精馏塔前馈-反馈控制系统

合集下载

精馏塔塔釜温度控制系统

精馏塔塔釜温度控制系统

摘要在石油、轻工、化工等生产过程中,常常需要将原料、中间产物或粗产品中的组成部分进行分离,而精馏是最常用的方法。

精馏是石油、化工等众多生产过程中广泛应用的传质过程,通过精馏过程,使混合物料中的各组分分离,分别达到规定的纯度。

分离的机理是利用混合物中各组分的挥发度不同(沸点不同),使液相中的轻组分(低沸点)和汽相中的重组分(高沸点)相互转移,从而实现分离。

精馏装置由精馏塔、再沸器、冷凝冷却器、回流罐及回流泵等组成。

精馏塔是一个多输入多输出的多变量过程,内在机理较为复杂、动态响应迟缓、变量之间相互关联,不同的塔结构差别很大,而工艺对控制的要求又较高,所以确定精馏塔的控制方案是一个极为重要的课题。

我们此次设计就是要设计一个精馏塔温度的控制系统。

要求当物料进入精馏塔时,塔釜的温度可控并且温度恒定,保证生产的连续性。

关键词:精馏、多输入多输出、动态响应。

第1章绪论精馏塔是化工生产中分离互溶液体混合物的典型分离设备。

它是依据精馏原理对液体进行分离,即在一定压力下,利用互溶液体混合物各组分的沸点或饱和蒸汽压不同,使轻组份(即沸点较低或饱和蒸汽压较高的组分)汽化。

经多次部分液相汽化和部分气相冷凝,使气相中的轻组分和液相中的重组分浓度逐渐升高,也就是说在提馏段上升的轻组分的易挥发组分逐渐增多,难挥发组分逐渐减少,而下降液相中易挥发组分逐渐减少,难挥发组分逐渐增多,从而实现分离的目的,满足化工连续化生产的需要。

精馏塔塔釜温度控制的稳定与否直接决定了精馏塔的分离质量和分离效果,控制精馏塔的塔釜温度是保证产品高效分离,进一步得到高纯度产品的重要手段。

维持正常的塔釜温度,可以避免轻约分流失,提高物料的回收率;也可减少残余物料的污染作用。

影响精馏塔温度不稳定的因素主要是来自外界来的干扰(如进料流量,温度及成分等的变化对温度的影响)。

一般情况下精馏塔塔釜的温度,我们是通过控制精馏塔釜内灵敏板的温度来控制的。

灵敏板是当外界条件或负荷改变时精馏塔内温度变化最灵敏的一块塔板。

精馏塔控制系统(2020年10月整理).pdf

精馏塔控制系统(2020年10月整理).pdf

第6章精馏塔控制系统6.1 概述精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。

精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。

精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。

轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。

精馏过程是一个复杂的传质传热过程。

表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂。

因此,熟悉工艺过程和内在特性,对控制系统的设计十分重要。

6.1.1 精馏塔的控制要求精馏塔的控制目标是:在保证产品质量合格的前提下,使塔的回收率最高、能耗最低,即使总收益最大,成本最小。

精馏过程是在一定约束条件下进行的。

因此,精馏塔的控制要求可从质量指标、产品产量、能量消耗和约束条件四方面考虑。

1.质量指标精馏塔的质量指标是指塔顶或塔底产品的纯度。

通常,满足一端的产品质量,即塔顶或塔底产品之一达到规定纯度,而另一端产品的纯度维持在规定范围内。

所谓产品的纯度,就二元精馏来说,其质量指标是指塔顶产品中轻组分含量和塔底产品中重组分含量。

对于多元精馏而言,则以关键组分的含量来表示。

关键组分是指对产品质量影响较大的组分,塔顶产品的关键组分是易挥发的,称为轻关键组分;塔底产品的关键组分是不易挥发的,称为重关键组分。

产品组分含量并非越纯越好,原因是,纯度越高,对控制系统的偏离度要求就越高,操作成本的提高和产品的价格并不成比例增加,因此纯度要求应与使图6.1-1 精馏塔示意图用要求适应。

2.物料平衡控制进出物料平衡,即塔顶、塔底采出量应和进料量相平衡,维持塔的正常平稳操作,以及上下工序的协调工作。

物料平衡的控制是以冷凝罐(回流罐)与塔釜液位一定(介于规定的上、下限之间)为目标的。

3.能量平衡和经济平衡性指标要保证精馏塔产品质量、产品产量的同时,考虑降低能量的消耗,使能量平衡,实现较好的经济性。

精馏塔前馈-反馈控制

精馏塔前馈-反馈控制

.. . …目录1.前言12.总体方案设计22.1系统方案的论证22.1.1单回路控制系统22.1.2方案二:精馏段前馈—反馈控制(以进料量为前馈信号)22.1.3方案三:精馏段前馈—反馈控制(以进料量为前馈信号)32.1.4方案四:提馏段前馈—反馈控制32.2 方案的比较32.3 方案的选择43.精馏塔前馈-反馈控制系统53.1前馈—反馈控制系统的设计53.1.1 被控参数的选择53.1.2 控制变量的选择53.1.3 调节阀的气开、气关方式的选择63.1.4 调节器正反作用的选择63.2 精馏塔前馈—反馈控制系统的计算分析83.2.1 前馈—反馈控制系统的分析83.2.2 前馈—反馈器的模型分析93.3 前馈-反馈控制系统的工程整定133.3.1 Kb的整定133.3.2T1,T2的整定153.3.3调节器参数整定方法163.3.4本次设计中调节器参数整定及结果174. MATLAB 系统仿真184.1 MATLAB的简介184.2 Simulink控制系统仿真185.设计总结216.致227.参考资料191.前言精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。

精馏的目的是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。

精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。

精馏过程通过精馏塔、再沸器、冷凝器等设备完成,是实现混合物组分分离的主要设备。

精馏过程是一个复杂的传质传热过程。

表现为:过程变量多,被控变量多,可操纵的变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面广等。

因此,熟悉工艺过程和在特性,对控制系统的设计十分重要。

前馈控制是一种预测控制,通过对系统当前工作状态的了解,预测出下一阶段系统的运行状况。

前馈反馈控制系统指导书

前馈反馈控制系统指导书

四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象,实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F2-1、F2-5全开,将阀门F1-10、F1-11开至适当开度(阀F1-10>F1-11),其余阀门都关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制1.将SA-11挂件、SA-12挂件、SA-14挂件挂到屏上,并将SA-12挂件的通讯线接头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。

将“FT2变频器支路流量”、“LT3下水箱液位”钮子开关拨到“ON”的位置。

SA-14上比值器的调节旋钮放在最小的位置。

图7-4 仪表控制下水箱液位前馈-反馈控制实验接线图2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器及涡轮流量计上电,按下启动按钮,合上单相Ⅰ、单相Ⅲ空气开关,给智能仪表及电动调节阀上电。

3.打开上位机MCGS组态环境,打开“智能仪表控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验二十一、下水箱液位前馈反馈控制系统”,进入实验二十一的监控界面。

4.设定工作点(u0,h0)。

在上位机监控界面中将智能仪表设置为“手动”输出,并将输出值设置为一个中间合适的值(例u0=50%),此操作也可通过调节仪表实现。

5.合上三相电源空气开关,磁力驱动泵上电打水,通过调节F1-10、F1-11的开度,使下水箱的液位平衡于一个中间合适的值(例h0=8)。

6.设置智能仪表的输出值为100%,观察下水箱液位的稳态值hmax,则在以下实验中,设定值不能超过hmax。

若hmax>18,则重新设定u0=50%,转5重新调整。

7、在工作点(u0,h0)处,用开环整定法整定静态前馈放大系数K F。

过程控制课程设计-精馏塔温度控制系统

过程控制课程设计-精馏塔温度控制系统

过程控制课程设计-精馏塔温度控制系统(总34页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除过程控制系统与仪表课程设计目录一、研究对象........................................................................................... 错误!未定义书签。

二、研究任务........................................................................................... 错误!未定义书签。

三、仿真研究要求 (4)四、传递函数计算 (5)五、控制方案........................................................................................... 错误!未定义书签。

1. 单回路反馈控制系统 (6)1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。

2) PID参数整定 (7)3) 系统仿真................................................................................... 错误!未定义书签。

4) 对象特性变化后仿真 (12)2. Smith预估补偿控制系统 ................................................................ 错误!未定义书签。

1) 控制方案的系统框图和工艺控制流程图............................... 错误!未定义书签。

2) 控制系统方框图....................................................................... 错误!未定义书签。

精馏塔控制系统

精馏塔控制系统

第6章精馏塔控制系统6、1 概述精馏就是化工、石油化工、炼油生产过程中应用极为广泛得传质传热过程。

精馏得目得就是利用混合液中各组分具有不同挥发度,将各组分分离并达到规定得纯度要求、精馏过程得实质就是利用混合物中各组分具有不同得挥发度,即同一温度下各组分得蒸汽分压不同,使液相中轻组分转移到气相,气相中得重组分转移到液相,实现组分得分离、轻组分得转移提供能量;冷凝器将塔顶来得上升蒸汽冷凝为液相,并提供精馏所需得回流。

精馏过程就是一个复杂得传质传热过程、表现为:过程变量多,被控变量多,可操纵得变量也多;过程动态与机理复杂、因此,熟悉工艺过程与内在特性,对控制系统得设计十分重要。

6。

1.1 精馏塔得控制要求精馏塔得控制目标就是:在保证产品质量合格得前提下,使塔得回收率最高、能耗最低,即使总收益最大,成本最小。

精馏过程就是在一定约束条件下进行得、因此,精馏塔得控制要求可从质量指标、产品产量、能量消耗与约束条件四方面考虑。

1.质量指标精馏塔得质量指标就是指塔顶或塔底产品得纯度、通常,满足一端得产品质量,即塔顶或塔底产品之一达到规定纯度,而另一端产品得纯度维持在规定范围内、所谓产品得纯度,就二元精馏来说,其质量指标就是指塔顶产品中轻组分含量与塔底产品中重组分含量。

对于多元精馏而言,则以关键组分得含量来表示、关键组分就是指对产品质量影响较大得组分,塔顶产品得关键组分就是易挥发得,称为轻关键组分;塔底产品得关键组分就是不易挥发得,称为重关键组分、产品组分含量并非越纯越好,原因就是,纯度越高,对控制系统得偏离度要求就越高,操作成本得提高与产品得价格并不成比例增加,因此纯度要求应与使图6。

1-1 精馏塔示意图用要求适应。

2.物料平衡控制进出物料平衡,即塔顶、塔底采出量应与进料量相平衡,维持塔得正常平稳操作,以及上下工序得协调工作、物料平衡得控制就是以冷凝罐(回流罐)与塔釜液位一定(介于规定得上、下限之间)为目标得、3.能量平衡与经济平衡性指标要保证精馏塔产品质量、产品产量得同时,考虑降低能量得消耗,使能量平衡,实现较好得经济性。

前馈控制和反馈控制精编版

前馈控制和反馈控制精编版

前馈控制、反馈控制及前馈-反馈控制的对比1、前馈控制属于开环控制,反馈控制属于负反馈的闭环控制一般定值控制系统是按照测量值与给定值比较得到的偏差进行调节,属于闭环负反馈调节。

其特点是在被控变量出现偏差后才进行调节;如果干扰已经发生而没有产生偏差,调节器不会进行工作。

因此反馈控制方式的调节作用落后于干扰作用。

前馈调节是按照干扰作用来进行调节的。

前馈控制将干扰测量出来并直接引入调节装置,对于干扰的克服比反馈控制及时。

现在以换热器控制方案举例,直观阐述前馈控制和反馈控制:前馈控制方案反馈控制方案2、前馈控制系统中测量干扰量,反馈控制系统中测量被控变量在单纯的前馈控制系统中,不测量被控变量,而单纯的反馈控制系统中不测量干扰量。

3、前馈控制需要专用调节器,反馈控制一般采用通用PID调节器反馈调节符合PID调节规律,常用通用PID调节器、DCS等或PLC控制系统实现。

前馈调节使用的调节器是是根据被控对象的特点来确定调节规律的前馈调节器。

4、前馈控制只能克服所测量的干扰,反馈控制则可克服所有干扰前馈控制系统中若干扰量不可测量,前馈就不可能加以克服。

而反馈控制系统中,任何干扰,只要它影响到被控变量,都能在一定程度上加以克服。

5、前馈控制理论上可以无差,反馈控制必定有差反馈调节使系统达到动态稳定,让被调参数稳定在给定值附近动态变化,却不能使被调参数稳定在给定值上不动。

前馈调节在理论上可以实现无差调节。

6、前馈控制的局限性A、在生产应用中各种环节的特性是随负荷变化的,对象动态特性形式多样性难以精确测量,容易造成过补偿或欠补偿。

为了补偿前馈调节的不准确,通常将前馈和反馈控制系统结合起来组成前馈反馈控制系统。

B、工业对象存在多个扰动,若均设置前馈控制器,那设备投资高,工作量大。

C、很多前馈补偿结果在现有技术条件下没有检测手段。

D、前馈控制受到前馈控制模型精度限制。

E、前馈控制算法,往往做近似处理。

前馈控制选用原则1、系统中存在频率高、幅度大、可测量而不可控的扰动时,可选用前馈控制。

精馏塔提馏段温前馈

精馏塔提馏段温前馈

精馏塔提馏段温前馈————————————————————————————————作者:————————————————————————————————日期:1 精馏塔提馏段前馈-反馈控制系统概述1.1概述精馏塔是实现混合物组分分离的主要设备,一般为圆柱形,内部装有供气液分离器的塔板和填料。

精馏塔的控制直接影响到工厂产品的质量、产量和能量的消耗,因此精馏塔的自动控制长期以来一直受到人们的高度重视。

精馏塔是一个多输入多输出的对象,它有多级塔板组成,内在机理复杂,对控制要求较高。

这些都给自动控制带来一定的困难,同时各塔工艺结构特点千差万别,这需要深入分析特性,结合具体塔的特点,进行自动控制方案设计和研究。

精馏塔的控制最终目标是:在保证产品质量的前提下,使回收率最高,能耗最小,或使总收益最大。

在这个情况为了更好实现精馏的目标就有了提馏段温度控制系统的产生。

精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。

1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。

一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。

影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。

影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。

物料平衡和能量平衡之间相互影响。

各种扰动因素有可控的,也有不可控的。

1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。

这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。

当进料流量需要定值控制时,从工艺角度看,有时需要增加中间储罐或容器,以便缓冲上一工序的出料量。

第五章2 前馈-反馈控制系统

第五章2 前馈-反馈控制系统

东北大学
前馈—反馈控制系统框图
5.2.2 前馈控制系统的结构形式
东北大学
5.2.2 前馈控制系统的结构形式
前馈—反馈控制系统优点:
(1) 由于增加了反馈回路,大大简化了原有前馈控制系统, 只需对主要的干扰进行前馈补偿,其它干扰可由反馈控 制予以校正; (2) 反馈回路的存在,降低了前馈控制模型的精度要求,为 工程上实现比较简单的通用模型创造了条件;
K 1 K ] T2 s 1
T1 1时,有 T2 (T1/T2 )-1 T T s 1 1 1 1] K f 1 T2 s 1 T2 T2 s 1
W f ( s) K f [
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
K T s 1 正微分器的传递函数: W正 ( s ) d 1 T1s 1 T2 s 1 K d T2 s 1
Wm (s)
o ,则动态前馈控制器为
K f (T o s 1) Ko (Tf s 1) Km (T o s 1) Tf s 1
K o (T f s 1)
W f ( s) Wo (s)
如果 T f To ,则
Wm (s) Km (s)
显然,当被控对象的控制通道和干扰通道的动态特性完全相同时, 动态前馈补偿器的补偿作用相当于一个静态放大系统。实际上,静态前 馈控制是动态前馈控制的一种特殊情况。
(3) 负荷变化时,模型特性也要变化,可由反馈控制加以补 偿,因此具有一定自适应能力。
东北大学
5.2.2 前馈控制系统的结构形式 前馈—反馈控制系统的局限性: (1) 前馈控制器的输出与反馈控制器的输出相叠加后送至控制
阀,这实际上将所要求的物料流量与加热蒸气流量对应关系

5.1 精馏塔控制系统

5.1 精馏塔控制系统

第五章
精馏塔控制系统
5.1.1 精馏塔的工艺要求和扰动分析
1.工艺要求 . 要对精馏塔实施有效的自动控制,必须首先了解精馏塔的控制 目标。一般说来,精馏塔的控制目标,应该在保证产品质量合格的 前提下,使塔的总收益(利润)最大或总成本最小 使塔的总收益( 使塔的总收益 利润)最大或总成本最小。因此,精馏塔 的工艺要求应该从质量指标、产品产量和能量消耗三方面考虑。任 何精馏塔的操作情况也同时受约束条件的制约,因此,在考虑精馏 塔控制方案时一定要把这些因素考虑进去。 (1)保证质量指标 ) 质量指标(即产品纯度)必须符合规定的要求。一般应使塔顶 或塔底产品之一达到规定的纯度,另一个产品的纯度也应该维持在 规定的范围之内。在某些特定情况下,也有要求塔顶和塔底的产品 均应保证一定的纯度要求的。所谓产品的纯度,就二元精馏来说, 是指塔顶产品中轻组分的含量和塔底产品中重组分的含量。对多元 精馏而言,则以关键组分的含量来表示。关键组分是指对产品质量 影响较大的组分,塔顶产品的关键组分是易挥发的,称为轻关键组 分;塔底产品的关键组分是不易挥发的,称为重关键组分。
第五章
精馏塔控制系统
5.1 精馏塔控制系统
精馏过程是现代化工、炼油等工业生产中应用极为广泛的 一种传质过程,其目的 目的是利用混合液中各组分挥发度的不同, 目的 将各组分进行分离并达到规定的纯度要求。分离的机理 机理是利用 机理 混合物中各组分的挥发度不同(沸点不同),也就是在同一温 度下,各组分的蒸汽分压不同这一性质,使液相中的轻组分 (低沸物)转移到气相中,而气相中的重组分(高沸物)转移 到液相中,从而实现分离。 一般的精馏装置由精馏塔、再沸器、冷凝器、回流罐及 回流泵等设备组成,如图5.1所示。再沸器为混合物液相中的 轻组分转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相 并提供精馏所需的回流;精馏塔是实现混合物组分分离的主要 设备,其一般形式为圆柱形体,内部装有提供汽液分离的塔板, 塔身设有混合物进料口和产品出料口。

控制系统的反馈与前馈控制技术

控制系统的反馈与前馈控制技术

控制系统的反馈与前馈控制技术控制系统是现代工程中不可或缺的一部分,它可以用来控制各种各样的系统,从机械装置到电子设备。

控制系统的设计和实现涉及多种技术和方法。

其中,反馈与前馈控制技术是两种常用的控制策略,它们对于提高系统的稳定性和性能至关重要。

本文将介绍控制系统的反馈和前馈控制技术,以及它们的应用和优势。

一、反馈控制技术反馈控制技术是一种通过测量系统输出并与期望输出进行比较,然后对系统进行调整的控制策略。

反馈控制系统通常包括传感器、控制器和执行器。

传感器用于测量系统的输出,控制器根据输出和期望输出之间的差异来指导执行器的行为。

反馈控制技术的基本原理是根据系统的实际运行情况进行实时调整,以达到期望的控制效果。

反馈控制技术具有许多优势。

首先,它可以对系统的不确定性和外部干扰做出快速响应,并自动调整系统以适应环境变化。

其次,反馈控制技术可以提高系统的稳定性和鲁棒性,减少系统运行过程中的波动和振荡。

最后,反馈控制技术还可以实现对系统输出的精确控制,使系统在不同的工作条件下始终保持期望的性能。

二、前馈控制技术前馈控制技术是一种根据系统输入的参考信号预测系统输出,并根据预测结果进行控制的策略。

前馈控制系统通常包括传感器、预测器和执行器。

传感器用于测量输入信号和系统输出,预测器根据输入信号的特征和系统的数学模型来预测系统输出的未来变化,执行器根据预测结果来调整系统的控制策略。

前馈控制技术的主要优势在于它可以通过提前预测和调整系统来消除输入信号对系统性能的影响。

这种技术可以在系统遇到外部扰动或变化时快速响应,从而提高控制系统的性能。

此外,前馈控制技术还可以减少系统运行过程中的误差和稳态偏差,使系统更加可靠和精确。

三、反馈与前馈控制技术的综合应用在实际控制系统中,反馈与前馈控制技术通常会综合应用,以充分发挥各自的优势。

综合应用反馈与前馈控制技术可以实现更加精确和稳定的控制效果,提高系统的性能和鲁棒性。

在一些高精度、高稳定性要求的系统中,反馈控制技术可以提供及时的误差修正,使系统能够在快速变化的工作环境中保持稳定。

第五章2前馈-反馈控制系统

第五章2前馈-反馈控制系统
东北大学
5.2.3 前馈控制规律
2.模拟仪表实施
• KF型前馈调节器:利用常规的比例调节器等仪表来实现。
WFF (s) K F

KF
T1 s T2 s
1 1
型前馈调节器:一阶超前-滞后的前馈控制器。
不考虑Kf时,这种前馈控制器在单位阶跃干扰作用下的时间特性表示为:
m
f
(t)
1
T2 T1 T2
T2s 1
-
+

输出
+
K
t
W
f
(s)

K
f
[
T2
K s 1

1

K
]
K T1 1 T2
令K T1 1时,有 T2
Wf
(s)

K
f
[(T1/T2 )-1 T2s 1

1

T1 T2
1]
Kf
T1s 1 T2s 1
东北大学
常规仪表实现时,由一个正微分器、反微分器及比值器串联而成。
(3)前馈控制模型的精度也受到多种因素的限制,对象特性要 受到负荷和工况等因素的影响而产生漂移,导致扰动通道 的传递函数和控制通道的传递函数的变化。
东北大学
5.2.2 前馈控制系统的结构形式
3.前馈-反馈控制系统
反馈控制:在稳态时,使系统在稳态时能准确地使被控量等于给定值; 前馈控制:在动态时,依靠前馈控制能有效地减少被控量的动态偏差,从而提高 控制质量。 在过程控制中这是一种较理想的控制方案.
误差分析: 由于对象干扰通道和调节通道的动态特性
不同所引起的动态偏差,这种偏差是静 态前馈控制无法避免的。

前馈控制和反馈控制

前馈控制和反馈控制

前馈控制、反馈控制及前馈反馈控制的对比1、前馈控制属于开环控制,反馈控制属于负反馈的闭环控制一般定值控制系统是按照测量值与给定值比较得到的偏差进行调节,属于闭环负反馈调节。

其特点是在被控变量出现偏差后才进行调节;如果干扰已经发生而没有产生偏差,调节器不会进行工作。

因此反馈控制方式的调节作用落后于干扰作用。

前馈调节是按照干扰作用来进行调节的。

前馈控制将干扰测量出来并直接引入调节装置,对于干扰的克服比反馈控制及时。

现在以换热器控制方案举例,直观阐述前馈控制和反馈控制:前馈控制方案反馈控制方案2、前馈控制系统中测量干扰量,反馈控制系统中测量被控变量在单纯的前馈控制系统中,不测量被控变量,而单纯的反馈控制系统中不测量干扰量。

3、前馈控制需要专用调节器,反馈控制一般采用通用PID 调节器反馈调节符合PID调节规律,常用通用PID调节器、DCS等或PLC控制系统实现。

前馈调节使用的调节器是是根据被控对象的特点来确定调节规律的前馈调节器。

4、前馈控制只能克服所测量的干扰,反馈控制则可克服所有干扰前馈控制系统中若干扰量不可测量,前馈就不可能加以克服。

而反馈控制系统中,任何干扰,只要它影响到被控变量,都能在一定程度上加以克服。

5、前馈控制理论上可以无差,反馈控制必定有差反馈调节使系统达到动态稳定,让被调参数稳定在给定值附近动态变化,却不能使被调参数稳定在给定值上不动。

前馈调节在理论上可以实现无差调节。

6前馈控制的局限性A、在生产应用中各种环节的特性是随负荷变化的,对象动态特性形式多样性难以精确测量,容易造成过补偿或欠补偿。

为了补偿前馈调节的不准确,通常将前馈和反馈控制系统结合起来组成前馈反馈控制系统。

B、工业对象存在多个扰动,若均设置前馈控制器,那设备投资高,工作量大。

C、很多前馈补偿结果在现有技术条件下没有检测手段。

D前馈控制受到前馈控制模型精度限制。

E、前馈控制算法,往往做近似处理。

1、系统中存在频率高、幅度大、可测量而不可控的扰动时,可选用前馈控制。

精馏塔前馈-反馈控制系统

精馏塔前馈-反馈控制系统

第1章精馏塔前馈-反馈控制系统概述1.1 精馏及精馏塔概述精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。

精馏的目的是利用各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。

精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。

按需分离组分的多少可分为二元精馏和多元精馏;按混合物中组分挥发度的差异,可分为一般精馏和特殊精馏。

精馏过程通过精馏塔、再沸器、冷凝器等设备完成。

再沸器为混合物液相中轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。

精馏塔是实现混合物组分分离的主要设备,一般为圆柱体,内部装有提供汽液分离的塔板或填料,塔身设有混合物进料口和产品出料口。

随着石油化工的迅速发展,精馏操作的应用越来越广,分离物料的组分越来越多,分离的产品纯度要求越来越高,对精馏过程的控制也提出了越来越高的要求,也越来越被人们所重视。

精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。

1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。

一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。

影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。

影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。

物料平衡和能量平衡之间相互影响。

各种扰动因素有可控的,也有不可控的。

1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。

这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。

复杂控制理论--前馈控制

复杂控制理论--前馈控制

滞后的“一阶超前/一阶滞后”环节来实现前馈补偿来近似。
如:
Gpd
(s)
K2 eL2S T2s 1
GPC (s)
K1 T1s 1
eL1s
G ff
(s)
GPd (s) Gpc (s)
K ff
T1s 1 eLff s T2s 1
式中:Kff=K2/K1;Lff=L2-L1
(2) 用软件实现
2、参数整定 ①单纯的前馈控制,可视工艺要求进行参数整定
③ 前馈控制器是基于系统的数学模型得到的,任何模型的获得都是 在一定合理假设的基础上建立的机理模型、或是通过辨识系统的结构参数 而得到辨识模型;无论什么模型不可能绝对准确,即无法求得理想的补偿 器,因而造成补偿不完全。
④ 补偿器从数学形式上看是两个传递函数的比值形式,若得到的结 果分子阶次高于分母,或前馈控制算式中含有超前环节或微分环节,在物 理上不可实现的,此时构成的控制器只能是一种近似结构,也不可能对干 扰进行完全补偿。
2、前馈控制算法的形式 对于时间连续的线性过程
G
ff
(
s)
Gpd Gpc
(s) (s)
一般可以写成:
Gff (s)
K
ff (1 1
b1s a1s
b2s2 a2s2
)
es
当分母和分子阶次较高、特别是有时滞或超前环节时,实施比较困难。
为此通常采用
G ff
(s)
K
ff
1 T1s 1 T2s
f1 Gp2(S) c2 Gp1(S) c1
串级控制系统方框图
Gff(s)
+ -
GC1(S)
++ -
GC2(S)

热工控制系统课堂第七章前馈-反馈复合控制系统

热工控制系统课堂第七章前馈-反馈复合控制系统

测量元件
用于测量被控对象的输入信号 和输出信号,以便进行反馈控
制。
系统软件配置
控制算法
根据被控对象的特性和控 制要求,选择合适的控制 算法,如PID控制、模糊控 制等。
数据处理
对传感器和测量元件采集 的数据进行预处理和后处 理,以提高控制精度和稳 定性。
人机界面
提供操作人员与控制系统 交互的界面,方便操作人 员进行监控和调试。
系统调试与优化
参数调整
根据实际运行情况,对控制系统 的参数进行适当调整,以提高控
制效果。
性能测试
对控制系统的性能进行测试,包 括响应速度、控制精度、稳定性
等指标。
系统优化
根据性能测试结果,对控制系统 进行优化,包括硬件配置、软件
算法等。
05
前馈-反馈复合控制系统 的应用案例
工业过程控制中的应用
考虑抗干扰措施
针对可能存在的干扰因素,采取适 当的抗干扰措施,以提高系统的稳 定性和可靠性。
04
前馈-反馈复合控制系统 的实现
系统硬件配置
01
02
03
04
传感器
用于检测被控对象的输出信号 ,并将其转换为电信号或数字
信号。
控制器
接收传感器信号,根据控制算 法计算出控制信号,并输出到
执行器。
执行器
接收控制信号,驱动被控对象 进行动作。
02
前馈控制系统的设计
确定系统参数
01
02
03
输入参数
确定输入参数是前馈控制 系统的第一步,这些参数 通常包括温度、压力、流 量等。
输出参数
输出参数是系统需要控制 的变量,例如温度、压力 等。
过程参数

一文说清串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

一文说清串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

一文说清串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统导读控制系统一般又可分为简单控制系统和复杂控制系统两大类,所谓复杂,是相对于简单而言的。

凡是多参数,具有两个以上变送器、两个以上调节器或两个以上调节阀组成多回路的自动控制系统,称之为复杂控制系统。

目前常用的复杂控制系统有串级、比值、前馈-反馈、选择性、分程以及三冲量等,并且随着生产发展的需要和科学技术进步,又陆续出现了许多其他新型的复杂控制系统。

1、串级控制系统串级控制系统是应用最早,效果最好,使用最广泛的一种复杂控制系统,它的特点是两个调节器相串联,主调节器的输出作为副调节器的设定,当对象的滞后较大,干扰比较剧烈、频繁时,可考虑采用串级控制系统。

1、基本概念串级控制系统(Cascade Cont ro1System)是一种常用的复杂控制系统,它根据系统结构命名。

它由两个或两个以上的控制器串联连接组成,一个控制器的输出作为另一个控制器的设定值,这类控制系统称为串级控制系统。

•主调节器(主控制器):根据主参数与给定值的偏差而动作,其输出作为副调节器的给定值的调节器。

•副调节器(副控制器):其给定值由主调节器的输出决定,并根据副参数与给定值(即主调节器输出)的偏差动作。

•主回路(外回路):断开副调节器的反馈回路后的整个外回路。

•副回路(内回路):由副参数、副调节器及所包括的一部分对象所组成的闭合回路(随动回路)•主对象(惰性区):主参数所处的那一部分工艺设备,它的输入信号为副变量,输出信号为主参数(主变量)。

•副对象(导前区):副参数所处的那一部分工艺设备,它的输入信号为调节量,其输出信号为副参数(副变量)。

2、串级控制系统的特点串级控制系统在结构上增加了一个随动的副回路,因此,与单回路相比有以下几个特点:1.对进入副回路的扰动具有较迅速、较强的克服能力;2.可以改善对象特性,提高工作效率;3.可消除调节阀等非线性特性的影响;4.串级控制系统具有一定的自适应能力3、串级控制系统参数整定和系统投运串级控制系统的投运和简单控制系统一样,要求投运过程保证做到无扰动切换。

前馈――反馈控制

前馈――反馈控制
①不需要计算仪表比值系数K ②根据模型计算控制系统的测量值 ③根据模型计算控制系统测量值的控制系统中,例如,热焓控制、热量控制、流量的
温度压力补偿等,都需转换到设定通道,按随动控制进行参数设置
④根据模型计算控制系统设定值的控制系统中,例如,具有压力补偿的温度控制系统 、离心压缩机防喘振控制系统等,根据工程单位直接计算
和限制条件等。状态属性:好(串级) ;好(非串级) ;不确定和坏4种属性
功能模块属性:输入属性;输出属性;内含属性;方式属性; 功能模块参数的类型:多种类型;可以带状态 功能模块参数的计算:设定值计算、输出计算和反馈回路中的输出计算 警告、事件和报警:两种警告:事件(Event)和报警(Alarm)
AI功能块组态 PID功能块组态 AO功能块组态
化学工业出版社
集散控制系统原理及应用控制算法和控制组态
四、现场总线设备的功能模块 3.功能模块组态示例 串级控制系统的组态
化学工业出版社
K
FC
化学工业出版社
集散控制系统原理及应用控制算法和控制组态
3. 集散控制系统实现复杂控制系统的注意事项
分程控制
①采用不同工作范围的控制阀,控制组态与常规仪表实施相同
②采用相同工作范围的标准控制阀,在集散控制系统中分别计算各阀输入,并分送两
个输出模块
基于模型计算的控制
化学工业出版社
一、基本原理、结构和性能分析
化学工业出版社
化学工业出版社
化学工业出版社
集散控制系统原理及应用控制算法和控制组态
三、现场总线控制系统的模块 1. 模块类型和参数:
化学工业出版社
二、输出信号的选择性系统 1、下图是锅炉燃烧系统的选择性控制,蒸汽压力控 制器P1C为正常控制器(反作用),阀后燃气控制 器P2C也是反作用,当蒸气压力过低时,请分析一 下下图控制是如何工作的。 控制图11.doc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章精馏塔前馈-反馈控制系统概述1.1 精馏及精馏塔概述精馏是化工、石油化工、炼油生产过程中应用极为广泛的传质传热过程。

精馏的目的是利用各组分具有不同挥发度,将各组分分离并达到规定的纯度要求。

精馏过程的实质是利用混合物中各组分具有不同的挥发度,即同一温度下各组分的蒸汽分压不同,使液相中轻组分转移到气相,气相中的重组分转移到液相,实现组分的分离。

按需分离组分的多少可分为二元精馏和多元精馏;按混合物中组分挥发度的差异,可分为一般精馏和特殊精馏。

精馏过程通过精馏塔、再沸器、冷凝器等设备完成。

再沸器为混合物液相中轻组分的转移提供能量;冷凝器将塔顶来的上升蒸汽冷凝为液相,并提供精馏所需的回流。

精馏塔是实现混合物组分分离的主要设备,一般为圆柱体,内部装有提供汽液分离的塔板或填料,塔身设有混合物进料口和产品出料口。

随着石油化工的迅速发展,精馏操作的应用越来越广,分离物料的组分越来越多,分离的产品纯度要求越来越高,对精馏过程的控制也提出了越来越高的要求,也越来越被人们所重视。

精馏过程是一个复杂的传质传热过程,表现为:过程变量多,被控变量多,可操纵变量也多;过程动态和机理复杂,例如,非线性、时变、关联;控制方案多样,例如,同一被控变量可以采用不同的控制方案,控制方案的适应面光等。

1.2 精馏塔的扰动分析和其他化工过程一样,精馏过程是在一定物料平衡和能量平衡基础上进行的。

一切影响精馏塔操作的因素均通过物料平衡和能量平衡进行。

影响物料平衡的因素主要包括进料量和进料成分的变化、顶部馏出物及底部出料的变化。

影响能量平衡的因素主要包括进料温度或热焓的变化、再沸器加热量和冷凝器冷却量的变化及塔的环境温度变化等。

物料平衡和能量平衡之间相互影响。

各种扰动因素有可控的,也有不可控的。

1.进料流量和进料成分进料流量是上工序的出料,因此,通常不可控但可测,当进料流量较大时,对精馏塔的操作会造成很大的影响。

这时,可将进料流量作为前馈信号,引入到控制系统中,组成前馈-反馈控制系统。

当进料流量需要定值控制时,从工艺角度看,有时需要增加中间储罐或容器,以便缓冲上一工序的出料量。

从控制角度看,可以采用均匀控制策略,使进料流量基本恒定的同时,对上一工序的操作不造成较大影响。

单一的进料流量定值控制系统较少采用。

进料流量影响物料平衡,也影响能量平衡。

因此,控制策略应保持流量的基本恒定。

进料成分影响物料平衡和能量平衡,但进料成分通常不可控,多数情况下也难于测量。

因此,控制策略是尽量控制上一工序的操作,从外围着手,使进料成分能够保持恒定,减小其变化对精馏塔操作的影响。

2.进料温度或进料热焓进料温度或热焓影响精馏塔的能量平衡。

进料温度一般可控可测,多数情况下,进料温度较恒定,因此,控制策略是不进行控制。

当进料需经换热器预热后进入后,由于进料的状态可以是液态、气态或气液两相混合,因此,可能出现进料热焓的变化,这时,控制策略是采用热焓控制,保证进料热焓的恒定。

除此之外,扰动因素还包括再沸器加热蒸汽压力、冷却水压力和温度、环境温度等。

1.3 前馈-反馈控制系统反馈控制系统的输出是偏差的函数,只有出现偏差才进行调节,因此,调节不及时。

如果采用某种控制策略,使该控制运算的输出是扰动的函数,则一旦出现扰动,控制系统就有输出,就能在偏差还未出现以前把扰动的影响消除,因此,调节及时。

依据预防的控制策略设计的控制系统称为前馈控制系统。

前馈控制系统根据扰动进行调节;采用开环控制方式;控制器的输入信号只有一个变量,即扰动量;只能克服某个特定扰动的影响;控制器的控制规律是前馈控制规律,它与前馈广义对象特性和扰动通道特性有关,因此,只能近似实现所需控制规律,要实现绝对不变性较困难。

前馈控制能及时克服特定扰动的影响,如果合适设计控制规律,可大大消弱扰动对被控变量的影响。

因此,前馈控制往往需要与反馈控制结合起来,构成前馈-控制系统。

这样既发挥了前馈控制作用及时的优点,又保持了反馈控制能克服多个扰动和具有对被调节量实行反馈检验的长处。

所以前馈-反馈控制是适合于过程控制的较好的方式。

第2章课程设计方案论证2.1 控制方案1设计所谓静态前馈控制,是指前馈控制器的控制算法为比例控制,即Gb=−GfGoGvGm =−KfKoKvKm=−Kb式中,Ko、Kv、Km与Kf分别是过程控制通道、调节阀、温度变送器静态放大系数以及过程干扰通道的静态放大系数;Gb=−Kb,其大小由Ko、Kv、Km、Kf确定。

静态前馈控制的控制目标是使被控参数最终的静态偏差接近于零,而不考虑由于两通道时间常数的不同而引起的动态偏差。

由于静态前馈控制非常简单,实施方便。

在实际生产中,当干扰通道与控制通道的时间常数相差不大时,应用静态前馈控制可获得较高的控制精度。

2.2 控制方案2设计静态前馈控制系统结构简单、易于实现,但在扰动影响下动态偏差依然存在。

对于扰动频繁且要严格控制动态偏差的生产过程,静态前馈不能满足生产工艺的精度要求,这种情况下宜采用动态前馈控制。

动态前馈控制必须根据过程干扰通道和控制通道的动态特性,其传递函数由式Gb=−GfGoGvGm决定。

采用动态前馈控制使扰动对被控参数的影响在每个时刻都得到补偿,能够极大地提高控制过程的动态品质,是提高控制质量的有效手段。

但动态前馈要采用专用控制器,控制规律由上式决定,结构一般比较复杂,往往无法获得精确表达式,也难以精确实现,往往只能近似处理。

因此,只有在工艺对控制精度要求较高、其他控制方案又难以满足的情况下,才考虑采用动态前馈控制方案。

2.3 控制方案3设计为了克服前馈控制的局限性,常把前馈控制和反馈控制结合起来,组成前馈-反馈复合控制系统。

这样既发挥了前馈控制及时克服主要扰动对被控参数影响的优点,又保持了反馈控制能抑制各种干扰的优势,同时也降低了对前馈控制器的要求,便于工程上的实现。

当蒸汽流量F(s)发生变化时,前馈控制器Gb(s)及时发出控制指令,补偿蒸汽流量F(s)变化对精馏塔提馏段出口温度Y(s)的影响;而蒸汽温度、压力等扰动对物料出口温度的影响,则由反馈控制器Gc(s)来克服。

前馈控制作用加反馈控制作用,能够很好地克服扰动对出口温度的影响,获得比较理想的控制效果。

相对于单纯的前馈控制或反馈控制,复合控制系统具有以下优点:1.前馈控制与反馈控制组合使用,有利于对主要干扰进行前馈补偿和加其他干扰进行反馈调节,保证控制精度。

2.由于增加了反馈控制回路,降低了对前馈控制器的精度要求,有利于简化前馈控制器的设计和实现。

3.在单纯的反馈控制系统中,提高控制精度与系统稳定性是一对矛盾,往往为保证系统的稳定性而无法实现高精度的控制。

而前馈-反馈控制系统既可实现高精度控制,又能保证系统稳定运行,因而在一定程度上解决了稳定性与控制精度之间的矛盾。

由于前馈控制不含时间因子,比较简单,在一般情况下,不需要专用的补偿器,单元组合仪表便可以满足使用要求。

而且事实证明,滞后相位差不大的时候,应用静态前馈控制方法可以获得较高的控制精度,相比之下,由于动态前馈控制系统的结构复杂,系统的运行和参数整定过程也比较复杂,需要一套专门的补偿装置。

综上所述,由于本设计主要考虑温度和蒸汽流量对精馏塔产品的影响,所以采用静态前馈-反馈控制方案。

第3章前馈-反馈控制系统设计及器件选择3.1 前馈—反馈控制系统设计一、控制器的选择以单片机89C51为控制器,将温度传感器得到的微弱电信号,经仪表放大器放大后,送入转换器,转化结束后,89C51读取转换结果,当炉温低于设定温度时,启动加热控制部件,使炉温升高,以满足现场要求.当炉温高于设定温度时,实时地切断加热源.采用单片机来对炉温实时控制不仅具有控制方便简单和灵活性大的特点,而且提高了炉温控制精度的技术要求,从而大大提高了产品的质量.1.A/D转换器的选择ADS774是BRR-BROWN(BB)公司设计生产的主次逼近式模数转换器,4种可选电压范围输入:0~+10V,0~+20V,-5~+5V和-10~+10V,12位或8位可选输出,单一+5V供电。

它采用低功耗COMS工艺和新的电容阵列技术,包含有内部时钟、微处理器接口、三态输出缓冲器以及若干组内部可调阻抗,功率最大为120mv,转换时间为t≤8.5μS。

ADS774可以在2种模式下工作:一种是工作过程由微处理器控制,即所谓非独立方式;一种是独立运行工作模式。

2.D/A转换器的选择MAX508是美国美信公司生产的具有内部参考电压输出型12位的D/A转换器。

转换电压具有相同参考极性,允许单电源工作。

内部包含一个BURIED-ZENER参考电源,积分转换器(DAC),电压输出放大器。

MAX508特性:(1)12位电压输出型;(2)内部电压参考;(3)快速μPs接口;(4)单+12V或±15V供电;(5)DIP20/24或SO封装。

3.控制系统硬件设计控制器电路中D/A转换器MAX508与P1口连接;P0口及P2口通过74LS245进行驱动,与A/D转换器ADS774相连接。

控制器电路图见图3.1。

图3.1 控制系统硬件原理图二、执行器的选择1.调节阀工作区间的选择:正常工况下要求调节阀的开度在15﹪-85﹪之间。

2.调节阀的流量特性选择:根据生产过程的工艺参数和对控制系统的工艺要求,应选用等百分比流量特性或抛物线流量特性。

3.调节阀的气开、气关作用方式选择:气开阀即随着控制信号的增加而开度增大,当无压力控制信号时,阀门处于全关闭状态。

由于设计要求当物料进入精馏塔的时候,有一定的温度,当物料流量加大时,蒸汽流量势必增加,所以阀门控制选择气开式。

而当物料流量增加时,输出物料也会增加,同时精馏塔本身容量的限制势必会控制这个流量大小,所以控制器选择反作用,调节器应选择正作用。

控制阀按其工作能源形式可分为气动、电动和液动三类。

气动控制阀用压缩空气作为工作能源,主要特点是能在易燃易爆环境中工作,广泛地应用于化工、炼油等生产过程中;电动控制阀用电源工作,其特点是能源取用方便,信号传递迅速,但难以在易燃易爆环境中工作;液动控制阀用液压推动,推力很大,一般生产过程中很少使用。

三、检测变送器的选择1.温度检测器热电偶作为温度传感元件,能将温度信号转换成电动势(mV)信号,配以测量毫伏的指示仪表或变送器可以实现温度的测量指示或温度信号的转换。

具有稳定、复现性好、体积小、响应时间较小等优点、热电偶一般用于500°C以上的高温,可以在1600°C高温下长期使用。

热电阻也可以作为温度传感元件。

大多数电阻的阻值随温度变化而变化,如果某材料具备电阻温度系数大、电阻率大、化学及物理性能稳定、电阻与温度的关系接近线性等条件,就可以作为温度传感元件用来测温,称为热电阻。

相关文档
最新文档