=2(2cos x-1)(cos x+1).∵cos x+1≥0,∴当cos x<时,f′(x)<0,f(x)单调递减;当cos x>时,f′(x)>0,f(x)单调递增,∴当cos x=时,f(x)有最小值.又f(x)=2sin x+sin 2x=2sin x(1+cos x),∴当sin x=-时,f(x)有最小值,即f(x)min=2××=-.三、解答题17.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.解(1)在△ABD中,由正弦定理得=,即=,所以sin∠ADB=.由题意知,∠ADB<90°,所以cos∠ADB===.(2)由题意及(1)知,cos∠BDC=sin∠ADB=.在△BCD中,由余弦定理得BC2=BD2+DC2-2BD·DC·cos∠BDC=25+8-2×5×2×=25,所以BC=5.18.如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,又PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)知,平面PEF⊥平面ABFD,平面PEF∩平面ABFD=EF,PH⊂平面PEF,所以PH⊥平面ABFD.以H为坐标原点,,,的方向为x轴,y轴,z轴正方向,||为单位长,建立空间直角坐标系Hxyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,所以PE⊥PF.所以PH=,EH=.则H(0,0,0),P,D,=,=.又为平面ABFD的法向量,设DP与平面ABFD所成的角为θ,则sin θ===.所以DP与平面ABFD所成角的正弦值为.19.(12分)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.(1)解由已知得F(1,0),l的方程为x=1.由已知可得,点A的坐标为或.又M(2,0),所以AM的方程为y=-x+或y=x-.即x+y-2=0或x-y-2=0.(2)证明当l与x轴重合时,∠OMA=∠OMB=0°.当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB.当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和k MA+k MB=+.由y1=kx1-k,y2=kx2-k,得k MA+k MB=.将y=k(x-1)代入+y2=1,得(2k2+1)x2-4k2x+2k2-2=0,由题意知Δ>0恒成立,所以x1+x2=,x1x2=.则2kx1x2-3k(x1+x2)+4k==0,从而k MA+k MB=0,故MA,MB的倾斜角互补.所以∠OMA=∠OMB.综上,∠OMA=∠OMB.20.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=p2·(1-p)18(0<p<1).因此f′(p)=[2p(1-p)18-18p2(1-p)17]=2p(1-p)17(1-10p),0<p<1.令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元.由于E(X)>400,故应该对余下的产品作检验.21.已知函数f(x)=-x+a ln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.(1)解f(x)的定义域为(0,+∞),f′(x)=--1+=-.①若a≤2,则f′(x)≤0,当且仅当a=2,x=1时,f′(x)=0,所以f(x)在(0,+∞)上单调递减.②若a>2,令f′(x)=0,得x=或x=.当x∈∪时,f′(x)<0;当x∈时,f′(x)>0.所以f(x)在,上单调递减,在上单调递增.(2)证明由(1)知,f(x)存在两个极值点当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x1<x2,则x2>1.由于=--1+a=-2+a=-2+a,所以<a-2等价于-x2+2ln x2<0.设函数g(x)=-x+2ln x,由(1)知,g(x)在(0,+∞)上单调递减.又g(1)=0,从而当x∈(1,+∞)时,g(x)<0.所以-x2+2ln x2<0,即<a-2.22.选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解(1)由x=ρcos θ,y=ρsin θ,得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右侧的射线为l1,y轴左侧的射线为l2.由于点B在圆C2的外部,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,点A到l1所在直线的距离为2,所以=2,故k=-或k =0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点,满足题意.当l2与C2只有一个公共点时,点A到l2所在直线的距离为2,所以=2,故k=0或k=.经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.23.选修4-5:不等式选讲已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.解(1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=故不等式f(x)>1的解集为.(2)当x∈(0,1)时,|x+1|-|ax-1|>x成立等价于当x∈(0,1)时,|ax-1|<1成立.若a≤0,则当x∈(0,1)时,|ax-1|≥1;若a>0,则|ax-1|<1的解集为,所以≥1,故0<a≤2.综上,a的取值范围为(0,2].。
2018年高考数学全国卷Ⅰ+答案(理科)(精美版)
绝密★启封并使用完毕前试题类型:A2018年普通高等学校招生全国统一考试理科数学(Ⅰ)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设,211i iiz ++-=则=|z | ( ) A. 0 B. 21C. 1D.22.已知集合}02|{2>--=x x x A ,则=A C R ( ) A.}21|{<<-x x B. }21|{≤≤-x xC. }2|{}1|{>-<x x x xD. 2}x |{x -1}x |{x ≥≤3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是: A. 新农村建设后,种植收入减少。
B. 新农村建设后,其他收入增加了一倍以上。
C. 新农村建设后,养殖收入增加了一倍。
D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
4.记n S 为等差数列}{n a 的前n 项和,若231423=+=a S S S ,,则=5a ( )A. -12B. -10C. 10D. 125.设函数ax x a x x f +-+=23)1()(若f(x)为奇函数,则曲线在点(0,0)处的切线方程为:( )A. y=-2xB. y=-xC. y=2xD. y=x6.在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,,则=EBA.AC AB 4143- B.AC AB 4341- C. AC AB 4143+ D. AC AB 4341+7.某圆柱的高为2,底面周长为16,其三视图如右图。
2018年全国卷1高考理科数学试题及答案
2018年全国卷1⾼考理科数学试题及答案绝密★启⽤前2018年普通⾼等学校招⽣全国统⼀考试(新课标I卷)理科数学注意事项:1.答卷前,考⽣务必将⾃⼰的姓名、考⽣号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每⼩题答案后,⽤铅笔把答题卡对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其它答案标号。
回答⾮选择题时,将答案写在答题卡上。
写在本试卷上⽆效。
3.考试结束后,将本试卷和答题卡⼀并交回。
⼀、选择题:本题共12⼩题,每⼩题5分,共60分。
在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。
1.设,则A.B.C.D.2.已知集合,则A.B.C.D.3.某地区经过⼀年的新农村建设,农村的经济收⼊增加了⼀倍,实现翻番,为更好地了解该地区农村的经济收⼊变化情况,统计了该地区新农村建设前后农村的经济收⼊构成⽐例,得到如下饼图:建设前经济收⼊构成⽐例建设后经济收⼊构成⽐例则下⾯结论中不正确的是A.新农村建设后,种植收⼊减少B.新农村建设后,其他收⼊增加了⼀倍以上C.新农村建设后,养殖收⼊增加了⼀倍D.新农村建设后,养殖收⼊与第三产业收⼊的总和超过了经济收⼊的⼀半4.设为等差数列的前项和,若,,则A.B.C.D.5.设函数,若为奇函数,则曲线在点处的切线⽅程为A.B.C.D.6.在中,为边上的中线,为的中点,则A.B.C.D.7.某圆柱的⾼为2,底⾯周长为16,其三视图如图.圆柱表⾯上的点在正视图上的对应点为,圆柱表⾯上的点在左视图上的对应点为,则在此圆柱侧⾯上,从到的路径中,最短路径的长度为A.B.C.3D.28.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A.5B.6C.7D.89.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)10.下图来⾃古希腊数学家希波克拉底所研究的⼏何图形.此图由三个半圆构成,三个半圆的直径分别为直⾓三⾓形ABC的斜边BC,直⾓边AB,AC.△ABC的三边所围成的区域记为I,⿊⾊部分记为II,其余部分记为III.在整个图形中随机取⼀点,此点取⾃I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.已知双曲线C:,O 为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直⾓三⾓形,则|MN|=A.B.3C.D.412.已知正⽅体的棱长为1,每条棱所在直线与平⾯α所成的⾓相等,则α截此正⽅体所得截⾯⾯积的最⼤值为A.B.C.D.⼆、填空题:本题共4⼩题,每⼩题5分,共20分。
2018高考全国1卷理科数学试卷及答案
2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。
$\{x|-1<x<2\}$B。
$\{x|-1\leq x\leq 2\}$C。
$\{x|x2\}$D。
$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。
$-12$B。
$-10$C。
10D。
125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。
$\frac{3}{11}AB-\frac{8}{11}AC$B。
$\frac{4}{11}AB-\frac{7}{11}AC$C。
$\frac{7}{11}AB-\frac{4}{11}AC$D。
2018高考数学小题专练-全国I卷理科
一、选择题1.集合2{1}M x x =<,{21}x N x =>,那么M N =〔〕A.∅B.{01}x x <<C.{0}x x <D.{1}x x < 答案: B解答:依题意得{11}M x x =-<<,{0}N x x =>,{01}MN x x =<<.2.a 为实数,假设复数2(1)(1)z a a i =-++为纯虚数,那么20161a i i+=+〔〕 A.1 B.0 C.1i + D.1i - 答案: D解答:2(1)(1)z a a i =-++为纯虚数,那么有210a -=,10a +≠,得1a =,那么有20161112(1)111(1)(1)i i i i i i i ++-===-+++-. 3.12,x x R ∈,那么“11x >且21x >〞是“122x x +>且121x x >〞的〔〕 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案: A解答:由11x >且21x >可得122x x +>且121x x >,即“11x >且21x >〞是“122x x +>且121x x >〞的充分条件;反过来,由122x x +>且121x x >不能推出11x >且21x >,如取14x =,212x =,此时122x x +>且121x x >,但2112x =<,因此“11x >且21x >〞不是“122x x +>且121x x >〞的必要条件.故“11x >且21x >〞是“122x x +>且121x x >〞的充分不必要条件.4.将三颗骰子各掷一次,记事件A =“三个点数都不同〞,B =“至少出现一个6点〞,那么条件概率()P A B ,()P B A 分别是〔〕A.601,912 B.160,291 C.560,1891 D.911,2162答案: A解答:()P A B 的含义是在事件B 发生的条件下,事件A 发生的概率,即在“至少出现一个6点〞的条件下,“三个点数都不同〞的概率,因为“至少出现一个6点〞有66655591⨯⨯-⨯⨯=种情况,“至少出现一个6点,且三个点数都不一样〞共有135460C ⨯⨯=种情况,所以60()91P A B =.()P B A 的含义是在事件A 中发生的情况下,事件B 发生的概率,即在“三个点数都不同〞的情况下,“至少出现一个6点〞的概率,所以1()2P B A =.应选A. 5.等差数列{}n a 的前n 项和为n S ,且2510,55S S ==,那么10098n n a a +-+=〔〕 A. 86n + B. 41n + C. 83n + D. 43n + 答案: A设等差数列{}n a 的公差为d ,那么1(1)2n n n S na d -=+,由2510,55S S ==,可得112(21)21025(51)5552a d a d -⎧+=⎪⎪⎨-⎪+=⎪⎩,得134a d =⎧⎨=⎩,所以1(1)41n a a n d n =+-=-,那么100981286n n n a a a n +-++==+.6.假设33()nx x-的展开式中所有项系数的绝对值之和为1024,那么该展开式中的常数项是〔〕 A.270- B.270 C.90- D.90 答案: C解答:33()n x x -的展开式中所有项系数的绝对值之和等于33()nx x+的展开式中所有项系数之和.令1x =,得41024n=,∴5n =.33()nx x-的通项5553231553()()3(1)r rrr r r r r r T C x C xx-+--+=⋅-=⋅⋅-⋅,令5023r r -+=,解得3r =,∴展开式中的常数项为323453(1)90T C =⋅⋅-=-. 7.如图是某几何体的三视图,那么该几何体的体积为〔〕B.9C.12D.18 答案: B解答: 该几何体是一个直三棱柱截去14所得,如下图,其体积为31342942⨯⨯⨯⨯=. 8.执行如下图的程序框图,如果输出的a 大于2016,那么n 可能为〔〕A.7B.8C.9D.10 答案: D解答:第一次循环:5116a =⨯+=,123k =+=;62016a =<,故要继续循环, 第二次循环:56333a =⨯+=,325k =+=;332016a =<,故要继续循环, 第三次循环:5335170a =⨯+=,527k =+=;1702016a =<,故要继续循环, 第四次循环:51707857a =⨯+=,729k =+=;8572016a =<,故要继续循环,第五次循环:585794294a =⨯+=,9211k =+=;42942016a =>, 又第四次循环中k 的值为9,而判断框中的条件是k n <,结合选项可知,选D. 9.函数()sin()(0,0,)2f x A x A πωφωφ=+>><的局部图象如下图,把()f x 的图象向右平移3π个单位长度得到()g x 的图象,那么()g x 在2[,]33ππ-上的单调递增区间为〔〕A.27[,],[,]312123ππππ--- B.27[,][,]312123ππππ--- C.[,]123ππ-D.27[,]312ππ-- 答案: A解答:由题图可知2A =,4()312T πππ=-=,所以2ω=,所以22()122k k Z ππφπ⨯+=+∈.因为2πφ<,所以3πφ=,因此()2sin(2)3f x x π=+.将()f x 的图象向右平移3π个单位长度得到()2sin(2)3g x x π=-的图象,令222()232k x k k Z πππππ-+≤-≤+∈,解得5()1212k x k k Z ππππ-+≤≤+∈,所以()g x 的单调递增区间为5[,]()1212k k k Z ππππ-++∈.又2[,]33x ππ∈-,所以()g x 在2[,]33ππ-上的单调递增区间为27[,],[,]312123ππππ---.选A. 10.双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,右焦点为F ,点A 到双曲线渐近线的距离为d ,假设d =,那么双曲线的离心率为〔〕C.2D.3 答案: C解答:由题意得双曲线的渐近线方程为by x a=±,右顶点(,0)A a ,右焦点(,0)F c ,那么点A 到渐近线的距离abd c==,AF c a =-.由得)ab c a c =-,即2()ab c a =-,222243()a b c c a =-,由于222b c a =-,因而222224()3()a c a c c a -=-,∴4323640e e e --+=,33(2)(2)(2)0e e e e --+-=,2(2)(1)(332)0e e e e --++=,得2e =,应选C.11.在"九章算术"中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,假设PBD ∆的面积为()f x ,那么()f x 的图象大致是〔〕A.B.C.D.答案: A解答:AB ⊥平面BCD ,且BD CD ⊥,设AB BD CD a ===,过P 作PO BC ⊥于O ,作ON BD ⊥于N ,连接PN ,那么PN BD ⊥,3AC a =,设CP 的长度为x ,PO PC AB AC =,33PO x =,PO OC AB BC=,23axOC a x=-3ON a a x =-223()()33ax PN x a a x =+--222132()33a x x a a x-=+-PBD ∆的面积为1()2f x a PN =⋅2221132()233a x a x a a x-=+-22211(1)233xa x a a x=+--3]x a ∈. PN 由a 逐渐减小〔由函数的解析式可知函数的图象不是直线变化〕然后逐渐增大到a ,故函数图象为A.12.函数221,0()121,02x x f x x x x ⎧+<⎪=⎨-+≥⎪⎩.方程2[()]()0(0)f x af x b b -+=≠有6个不同的实数解,那么3a b +的取值围是〔〕 A.[6,11] B.[3,11] C.(6,11) D.(3,11) 答案: B解答:作函数221,0()121,02x x f x x x x ⎧+<⎪=⎨-+≥⎪⎩的图象如下,∵关于x 的方程2[()]()0f x af x b -+=有6个不同实数解,令()t f x =, ∴20t at b -+=有两个不同的正实数解, 其中一个为在(0,1)上,一个在(1,2)上;故010420b a b a b >⎧⎪-+<⎨⎪-+>⎩,其对应的平面区域如下列图所示:故当3,2a b ==时,3a b +取最大值11, 当1,0a b ==时,3a b +取最小值3, 那么3a b +的取值围是[3,11].二、填空题13.直线:30l mx y ++=与圆22(1)2x y ++=相交,弦长为2,那么m =_______. 答案:33解答:由可得圆心(1,0)-到直线的距离231m d m -=+,所以223()121m m -+=+,解得33m =. 14.实数,x y 满足不等式组35024020x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,那么z x y =+是最小值为_______.答案:13-解答:依题意,在坐标平面画出题中的不等式组表示的平面区域及直线0x y +=,平移该直线,当平移到经过该平面区域的点(11,2)--时,相应直线在x 轴上的截距到达最小,此时z x y =+取得最小值,最小值为13-.15.抛物线2:4C x y =的焦点为F ,直线AB 与抛物线C 相交于,A B 两点,假设230OA OB OF +-=,那么弦AB 中点到抛物线C 的准线的距离为_______.答案:94解答:依题意得,抛物线的焦点(0,1)F ,准线方程是1y =-,因为2()()0OA OF OB OF -+-=,即20FA FB +=,所以,,F A B 三点共线.设直线:1(0)AB y kx k =+≠,1122(,),(,)A x y B x y ,那么由214y kx x y=+⎧⎨=⎩,得24(1)x kx =+,即2440x kx --=, 124x x =-①;又20FA FB +=,因此1220x x +=②.由①②解得212x =,弦AB 的中点到抛物线C 的准线的距离为. .- 优选 222112121251119[(1)(1)]()1()1122884x y y y y x x +++=++=++=+=. 16.有一支队伍长L 米,以一定的速度匀速前进.排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,且往返速度不变.如果传令兵回到排尾后,整个队伍正好前进了L 米,那么传令兵所走的路程为________.答案:(1L +解答:设传令兵的速度为v ',队伍行进速度为v ,那么传令兵从排尾到排头的时间为L v v '-,从排头到排尾的时间为L v v '+,那么易得L L L v v v v v+=''-+,化简得222v v v v ''-=,得1v v'=,由于队伍与传令兵行进时间相等,故传令兵所走的路程为(1L .。
2018年高考理科数学(全国I卷)试题及详细答案
5、设函数 f ( x) =x3+( a-1 ) x2+ax . 若 f( x )为奇函数,则曲线 y= f ( x )在点( 0, 0)处的切线方 程为( ) B.y= -x C.y=2x D.y=x =( + ) D. +
A.y= -2x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 A. B. C.
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。 圆柱表面上的点 M在正视图上的对应点为 圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 度为( A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C: y2=4x 的焦点为 F, 过点( -2 , 0) 且斜率为 的直线与 C 交于 M , N 两点,则 A.5 B.6 C.7 D.8 ・ )
A,
M到 N 的路径中,最短路径的长
=( )
9. 已知函数 f ( x ) = ( ) , 0) B. [0 , +∞)
g ( x )=f ( x) +x+a,若 g( x )存在 2 个零点,则 a 的取值范围是
A. [-1
C. [-1
, +∞)
D. [1
, +∞)
10. 下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分 别为直角三角形 ABC的斜边 BC ,直角边 AB , AC. △ ABC的三边所围成的区域记为Ⅰ,黑色部分记为 Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 则( ) A. p 1=p2 B. p 1=p3 C. p 2=p3 D. p 1=p2+p3 11. 已知双曲线 C: - y 2=1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交 p1 , p2, p3,
(完整版)2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018高考理科数学全国I卷试题和答案解析
专业知识分享绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1 D2.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->UD .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半专业知识分享4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uu u r B .1344AB AC -uuu r uu u rC .3144AB AC +uu u r uu u rD .1344AB AC +uuu r uu u r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+专业知识分享11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C.D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷理科数学试题及答案详细解析word版精校版
绝密★启用前2018年一般高等学校招生全国统一考试(全国卷Ⅰ)理科数学留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番. 为更好地理解该地区农村的经济收入改变状况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建立后,种植收入削减B .新农村建立后,其他收入增加了一倍以上C .新农村建立后,养殖收入增加了一倍D .新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱外表上的点M 在正视图上的对应点为A ,圆柱外表上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的途径中,最短途径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所探讨的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色局部记为Ⅱ,其余局部记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1 【考点定位】复数2、已知集合A={x|x 2-x —2>0},则A =A 、{x|—1〈x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x |x>2}D 、{x|x —1}∪{x |x 2} 【答案】B【解析】由题可得C R A={x |x 2-x-2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%, 【考点定位】简单统计4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A 、-12B 、-10C 、10D 、12 【答案】B【解析】3*(a 1+a 1+d+a 1+2d )=( a 1+a 1+d ) (a 1+a 1+d+a 1+2d+a 1+3d ),整理得: 2d+3a 1=0 ; d=—3 ∴a 5=2+(5-1)*(—3)=—10 【考点定位】等差数列 求和5、设函数f (x)=x 3+(a-1)x 2+ax ,若f (x)为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为:A 、y=-2xB 、y=-xC 、y=2xD 、y=x 【答案】D【解析】f (x )为奇函数,有f (x )+f (-x )=0整理得: f (x )+f (-x)=2*(a —1)x 2=0 ∴a=1 f (x )=x 3+x求导f ‘(x )=3x 2+1 f ‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A 、—-B 、—-C 、—+D 、- 【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB —AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
完整版本2018高中高考全国1卷理科数学试卷习题及含答案
绝密★启用前2018 年一般高等学校招生全国一致考试(全国一卷)理科数学一、选择题,此题共 12 小题,每题 5 份,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1. 设 z 1 i2i ,则 z 1 iA.0B. 1D. 2C.122. 已知会合 A x | x2 x 2 0 ,则 C R AA. x | 1 x 2B. x | 1 x 2C. x | x 1 x | x 2D. x | x1 x | x 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一杯,实现翻番。
为更好地认识该地域乡村的经济收入变化状况,统计和该地图新乡村建设前后乡村的经济收入组成比率,获得以下饼图:则下边结论中不正确的选项是A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4. 记S a的前 n 项和,若3S S S a 2,则a n 为等差数列n 3 2 4 , 1 5A.-12B.-10C.10D.125.设函数f xx3 a 1 x2 ax ,若 f x 为奇函数,则曲线y f x 在点0,0 处的切线方程为A. y2xB. yxC. y2xD. yx6.在ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB 3 AB 1 B. 1 3A. AC AB AC4 4 4 4 3 AB 1 D. 1 3C. AC AB AC4 4 4 4A7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面B上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到 N 的路径中,最短路径的长度为A. 2 17B. 2 5C.3D.28.设抛物线 C : y 24 x 的焦点为 F ,过点2,0 且斜率为2的直线与 C 交于 M ,N 两点,3则FM FNA.5B.6C.7D.89.已知函数 f xe x , x 0 a ,若 g x 存在 2 个零点,则 a 的取值范ln x, x , g x f x x围是A. 1,0B. 0,C. 1,D. 1, 10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成。
2018年高考理科数学全国卷1(含详细答案)
理科数学试题A 第1页(共26页)理科数学试题A 第2页(共26页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码张贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液,不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i-=++,则z =( )A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为( )A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a的取-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科数学试题A 第3页(共26页)理科数学试题A 第4页(共26页)值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知集合2{1}M x x =<,{21}x N x =>,则M N =( )A.∅B.{01}x x <<C.{0}x x <D.{1}x x < 答案: B解答:依题意得{11}M x x =-<<,{0}N x x =>,{01}MN x x =<<.2.已知a 为实数,若复数2(1)(1)z a a i =-++为纯虚数,则20161a i i+=+( ) A.1 B.0 C.1i + D.1i - 答案: D解答:2(1)(1)z a a i =-++为纯虚数,则有210a -=,10a +≠,得1a =,则有20161112(1)111(1)(1)i i i i i i i ++-===-+++-. 3.已知12,x x R ∈,则“11x >且21x >”是“122x x +>且121x x >” 的() A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案: A解答:由11x >且21x >可得122x x +>且121x x >,即“11x >且21x >”是“122x x +>且121x x >” 的充分条件;反过来,由122x x +>且121x x >不能推出11x >且21x >,如取14x =,212x =,此时122x x +>且121x x >,但2112x =<,因此“11x >且21x >”不是“122x x +>且121x x >” 的必要条件.故“11x >且21x >”是“122x x +>且121x x >” 的充分不必要条件.4.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是()A.601,912 B.160,291 C.560,1891 D.911,2162答案: A解答:()P A B 的含义是在事件B 发生的条件下,事件A 发生的概率,即在“至少出现一个6点”的条件下,“三个点数都不同”的概率,因为“至少出现一个6点”有66655591⨯⨯-⨯⨯=种情况,“至少出现一个6点,且三个点数都不相同”共有135460C ⨯⨯=种情况,所以60()91P A B =.()P B A 的含义是在事件A 中发生的情况下,事件B 发生的概率,即在“三个点数都不同”的情况下,“至少出现一个6点”的概率,所以1()2P B A =.故选A. 5.已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ==,则10098n n a a +-+=( ) A. 86n + B. 41n + C. 83n + D. 43n + 答案: A解答:设等差数列{}n a 的公差为d ,则1(1)2n n n S na d -=+,由2510,55S S ==,可得112(21)21025(51)5552a d a d -⎧+=⎪⎪⎨-⎪+=⎪⎩,得134a d =⎧⎨=⎩,所以1(1)41n a a n d n =+-=-,则100981286n n n a a a n +-++==+.6.若n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项是() A.270- B.270 C.90- D.90 答案: C解答:n的展开式中所有项系数的绝对值之和等于n的展开式中所有项系数之和.令1x =,得41024n =,∴5n =.n-的通项55523155(3(1)r rrr r r r r r T C C x -+--+=⋅=⋅⋅-⋅,令5023r r -+=,解得3r =,∴展开式中的常数项为323453(1)90T C =⋅⋅-=-.7.如图是某几何体的三视图,则该几何体的体积为()A.6B.9C.12D.18 答案: B解答:该几何体是一个直三棱柱截去14所得,如图所示,其体积为31342942⨯⨯⨯⨯=. 8.执行如图所示的程序框图,如果输出的a 大于2016,那么n 可能为()A.7B.8C.9D.10 答案: D解答:第一次循环:5116a =⨯+=,123k =+=;62016a =<,故要继续循环, 第二次循环:56333a =⨯+=,325k =+=;332016a =<,故要继续循环, 第三次循环:5335170a =⨯+=,527k =+=;1702016a =<,故要继续循环, 第四次循环:51707857a =⨯+=,729k =+=;8572016a =<,故要继续循环, 第五次循环:585794294a =⨯+=,9211k =+=;42942016a =>, 又第四次循环中k 的值为9,而判断框中的条件是k n <,结合选项可知,选D.9.已知函数()sin()(0,0,)2f x A x A πωφωφ=+>><的部分图象如图所示,把()f x 的图象向右平移3π个单位长度得到()g x 的图象,则()g x 在2[,]33ππ-上的单调递增区间为()A.27[,],[,]312123ππππ--- B.27[,][,]312123ππππ--- C.[,]123ππ-D.27[,]312ππ-- 答案: A解答:由题图可知2A =,4()312T πππ=-=,所以2ω=,所以22()122k k Z ππφπ⨯+=+∈.因为2πφ<,所以3πφ=,因此()2sin(2)3f x x π=+.将()f x 的图象向右平移3π个单位长度得到()2sin(2)3g x x π=-的图象,令222()232k x k k Z πππππ-+≤-≤+∈,解得5()1212k x k k Z ππππ-+≤≤+∈,所以()g x 的单调递增区间为5[,]()1212k k k Z ππππ-++∈.又2[,]33x ππ∈-,所以()g x 在2[,]33ππ-上的单调递增区间为27[,],[,]312123ππππ---.选A. 10.已知双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,右焦点为F ,点A 到双曲线渐近线的距离为d ,若d AF =,则双曲线的离心率为()C.2D.3 答案: C 解答:由题意得双曲线的渐近线方程为by x a=±,右顶点(,0)A a ,右焦点(,0)F c ,则点A 到渐近线的距离abd c==,AF c a =-.由已知得)ab c a c =-,即2()ab c a =-,222243()a b c c a =-,由于222b c a =-,因而222224()3()a c a c c a -=-,∴4323640e e e --+=,33(2)(2)(2)0e e e e --+-=,2(2)(1)(332)0e e e e --++=,得2e =,故选C.11.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ∆的面积为()f x ,则()f x 的图象大致是()A.B.C.D.答案: A解答:AB ⊥平面BCD ,且BD CD ⊥,设AB BD CD a ===, 过P 作PO BC ⊥于O ,作ON BD ⊥于N ,连接PN ,则PN BD ⊥,AC =,设CP 的长度为x ,PO PC AB AC =,3PO x =,PO OC AB BC=,OC =ON a =.PN ==PBD ∆的面积为1()2f x a PN =⋅12=12=]x ∈. PN 由a 逐渐减小(由函数的解析式可知函数的图象不是直线变化)然后逐渐增大到a ,故函数图象为A.12.已知函数221,0()121,02x x f x x x x ⎧+<⎪=⎨-+≥⎪⎩.方程2[()]()0(0)f x af x b b -+=≠有6个不同的实数解,则3a b +的取值范围是() A.[6,11] B.[3,11] C.(6,11) D.(3,11) 答案: B解答:作函数221,0()121,02x x f x x x x ⎧+<⎪=⎨-+≥⎪⎩的图象如下,∵关于x 的方程2[()]()0f x af x b -+=有6个不同实数解,令()t f x =,∴20t at b -+=有两个不同的正实数解,其中一个为在(0,1)上,一个在(1,2)上;故010420b a b a b >⎧⎪-+<⎨⎪-+>⎩,其对应的平面区域如下图所示:故当3,2a b ==时,3a b +取最大值11, 当1,0a b ==时,3a b +取最小值3, 则3a b +的取值范围是[3,11].二、填空题13.已知直线:0l mx y ++=与圆22(1)2x y ++=相交,弦长为2,则m =_______. 答案:解答:由已知可得圆心(1,0)-到直线的距离d =,所以212+=,解得m =. 14.已知实数,x y 满足不等式组35024020x y x y y -+≥⎧⎪+-≤⎨⎪+≥⎩,则z x y =+是最小值为_______.答案: 13- 解答:依题意,在坐标平面内画出题中的不等式组表示的平面区域及直线0x y +=,平移该直线,当平移到经过该平面区域内的点(11,2)--时,相应直线在x 轴上的截距达到最小,此时z x y =+取得最小值,最小值为13-.15.已知抛物线2:4C x y =的焦点为F ,直线AB 与抛物线C 相交于,A B 两点,若230OA OB OF +-=,则弦AB 中点到抛物线C 的准线的距离为_______.答案:94解答:依题意得,抛物线的焦点(0,1)F ,准线方程是1y =-,因为2()()0OA OF OB OF -+-=,即20FA FB +=,所以,,F A B 三点共线.设直线:1(0)AB y kx k =+≠,1122(,),(,)A x y B x y ,则由214y kx x y=+⎧⎨=⎩,得24(1)x kx =+,即2440x kx --=,124x x =-①;又20FA FB +=,因此1220x x +=②.由①②解得212x =,弦AB 的中点到抛物线C 的准线的距离为222112121251119[(1)(1)]()1()1122884x y y y y x x +++=++=++=+=. 16.有一支队伍长L 米,以一定的速度匀速前进.排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,且往返速度不变.如果传令兵回到排尾后,整个队伍正好前进了L 米,则传令兵所走的路程为________. 答案:(1L +解答:设传令兵的速度为v ',队伍行进速度为v ,则传令兵从排尾到排头的时间为Lv v'-,从排头到排尾的时间为L v v '+,则易得L L L v v v v v +=''-+,化简得222v v v v ''-=,得1v v'=,由于队伍与传令兵行进时间相等,故传令兵所走的路程为(1L .。