实验1 示波器函数信号发生器的原理及使用(实验指导书)
常用电子仪器的使用实验报告
常用电子仪器的使用实验报告一、实验目的1、了解并熟悉常用电子仪器的基本原理和功能。
2、掌握常用电子仪器的正确使用方法和操作步骤。
3、通过实际操作,提高对电子电路的测量和分析能力。
二、实验仪器1、示波器:用于观察和测量电信号的波形、幅度、频率等参数。
2、函数信号发生器:产生各种不同类型的电信号,如正弦波、方波、三角波等。
3、数字万用表:测量电压、电流、电阻等电学量。
4、交流毫伏表:测量交流信号的电压有效值。
三、实验原理(一)示波器原理示波器是一种能够显示电信号波形的电子仪器。
它通过将输入的电信号在垂直方向上进行偏转,并在水平方向上进行扫描,从而在荧光屏上形成信号的波形图像。
示波器的主要参数包括垂直灵敏度、水平扫描速度、触发方式等。
(二)函数信号发生器原理函数信号发生器是一种能够产生各种周期性电信号的仪器。
它通常采用集成电路和数字技术,通过设置不同的参数,如频率、幅度、占空比等,来产生所需的信号波形。
(三)数字万用表原理数字万用表基于数字电路和模数转换技术,将测量的电学量转换为数字信号,并通过显示屏显示出测量结果。
它可以测量直流电压、交流电压、直流电流、交流电流、电阻、电容、二极管等多种电学参数。
(四)交流毫伏表原理交流毫伏表用于测量交流信号的电压有效值。
它采用放大和检波电路,将输入的交流信号进行放大和整流,然后通过表头显示出电压的有效值。
四、实验内容及步骤(一)示波器的使用1、开启示波器电源,预热一段时间。
2、调节“辉度”、“聚焦”等旋钮,使荧光屏上显示出清晰的扫描线。
3、选择合适的输入通道,并将探头连接到被测信号源。
4、调节“垂直灵敏度”和“水平扫描速度”旋钮,使信号波形在荧光屏上显示出合适的大小和周期。
5、选择合适的触发方式,以使波形稳定显示。
6、测量信号的幅度、周期、频率等参数,并记录测量结果。
(二)函数信号发生器的使用1、开启函数信号发生器电源,选择所需的信号类型,如正弦波、方波或三角波。
示波器与函数信号发生器的使用及实验报告
示波器与函数信号发生器的使用及实验报告实验: 示波器与函数信号发生器的使用实验目的:1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要技术指标、性能及正确使用方法。
2、学会使用测量电压波形、幅度、频率的基本方法。
3、学会正确调节函数信号发生器频率、幅度的方法,熟悉dB键。
实验内容:一、双踪示波器的使用熟悉示波器面板上各旋钮的名称及功能,掌握正确使用各旋钮应处的位置。
1、示波器的检查及校准1) 扫描基线调节首先,接通电源,检查示波器各旋钮是否正常,将示波器的显示方式开关置于“单踪”显示(CH1或CH2),输入耦合方式开关置“GND”,触发方式开关置于“自动”。
开启电源开关后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。
然后调节“X轴位移”()和“Y轴位移”( )旋钮,使扫描线位于屏幕中央,并且能上下左右移动自如。
2)测试“校准信号”波形的幅度、频率将示波器的“校准信号”通过专用电缆线引入选定的CH1通道,将Y轴输入耦合方式开关置于“AC”或“DC”,触发源选择开关置“内”,内触发源选择开关置“CH1”。
调节X轴“扫描速率”开关(SEC/DIV)和Y轴“输入灵敏度”开关(VOLTS/DIV),使示波器显示屏上显示出一个或数个周期稳定的方波波形。
校准“校准信号”的幅度及频率的计算:根据被测波形在屏幕坐标刻度上垂直方向所占的格数与“Y轴灵敏度”开关指示值的乘积,即可算得信号幅值的实测值。
将“y轴灵敏度微调”旋钮置“校准”位置,“y轴灵敏度”开关置适当位置,读取校正信号幅度;将“扫速微调”旋钮置“校准”位置,“扫速”开根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数与“扫速”1开关指示值的乘积,即可算得信号频率的实测值。
关置适当位置,读取校正信号周期,记入表1,1。
表1,1标准值实测值误差幅度 Up-p(V)频率 f(KHz)注:不同型号示波器标准值有所不同,请按所使用示波器将标准值填入表格中。
示波器的使用实验报告
示波器的使用实验报告示波器的使用实验报告「篇一」【实验目的】1、了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合;2、熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;3、观察李萨如图形。
【实验仪器】1、双踪示波器 GOS-6021型1台2、函数信号发生器YB1602型 1台3、连接线示波器专用 2根示波器和信号发生器的使用说明请熟读常用仪器部分。
[实验原理]示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成。
1、示波管如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。
亮点在偏转板电压的作用下,位置也随之改变。
在一定范围内,亮点的位移与偏转板上所加电压成正比。
示波管结构简图示波管内的偏转板2、扫描与同步的作用如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图图扫描的作用及其显示如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。
我们看到的将是一条垂直的亮线,如图如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的`亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。
如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。
但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。
由此可见:(1)要想看到Y轴偏转板电压的图形,必须加上X轴偏转板电压把它展开,这个过程称为扫描。
如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。
(2)要使显示的波形稳定,Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数,即:fynn=1,2,3, fx示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。
示波器使用大学物理实验报告1
示波器使用大学物理实验报告1一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,包括示波器的调节、信号的输入与显示等。
3、学会使用示波器测量正弦波、方波等信号的电压、频率和周期等参数。
二、实验仪器示波器、函数信号发生器、探头、连接线等。
三、实验原理示波器是一种用于显示电信号波形的电子仪器。
它通过将输入的电信号转换为光信号,并在荧光屏上显示出来,从而使我们能够观察到信号的变化情况。
示波器主要由电子枪、偏转系统和荧光屏三部分组成。
电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。
示波器的显示原理是基于电子束在电场和磁场中的偏转。
当在垂直偏转板和水平偏转板上分别加上适当的电压时,电子束就会在垂直和水平方向上发生偏转,从而在荧光屏上显示出相应的波形。
四、实验内容及步骤1、示波器的调节(1)打开示波器电源,预热一段时间。
(2)调节辉度和聚焦旋钮,使荧光屏上的亮点清晰可见。
(3)调节水平和垂直位移旋钮,将亮点移至屏幕的中心位置。
(4)选择适当的触发方式和触发电平,使示波器能够稳定地显示输入信号的波形。
2、正弦波信号的测量(1)将函数信号发生器的输出端与示波器的输入端连接,设置函数信号发生器输出正弦波信号,频率为 1kHz,峰峰值为 5V。
(2)调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在屏幕上显示完整且清晰。
(3)测量正弦波的峰峰值、有效值、频率和周期。
峰峰值:通过示波器的垂直刻度读取正弦波的峰峰值。
有效值:根据公式 U 有效值= U 峰峰值/√2 计算正弦波的有效值。
频率:根据示波器水平刻度上一个周期所对应的时间,计算出正弦波的频率。
周期:直接从示波器上读取正弦波的周期。
3、方波信号的测量(1)设置函数信号发生器输出方波信号,频率为 500Hz,峰峰值为 3V。
(2)按照上述方法测量方波信号的峰峰值、频率和周期。
大学物理实验--示波器的原理与使用
数据记录与处理 1. 测量校正信号的电压频率 将实验数据记录下表
校正 信号
标准值
频率 1 KHz 电压VP-P 2 VP-P
偏转
扫描
因数 格数(div) 速率
(V/格)
(T/div)
格数 (div)
实测值
—— ——
——
——
四、实验内容与步骤
3. 测量正弦电压波信号电压、频率 (1)正弦信号输入 ,调节【TIME/DIV】、【VOLTS/DIV】,使 波形显示适中.(数值方向占2/3,水平方向1~2个完整波形) (2)测量电压、频率,即垂直衰减分度*格数,即扫描速率分度* 格数
VOLTS/DIV: 偏转因数,指 示垂直方向每 格的偏转电压 值
ADD:显示两个通道信 号幅度的代数和或差
微调旋钮, 校正位置 CAL
CH1: 被测信号输入端口
选择触发信号耦合方 式:AC/DC GND
(4)触发区
触发旋钮,扫面信 号与被测信号同步
电平(LEVEL): 调节被测信号在某 一电平触发扫描, 稳定信号
G:控制栅二极、实验原理 A1:第一阳极 A2:第二阳极
(1)示波管(CRT)
K:阴极
Y:竖直偏转板
X:水平 U 偏转板
Y
F:灯丝 G:对应亮度旋钮
荧光屏
Y Uy
G A1 A2共同完成聚焦
二、实验原理
(2)放大和衰减系统 为了适应被测信号幅值的范围(从最小幅值到最大幅值),对小信 号进行放大,对大信号进行衰减,用于对不同大小的输入信号进行适当 的缩放,使其幅度适合于观测。
如果只在水平偏转板X上加上扫描电压, 而竖直偏转板Y上不加电压,电子束在水平 方向上来回运动而形成一条水平亮线,如果 只在竖直偏转板Y上加上交变电压,而X偏转 板上不加偏压,电子束在竖直方向上动而形 成一条亮线。
实验1 示波器函数信号发生器的原理及使用(实验报告)
实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。
2. 学习调节函数信号发生器产生波形及正确设置参数的方法。
3. 学习用示波器观察测量信号波形的电压参数和时间参数。
4. 通过李萨如图形学习用示波器观察两个信号之间的关系。
【实验仪器】1. 示波器DS5042型,1台。
2. 函数信号发生器DG1022型,1台。
3. 电缆线(BNC型插头),2条。
【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。
图1-1 函数信号发生器生成的正、余弦信号的波形(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。
图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形(3)实验指导教师检查并签字。
指导教师签字:3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。
(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。
《示波器的的原理和使用》物理实验报告
《示波器的的原理和使用》物理实验报告一、实验目的及要求:了解示波器的基本工作原理。
学习示波器、函数信号发生器的使用方法。
学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、实验原理:1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。
亮点在偏转板电压的作用下,位置也随之改变。
在一定范围内,亮点的位移与偏转板上所加电压成正比。
3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。
我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。
如果正弦波与锯齿波的周期相同,这个正弦图形将稳定地停在荧光屏上。
但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。
要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y 轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。
示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。
在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。
示波器与函数信号发生器的使用
3.2控制件作用
序号
控制件名称
功能
1
辉度
调节光迹的亮度
2
辅助聚焦
与聚焦配合,调节光迹的清晰度
3
聚焦
调节光迹的清晰度
4
光迹旋转
调节光迹与水平刻度线平行
5
校正信号
提供幅度为0.5V,频率为1KHz的方波信号用于校正10:1探极的补偿电容器和检测示波器垂直与水平的偏转因数
6
电源指示
电源接通时,灯亮
二、实验设备器材:
1.函数信号发生器1台
2.双踪示波器1台
3.交流毫伏表1台
三、实验原理:
1.正弦交流信号和方波及三角波脉冲信号是常用的电激励信号,可由函数信号发生器提供。正弦信号的波形参数是峰峰值UP-P、周期T(或频率f)和初相;脉冲信号的波形参数是峰峰值UP-P、周期T及脉宽tk。本实验所用函数信号发生器输出频率范围为20Hz~50KHz的正弦波及方波,并有6位LED数码管显示信号的频率。正弦波的及方波的峰峰值均在0~20V之间连续可调。
1Vp-p
示波器“V/div”位置
20mV/div
0.2 V/div
峰-峰值波形格数
5.1
4.9
峰-峰值(计算值)
102 mVp-p
9.8 Vp-p
3.方波脉冲信号的观察和测定
(1)将信号发生器波形选择开关置“方波输出”。
(2)调节方波的输出幅度为3.0VP-P(用示波器测定),分别观测100Hz,3KHz和30KHz方波信号的波形参数。
15
Y1偶合方式
(AC-DC-GND)
用于选择Y1被测信号输入垂直通道的偶合方式
16
Y2偶合方式
示波器的使用及实验
VIRIABLE PLEE×5: 连续调节扫 描速率
SEC/DIV:调节扫描 速率,指示水平方向 每格的扫描时间 X-Y工作方式:CH1 输入x轴信号
扫描方式选择
电平(LEVEL): 调节被测信号在某 一电平触发扫描
自动(AUTO):扫 描发生器自动工作
常态(NORM)
单次(SINGLE)
被触发或准 备指示灯
SEC/DIV:调节扫描 速率,指示水平方向 每格的扫描时间 X-Y工作方式:CH1 输入x轴信号
垂直灵敏度和水平扫描速率
▼垂直灵敏度选择开关又称Y轴灵敏度步进开关, 简称V/div,它的作用是步进式调节屏幕上信号波 形的幅度。 ▼垂直灵敏度微调旋钮的作用是连续调节屏幕上 信号波形的幅度。 ▼水平扫描速率选择开关又称X轴扫描速率步进开 关,简称t/div开关,它的作用是步进式调节屏幕 上信号波形在水平方向的宽度。 ▼水平扫描速度微调旋钮的作用是连续调节屏 幕上信号波形在水平方向的宽度。
例 示波器测直流电压及垂直灵敏度开关示意 图如图所示,h=4cm、V/cm、若k=10:1, 求被测直流电压值。
V/div 0.5 1 2 5 10 V 250 100 50 mV 25 5 显示波形 (直流电压) 零电平线
VDC h Dy k 4 0.5 10 20
(V)
2、测量正弦信号电压与周期
测量原理
U pp Y 偏转因数
T X 时基因数
调好信号发生器的输出信号,选择示波器CH1通道合 适的偏转因数、选择合适的扫描速率值,使屏上刻度范围 内出现完整波形,将实验数据记录入下表
信号发生器 频率 (Hz) 电压示数 (V) 偏转因数 (V/格) 示波器 Y ( 格) 扫描速率 (s/格) X ( 格)
常用电子仪器的使用实验指导书
实验一常用电子仪器的使用一、实验目的1. 学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要性能、技术指标及正确使用方法。
2. 初步掌握使用双踪示波器观察信号波形和测量波形参数的方法。
二、实验设备与器件器材名称器材名称函数信号发生器双踪示波器交流毫伏表频率计直流稳压电源导线若干三、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
在实验中,各种电子仪器要进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接通常如图1-1所示。
为防止外界干扰,各仪器的公共接地端应连接在一起,称共地。
信号发生器和交流毫伏表的连接线通常用屏蔽线或专用电缆线,示波器的连接线使用专用电缆线,直流电源的连接线用普通导线。
图1-1模拟电子电路中常用电子仪器布局图2 模拟电子技术实验1.示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种基本参数的测量,其基本功能和主要使用方法如下:(1)寻找扫描光迹将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。
②触发方式开关置“自动”。
③适当调节垂直、水平“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)(2)双踪示波器一般有五种显示方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”、“断续”二种双踪显示方式。
“交替”显示方式一般适宜于输入信号频率较高时使用,“断续”显示一般适宜于输入信号频率较低时使用。
(3)为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的Y通道。
大学物理实验讲义实验示波器原理和使用
⼤学物理实验讲义实验⽰波器原理和使⽤实验5 ⽰波器原理和使⽤⽰波器是利⽤⽰波管内电⼦射线的偏转,在荧光屏上显⽰出电信号波形的仪器。
⽤它能直接观察电信号的波形,也能测定电信号的幅度、周期、频率和相位,凡能转化为电压信号的其它电学量(电流、电功率、阻抗等)和⾮电学量(温度、位移、速度、压⼒、声强、光强、磁场等),其随时间的变化都能⽤⽰波器来观测。
由于电⼦射线的惯性⼩,⽰波器扫描发⽣器的频率较⾼(可达⼏百兆赫),Y轴和X轴放⼤器的增益很⼤,输⼊阻抗⾼,所以⽰波器特别适合于观测瞬时变化的过程,并可测量微伏级的电压,⽽对被测试系统的影响很⼩。
因此⽰波器是⼀种应⽤⼴泛的综合性电信号测试仪器。
⽰波器按⽤途和特点可以分为:通⽤⽰波器。
它是根据波形显⽰基本原理⽽构成的⽰波器。
取样⽰波器,它是先将⾼频信号取样,变为波形与原始信号相似的低频信号,再应⽤基本原理显⽰波形的⽰波器。
与通⽤⽰波器相⽐,取样⽰波器具有频带极宽的优点。
记忆与存储⽰波器。
这两种⽰波器均有存储信号的功能,前者是采⽤记忆⽰波管,后者是采⽤数字存储器来存储信息。
专⽤⽰波器。
为满⾜特殊需要⽽设计的⽰波器,如电视⽰波器、⾼压⽰波器等。
智能⽰波器。
这种⽰波器内采⽤了微处理器,具有⾃动操作、数字化处理、存储及显⽰等功能。
它是当前发展起来的新型⽰波器。
也是⽰波器发展的⽅向。
本实验以SS—7802型通⽤⽰波器为例,说明⽰波器的原理和使⽤⽅法,并介绍GFG —8016G型数字式函数信号发⽣器的使⽤⽅法。
【实验⽬的】1.了解⽰波器显⽰图象的原理。
2.较熟练地掌握⽰波器的调整和使⽤⽅法。
3.掌握函数信号发⽣器的使⽤⽅法。
4.学习⽤⽰波器观察电信号的波形,测量电信号的电压幅度和频率。
【仪器⽤具】SS—7802型⽰波器(或DS-5000型存储⽰波器)、GFG—8016G型数字式函数信号发⽣器(或SPF05A型数字合成函数信号发⽣器)。
【实验原理】1.⽰波器的基本结构和⼯作原理⽰波器内部结构复杂,型号很多,但从功能上看,⼤致可分为⽰波管、电压放⼤装置(包括Y轴放⼤和X轴放⼤两部分)、扫描与整步装置和电源四个部分。
实验1 示波器函数信号发生器的原理及使用(实验指导书)
实验1 示波器、函数信号发生器的原理及使用示波器是用于显示信号波形的仪器,除了可以直接观测电压随时间变化的波形外,还可测量频率和相位差等参数,也可定性观察信号的动态过程。
它能够测量电学量,也可通过不同的传感器将各种非电量,如速度、压力、应力、振动、浓度等物理量,变换成电学量来间接地进行观察和测量。
函数信号发生器能够用来产生正弦波、三角波、方波等各种电信号,并且能够设置和调整信号的频率、周期、幅值等重要参数。
【实验目的】1. 了解示波器、函数信号发生器的工作原理。
2. 学习调节函数信号发生器产生波形及正确设置参数的方法。
3. 学习用示波器观察测量信号波形的电压参数和时间参数。
4. 通过李萨如图形学习用示波器观察两个信号之间的关系。
【实验仪器】1. 示波器DS5042型,1台。
2. 函数信号发生器DG1022型,1台。
3. 电缆线(BNC型插头),2条。
【实验原理】1. 函数信号发生器产生的波形参数(1)正弦电压波形参数正弦波的数学描述为u(t)=U0+U m sin(2πft+ϕ),其中:U0:正弦电压的直流分量,单位V。
U m:正弦电压的幅值,又称正弦波交流分量的最大峰值,相应的-U m为交流分量的最小峰值,用V pp=2 U m来表示正弦电压信号的峰峰值,U m/2为交流分量的有效值或均方根值,单位V。
f:为正弦电压的频率,单位Hz,相应的记ω=2πf为正弦信号的角频率,单位rad/s,正弦电压信号的周期T=1/f。
ϕ:正弦电压信号的相位角。
(2)余弦电压波形参数利用正弦函数和余弦函数之间的关系可知,当相位角ϕ=90º时,sin(2πft+90º)=cos(2πft)。
(3)操作函数信号发生器产生正余弦信号从“确定信号所在通道的CH1/CH2按键”入手确定正/余弦波形应在函数信号发生器的哪一个通道设置并输出,通过“产生正弦波(Sine)的按键”进入正余弦信号设置的菜单,可对正余弦信号的相应参数进行设置,在设置的菜单内,还可以在菜单内按下相应的“同相位”的功能键,建立函数信号发生器CH1、CH2两通道产生的正弦波形之间的相位同步关系。
示波器的原理与使用-实验报告(00001)
示波器的原理与使用-实验报告LT号进行适当的缩放,使其幅度适合于观测。
扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。
扫描开始的时间由触发系统控制。
1.示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在Y偏转板和X偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示:2.扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。
当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。
步骤与操作方法:1. 示波器测量信号的电压和频率对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出ha U p p ⨯=-,1)(-⨯=l b f其中a 为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div 或mV/div ; h 为输入信号的峰-峰高度, 单位div ; b 为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div 、ms/div 或μs/div ; l 为输入信号的单个周期宽度, 单位div 。
(1) 打开电源开关并切换到DC 档, 拨动垂直工作方式开关,选择未知信号所在的通道。
(2) 通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”, 以及它们对应的微调开关, 使未知信号图形的高度和波形个数便与测量。
同时在开关上读出计算所需的a 、b 值。
(3)调节“垂直位移”与“水平位移”旋钮,利用荧光屏上的刻度读取l、h值,并记录。
2.用示波器直接观察半波和全波整流波形(1)将实验室提供的未知信号分别接到整流电路的AB端,CD端送入示波器的CH1或CH2端。
实验1-信号发生器和示波器的使用
实验1 信号发生器和示波器的使用一、实验目的1. 熟悉实验中所使用的函数信号发生器的布局,各按键开关的作用及其使用方法。
2. 学会使用示波器观察各种电信号波形,定量测出正弦信号和脉冲信号的波形参数。
3. 初步掌握数字示波器和函数信号发生器的使用。
二、实验说明1. 正弦交流信号和方波脉冲信号是常用的电激励信号,由函数脉冲信号发生器提供。
正弦信号的波形参数是幅值Um、周期T(或频率f)和初相位;脉冲信号的波形参数是幅值Um、脉冲重复周期T及脉宽t wo本实验采用的智能函数信号发生器能提供频率范围为1Hz~150kHz,幅值可在0~18V之间连续可调的上述信号。
输出的信号可由波形选择按键来选取。
可以输出正弦波、三角波、矩形波等,并由LED数码管显示信号的频率。
2. 电子示波器是一种信号图形测量仪器,可以定量测出各种电信号的波形参数,如波形的幅度、时间、相位关系或脉冲信号的前、后沿等,这是其他的测试仪器很难做到的。
为了完成对各种不同波形、不同要求的观察和测量,示波器上还有一些其它的调节和控制旋钮,希望在实验中自己动手加以摸索和掌握,并注意总结实用经验。
三、实验设备四、实验内容与步骤1、在每次操作仪器前必须检查保护性接地是否接好。
2、示波器电源线要插入电源插座,测试导线必须和示波器输入端连接。
3、检查待测物是否关闭电源,然后连接测试探棒至测试点。
4、然后再开启示波器和待测物电源。
5、按下示波器电源按钮“ON/STBY”,经过几秒钟系统启动后,仪器将恢复到上次使用的操作模式。
6、数字示波器——探棒校准如要在示波器上显示一个没有失真的波形,探棒必须符合每一个垂直放大器的输入阻抗。
为了以上原因,一个内建的校正产生器提供一个1kHz频率,具有很快上升时间和很小过激的方波信号于LCD下方的输出端给探棒补偿用。
因为方波的信号是给探棒补偿用,所以频率的精确度和脉冲的作用周期因子不是很重要。
输出端提供2Vpp±3%的方波给10:1的探棒。
函数信号发生器与示波器的使用实验报告书
函数信号发生器与示波器的使用实验报告书专业:班级:学号:姓名:实验时间:实验目的1、学会数字合成函数信号发生器常用功能的设置、使用;2、会从函数信号发生器胡频率计上读出信号频率;3、在了解数字双踪示波器显示波形的工作原理基础上,观察并测量以下信号:(见下表)学会数字示波器的基本操作与读书;实验仪器F40函数信号发生器、UTD2102CE数字示波器、探头。
实验原理1、函数信号发生器的原理该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。
2、示波器显示波形原理如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦波电压相等时,则显示完整的周期的正弦波形,若在示波器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上示波器的锯齿波,则在荧光屏上将的到两个正弦波。
实验内容1、做好准备工作,连接实验仪器电路,设置好函数信号发生器、示波器;(1)、把函数信号发生器的“函数输出”输出端与示波器的X CH1信号输入端连接,两台仪器的接通220V交流电源。
(2)、启动函数信号发生器,开机后仪器不需要设置,短暂时间后,即输出10K Hz的正弦波形。
(3)、需要信号源的其他信号,到时在进行相关的数据设定(如正弦波2的波形、频率、点频输出、信号幅度)等。
2、用示波器观察上表中序号1的信号波形(10KHz);过程如下:(1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。
(2)、按F1通道设置为“交流合”;按F2将带宽限制设置为“关”。
(3)、设置探头衰减系数:按F4使菜单显示10✗将探头上的衰减倍率开关设定为10✗。
(4)、把探头的探针和接地夹连接到探针补偿信号的相应连接端上,检查Y CHI探头补偿是否正常,如果不正常则对探头进行调整,到基本正常为止。
《示波器的的原理和使用》物理实验报告
《示波器的的原理和使用》物理实验报告一、实验目的及要求:〔1〕了解示波器的根本工作原理。
〔2〕学习示波器、函数信号发生器的使用方法。
〔3〕学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、实验原理:1)示波器的根本组成局部:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。
亮点在偏转板电压的作用下,位置也随之改变。
在一定范围内,亮点的位移与偏转板上所加电压成正比。
3)示波器显示波形的原理:如果在某轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而某轴偏转板不加任何电压,那么电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。
我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在某轴偏转板上加锯齿形电压,那么荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。
如果正弦波与锯齿波的周期〔频率〕相同,这个正弦图形将稳定地停在荧光屏上。
但如果正弦波与锯齿波的周期稍有不同,那么第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。
要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与某轴偏转板电压频率的比值必须是整数。
示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步〞。
在人工调节接近满足式频率整数倍时条件下,再参加“同步〞的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
4)李萨如图形的根本原理:如果同时从示波器的某轴和y轴输入频率相同或成简单整数比的两个正弦电压,那么屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。
示波器的使用实验报告
示波器的使用实验报告一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,包括垂直灵敏度、水平扫描速度、触发方式等的调节。
3、学会用示波器观察正弦波、方波、三角波等常见信号的波形,并测量其频率、幅值等参数。
二、实验仪器示波器、函数信号发生器、探头三、示波器的基本结构和工作原理示波器是一种用于观察和测量电信号波形的电子仪器。
它主要由示波管、垂直放大器、水平放大器、触发电路和电源等部分组成。
示波管是示波器的核心部件,它由电子枪、偏转系统和荧光屏组成。
电子枪发射出电子束,经过偏转系统的作用,使电子束在荧光屏上产生偏转,从而形成波形。
垂直放大器用于放大输入信号的垂直分量,以便在荧光屏上显示出清晰的波形。
水平放大器则用于控制电子束在水平方向上的扫描速度。
触发电路用于选择触发信号的来源和触发方式,以保证示波器能够稳定地显示波形。
四、实验内容及步骤1、示波器的校准将示波器的探头接到校准信号输出端。
调节示波器的垂直灵敏度和水平扫描速度,使校准信号的方波在荧光屏上显示出清晰的波形。
观察校准信号的幅值和频率,与标称值进行比较,如有偏差,进行相应的调整。
2、观察正弦波信号将函数信号发生器的输出设置为正弦波,频率为 1kHz,幅值为 5V。
将示波器的探头接到函数信号发生器的输出端。
调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在荧光屏上显示出合适的大小。
观察正弦波的波形,测量其幅值和周期,并计算出频率。
3、观察方波信号将函数信号发生器的输出设置为方波,频率为 2kHz,幅值为 3V。
重复步骤 2 中的操作,观察方波的波形,测量其幅值和周期,并计算出频率。
4、观察三角波信号将函数信号发生器的输出设置为三角波,频率为 500Hz,幅值为4V。
重复步骤 2 中的操作,观察三角波的波形,测量其幅值和周期,并计算出频率。
5、改变信号的频率和幅值,观察示波器的显示变化分别改变函数信号发生器输出信号的频率和幅值,观察示波器上波形的变化。
示波器的使用及实验
本实验所用函数信号发生器可以输出频率在0.2Hz-2MHz的正弦波、三角波、方波信号。
面板主要控制件的作用:
电源开关
频率显示
幅度显示
波形选择
频率范围选择
频率微调
幅度衰减
幅度微调
函数信号输出
4、测量前示波器面板控件的位置
AC常态
触发耦合方式 (COUPL ING)
顺时针旋足
微调(VIRIABLE)
3
2
1
4
扫描方式选择
被触发或准备指示灯
4
电平(LEVEL):调节被测信号在某一电平触发扫描
5
自动(AUTO):扫描发生器自动工作
1
常态(NORM)
2
单次(SINGLE)
3
触发方式选择
选择触发源信号 内:CH1 CH2 外:LINE EXT
接地
CH1或CH2选择:“交替”或“断续”工作方式时,选择频率低的通道触发 单踪显示时,任选其一,触发信号均来自于被显示通道
(三)用示波器测量相位差
将欲测量的两个信号A和B分别接到示波器的两个输入通道。
(一)测量电压
3、测量含有直流成分的交流信号
u(t)
A
B
0
t
图3-20含有直流成分的正弦交流信号波形
左图为含有直流成分的正弦交流电压波形,在测量时,既要测出直流成分的大小,又要测出交流电压的大小(振幅值)。
壹
测量步骤如下:
贰
测量交流电压振幅值 按照交流电压的上述测量方法进行测量,振幅值Um=Up-p/2。
扫描速率(SEC/DIV)
CH1
垂直方式(MODE)
触发极性(SLOPE)
实验一常用电子仪器的使用(1)
实验一常用电子仪器的使用预习部分一、实验目的1. 学习电子电路实验中常用的电子仪器──示波器、函数信号发生器、直流稳压电源、交流毫伏表等的主要技术指标、性能及正确使用方法。
2. 初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。
二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
图 2-1-1 模拟电子电路中常用电子仪器布局图实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图2-1-1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
1. 示波器这里对YB4324 型双踪示波器的使用作说明如下:1) 寻找扫描光迹点在开机半分钟后,如仍找不到光点,可调节垂直(position↓↑)和水平(positiom← →)移位旋钮,将光点移至荧光屏的中心位置。
2) 为显示稳定的波形,需注意YB4324 示波器面板上的下列几个控制开关(或旋钮)的位置。
a、“扫描速率(sec/div)”开关──它的位置应根据被观察信号的周期来确定。
b、“触发源(trigger source)”选择开关(内、外)──CH1(CH2):在双踪显示时,触发信号来自CH1(CH2)通道,在单踪显示时,触发信号来自被显示的通道;交替(ALT):在双踪交替显示时,触发信号来自于两个Y通道,此方式用于同时观察两路不相关的信号;电源(line):触发信号来自于市电;外接(ext):用于外触发,外触发输入端口(ext input)。
耦合方式(coupling)用于外触发。
c、“扫描方式(sweep mode)”开关──置于“自动(auto)”位置观察频率高于50Hz的信号,当频率低于50Hz时选择“常态(norm)”。
示波器和信号发生器的使用(1)
实验七示波器和信号发生器的使用一、实验目的1.了解示波器的工作原理。
2.掌握示波器和信号发生器的使用方法。
二、实验仪器双踪示波器信号发生器若干电阻、电容三、预习要求1.了解示波器的原理,预习示波器的使用方法。
2.预习信号发生器的使用方法。
四、实验原理1.示波器。
示波器是一种综合的电信号特性测量仪器,它可以直接显示出电信号的波形,测量出信号的幅度、频率、脉宽、相位、同频率信号的相位差等参数。
2.信号发生器是用来产生不同形状、不同频率波形的仪器,实验中常用作信号源。
信号的波形、周期(或频率)和幅值可以通过开关和旋钮加以调节。
五、实验内容1.寻找扫描光迹。
接通示波器电源(220V),预热1-2分钟。
如果仍找不到光点,可调节亮度旋钮,适当调节垂直和水平位移旋钮,将光点移至屏幕的中心位置。
调节扫描灵敏度旋钮可使扫描光迹成为一条扫描线。
调节辉度(亮度)、聚焦、标尺亮度旋钮,使扫描线成为一条亮度适中、清晰纤细的直线。
2.熟悉双踪示波器面板主要旋钮(或开关)作用。
为了显示稳定的波形,需要注意几个主要旋钮或开关的位置。
①“触发源方式”开关(SOURCE MODE):通常为内触发。
②“内触发源方式”开关(INT TRIG):通常置于所用通道位置。
当用于双路显示时,为比较两个波形的相对位置,可将其置于交替(VERT MODE)位置。
③(扫描)触发方式:通常置于自动位置。
④显示方式:根据需要可置于CH1、CH2、ALT(交替显示两路高频信号)、 CHOP(断续显示两路低频信号)、 ADD(显示两路信号之和)。
⑤扫描灵敏度开关:表示横轴方向一个大格的时间。
根据被测信号周期确定。
⑥幅度灵敏度开关:表示纵轴方向一个大格的电压。
根据被测信号幅度确定。
⑦在测量波形的周期和幅值时,应注意将扫描微调旋钮和垂直(Y轴)微调旋钮置于校准位置。
⑧当输入波形左右移动、不稳定时,可调节触发电平旋钮使波形稳定。
3.示波器内校准信号的自检(1)调出校准信号:将示波器内的方波校准信号,通过专用电缆线接入通道1(或通道2),调节示波器各有关旋钮和开关,在屏幕上可以显示出方波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1 示波器、函数信号发生器的原理及使用示波器是用于显示信号波形的仪器,除了可以直接观测电压随时间变化的波形外,还可测量频率和相位差等参数,也可定性观察信号的动态过程。
它能够测量电学量,也可通过不同的传感器将各种非电量,如速度、压力、应力、振动、浓度等物理量,变换成电学量来间接地进行观察和测量。
函数信号发生器能够用来产生正弦波、三角波、方波等各种电信号,并且能够设置和调整信号的频率、周期、幅值等重要参数。
【实验目的】1. 了解示波器、函数信号发生器的工作原理。
2. 学习调节函数信号发生器产生波形及正确设置参数的方法。
3. 学习用示波器观察测量信号波形的电压参数和时间参数。
4. 通过李萨如图形学习用示波器观察两个信号之间的关系。
【实验仪器】1. 示波器DS5042型,1台。
2. 函数信号发生器DG1022型,1台。
3. 电缆线(BNC型插头),2条。
【实验原理】1. 函数信号发生器产生的波形参数(1)正弦电压波形参数正弦波的数学描述为u(t)=U0+U m sin(2πft+ϕ),其中:U0:正弦电压的直流分量,单位V。
U m:正弦电压的幅值,又称正弦波交流分量的最大峰值,相应的-U m为交流分量的最小峰值,用V pp=2 U m来表示正弦电压信号的峰峰值,U m/2为交流分量的有效值或均方根值,单位V。
f:为正弦电压的频率,单位Hz,相应的记ω=2πf为正弦信号的角频率,单位rad/s,正弦电压信号的周期T=1/f。
ϕ:正弦电压信号的相位角。
(2)余弦电压波形参数利用正弦函数和余弦函数之间的关系可知,当相位角ϕ=90º时,sin(2πft+90º)=cos(2πft)。
(3)操作函数信号发生器产生正余弦信号从“确定信号所在通道的CH1/CH2按键”入手确定正/余弦波形应在函数信号发生器的哪一个通道设置并输出,通过“产生正弦波(Sine)的按键”进入正余弦信号设置的菜单,可对正余弦信号的相应参数进行设置,在设置的菜单内,还可以在菜单内按下相应的“同相位”的功能键,建立函数信号发生器CH1、CH2两通道产生的正弦波形之间的相位同步关系。
最后,激活函数信号发生器相应通道的“输出(Output)控制”按键使信号从CH1或CH2通道输出。
实例:调节函数信号发生器,使CH1通道产生一个幅值为3V,直流偏移量为0V,频率为100Hz、相位角为0º的正弦电压信号,其数学描述为3sin(200πt);使CH2通道产生一个幅值为3V,直流偏移量为0V,频率为100Hz、相位角为90º的正弦电压信号,其数学描述为3sin(200πt+90º)=3cos(200πt),即余弦信号,并利用函数信号发生器的信号相位同步功能使两信号的相位差始终保持在90º。
如下图1-1所示为MATLAB软件工具生成的参考波形。
图1-1 函数信号发生器生成的正、余弦信号的波形2. 示波器的功能(1)示波器的Y-T显示功能Y-T显示功能是示波默认的设置,在这种设置下,示波器屏幕上横轴代表的是时间轴,纵轴显示的是信号的电压。
调节函数信号发生器使其CH1、CH2通道产生如图1-1的正弦余弦波形后,用一根BNC 电缆线将示波器的CH1通道接口与函数信号发生器的CH1通道接口连接起来,用另一根BNC 电缆线将示波器的CH2通道接口与函数信号发生器的CH2通道接口连接起来,然后调节示波器就可以在示波屏上得到如图1-1所示的正余弦信号波形。
调节示器时关注示波器操作面板上的下列功能按键:按下“自动(AUTO)调整功能按键”可使示波器自动调整示波屏上的显示波形。
“CH1和CH2按键”分别负责切换示波器对CH1、CH2通道的波形控制。
垂直位置(POSITION)旋钮可使信号波形在示波屏内上下移动。
水平位置(POSITION)旋钮可使信号波形在示波屏内左右移动。
垂直灵敏度(SCALE)旋钮可改变波形垂直方向上的每格所代表的电压尺度。
水平灵敏度(SCALE)旋钮改变波形水平方向上的每格所代表的时间尺度。
利用测量(MEASURE)按键可测量信号的电压、时间参数。
(2)李萨如图形与示波器的X-Y显示功能李萨如图形常被定义为:由在互相垂直的方向上的两个频率成简单整数比的简谐振动所合成的规则的、稳定的闭合曲线。
借由李萨如图形可以测量出两个信号的频率比与相位差,在电工、无线电技术中常利用示波器的X-Y显示功能来观察李萨如图形,并用以测定频率或相位差。
将如图1-1所示的正余弦信号显示在示波屏上之后,只要将示波器的显示功能设置为X-Y 模式,就可以获得正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形。
(提示:按下示波器操作面板上水平(HORIZONTAL)部分的“菜单(MENU)按键”即可在弹出的菜单中进行设置将示波器的显示模式由Y-T改变为X-Y模式。
)李萨如图形实际上就是正弦信号3sin(200πt)和余弦信号3cos(200πt)之间的关系曲线,其数学推导如下:令x(t)=3sin(200πt),y(t)=3cos(200πt),则易知:x2(t)+y2(t)=32,用MATLAB工具绘制出x(t)与y(t)关系曲线图如图1-2所示,显然它是一个以(0,0)为圆心,半径为3的圆。
图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形李萨如图形与水平轴、垂直轴的交点数(最多的交点)n x与n y之比恰好等于Y和X输入的两正弦信号的频率之比,即:f y:f x=n x:n y显然,图1-2中两信号之比为4:4=1:1。
【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)调节函数信号发生器使其CH1通道产生正弦信号3sin(200πt)。
(2)调节函数信号发生器使其CH2通道产生余弦信号3cos(200πt)。
(3)利用一根BNC电缆线建立示波器CH1通道与函数信号发生器CH1通道之间的物理连接。
(4)利用另一根BNC电缆线建立示波器CH2通道与函数信号发生器CH2通道之间的物理连接。
(5)在函数信号发生器上进行相位同步关系设置,使两信号之间的相位差为90º,波形关系如图1-1所示。
(6)在Y-T显示模式下调节示波器,并测量两信号的电压和频率参数。
2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形在完成正余弦信号的电压和频率参数的测量之后,将示波器的显示模式调整为X-Y模式,获得如图1-2所示的李萨如图形。
3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)以实验内容1、2项(同幅值、同频率、相位差为90 º的情况)为基础,用函数信号发生器产生同频率、不同相位差的两正弦信号。
(2)在示波器的Y-T模式下,将两正弦信号显示在示波屏上并进行电压和时间参数的测量。
①产生频率相同、相位差为0º的两正弦信号;② 产生频率相同、相位差为45º的两正弦信号;③产生频率相同、相位差为90º的两正弦信号;④ 产生频率相同、相位差为135º的两正弦信号;⑤ 产生频率相同、相位差为180º的两正弦信号。
(3)将示波器设置为X-Y模式,观察在上述不同相位差条件下的两正弦信号的李萨如图形。
(4)用MATLAB软件工具进行分析,并将仿真的结果与实验的李萨如图形进行对照分析。
4. 观测相同频率、相同相位差,但不同幅值条件下两正弦信号的李萨如图形(1)以实验内容1、2项(同幅值、同频率、相位差为90 º的情况)为基础,用函数信号发生器产生同频率、同相位差,但不同幅值的两正弦信号。
(2)在示波器的Y-T模式下,将两正弦信号显示在示波屏上并进行电压和时间参数的测量。
①产生频率相同、相位差为90º,X轴方向上(示波器的CH1通道)峰峰值V pp为6V,Y 轴方向上(示波器的CH2通道)峰峰值V pp为4V的两正弦信号。
② 产生频率相同、相位差为90º,X轴方向上(示波器的CH1通道)峰峰值V pp为4V,Y 轴方向上(示波器的CH2通道)峰峰值V pp为6V的两正弦信号。
(3)将示波器设置为X-Y模式,观察在上述不同幅值条件下的两正弦信号的李萨如图形。
(4)用MATLAB软件工具进行分析,并将仿真的结果与实验的李萨如图形进行对照分析。
5. 观测不同频率条件下的两正弦信号的李萨如图形(1)以实验内容1、2项(同幅值、同频率、相位差为90 º的情况)为基础,用函数信号发生器产生不同频率(如频率之比为2:1)的两正弦信号。
(2)在示波器的Y-T模式下,将两正弦信号显示在示波屏上并进行电压和时间参数的测量。
(3)将示波器设置为X-Y模式,获取两正弦信号的李萨如图形。
(4)用MATLAB软件工具进行分析,并将仿真的结果与实验的李萨如图形进行对照分析。
6. 自拟方案观测两正弦信号的李萨如图形并进行分析【数据记录与处理】1. 对实验原理部分提到的实例进行数据整理和结果分析。
2. 对“相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形”的实验数据和结果进行分析和整理。
3. 对“相同频率、相同相位差,但不同幅值条件下两正弦信号的李萨如图形”的实验数据和结果进行分析和整理。
4. 对“不同频率条件下的两正弦信号的李萨如图形”的实验数据和结果进行分析和整理。
5. 对自拟方案的实验数据和结果进行分析和整理。
【思考题】1. 频率比为1:1李萨如图形何时为椭圆,何时为圆?2. 频率比为2:1时李萨如图形为何种曲线?【参考文献】1. 余虹, 大学物理(第二版). 科学出版社. 2008.2. 余虹, 秦颖等, 大学物理实验. 科学出版社. 2014.3. 赵鸿图等, 通信原理MA TLAB仿真教程. 人民邮电出版社. 2010.。