全等三角形轴对称期末复习提优题及答案解析

合集下载

2020年 人教版八年级数学上册期末专题《全等三角形》(含答案)

2020年 人教版八年级数学上册期末专题《全等三角形》(含答案)

期末专题《全等三角形》一、选择题1.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对2.如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330° B.315° C.310° D.320°3.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°4.如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1B.2C.3D.45.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<56.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.47.如图,在△ABC中,∠C=900,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB.其中正确的有( )A.1个B.2个C.3个D.4个8.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G.下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠CGE =2∠DFB.其中正确的结论是()A.只有①③B.只有①③④C.只有②④D.①②③④二、填空题9.如图,在△ACB中,∠C=90°,∠CAB与∠CBA的角平分线交于点D,AC=3,BC=4,则点D到AB的距离为.10.如图,DE⊥AB于E,DF⊥A于F,若BD=CD,BE=CF,则下列结论:①DE=DF;②AD平分∠BAC;③AE=AD;④AB+AC=2AE中,正确的是 .11.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是.12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为 .三、解答题13.如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.14.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE.15.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.16.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB和∠CAP的度数.17.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC.求证:∠A+∠C=180°.18.如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.参考答案1.B2.B3.B4.D5.B6.C7.C8.B9.答案为:1.10.答案为:①②④;11.答案为:100°.12. 答案为:(-2,0),(-2,4),(2,4);13.证明:如图,过E点作EH∥AB交BD的延长线于H,故∠A=∠CEH,在△ABC与△EHC中,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180°∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.14.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠ABE=∠CBE所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE15.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.16.答案为:80°,50°;17.证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.18.证明:如图,连接PB,PC,∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,∴PM=PN,∠PMC=∠PNB=90°,∵P在BC的垂直平分线上,∴PC=PB,在Rt△PMC和Rt△PNB中,,∴Rt△PMC≌Rt△PNB(HL),∴BN=CM.。

2018年八年级数学《三角形全等、轴对称》专题复习资料(含解析)

2018年八年级数学《三角形全等、轴对称》专题复习资料(含解析)

2018年八年级数学《三角形全等、轴对称》专题复习资料【1】一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=,∠CDE=;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:;(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:;(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:.12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.2018年八年级数学《三角形全等、轴对称》专题复习资料【1】参考答案与试题解析一.解答题(共15小题)1.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.求证:∠ABC=∠ACB=∠DEF.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠ABC+∠BDE+∠BED=∠BED+∠DEGF+∠CEF=180°,∴∠ABC=∠DEF,∴∠ABC=∠ACB=∠DEF.2.如图,已知:BE、CF是△ABC的高,在射线BE上截取BP=AC,在射线CF上截取CQ=AB,求证:(1)AP=AQ;(2)AP⊥AQ.【解答】证明:(1)∵CF⊥AB,BE⊥AC,∴∠AEB=∠AFC=90°,∴∠ABE=∠ACQ=90°﹣∠BAC.∵BP=AC,CQ=AB,在△APB和△QAC中,,∴△APB≌△QAC(SAS).∴AP=AQ;(2)∵△APB≌△QAC,∴∠BAP=∠CQA.∵∠CQA+∠QAF=90°,∴∠BAP+∠QAF=90°.即AP⊥AQ.3.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,(1)求∠AOE的度数;(2)试说明:AC=AE+CD.【解答】解:(1)∵在Rt△ABC中,∠BAC=90°,∠ABC=60°,∴∠ACB=30°,∵AD、CE分别平分∠BAC,∠ACB,∴∠CAO=∠BAC=45°,∠ACO=∠ACB=15°,∴∠AOE=∠CAO+∠AOC=45°+15°=60°.(2)如图,在AC上截取AF=AE,连接OF∵AD平分∠BAC,∴∠BAD=∠CAD,在△AOE和△AOF中,∴△AOE≌△AOF(SAS),∴∠AOE=∠AOF=60°,∴∠AOF=∠COD=60°=∠COF,在△COF和△COD中,,∴△COF≌△COD(ASA)∴CF=CD,∴AC=AF+CF=AE+CD.4.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.5.△ABC中,∠ABC=110°,AB边的垂直平分线交AB于D、AC于E,BC边的垂直平分线交BC于F、AC于G、AB的垂直平分线于H,求∠EBG和∠DHF的度数.【解答】解:∵AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点G,∴EA=EB,GB=GC,∵∠ABC=110°,∴∠A+∠C=70°,∵EA=EB,GB=GC,∴∠ABE=∠A,∠GBC=∠C,∴∠ABE+∠GBC=70°,∴∠EBG=110°﹣70°=40°,在四边形BDHF中,∵∠ABC=110°、∠HDB=∠HFB=90°,∴∠DHF=360°﹣∠ABC﹣∠HDB﹣∠HFB=70°.6.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,F是DE的中点,试探索CF与DE的位置关系,并说明理由.【解答】解:CF⊥DE,理由如下:∵AD∥EB∴∠A=∠EBC在△ADC和△BCE中∴△ADC≌△BCE(SAS)∴DC=CE又∵F是DE的中点∴CF⊥DE.7.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=30°,∠ADE=15°.(1)求∠BDN的度数;(2)求证:CD=CE.【解答】(1)解:在直角三角形ABC中,∠ACB=90°,∠B=30°,∴∠BAC=60°,又AD平分∠BAC,∴∠CAD=30°,又∠ACD=90°,∴∠CDA=60°又∠ADE=15°,∴∠CDE=∠CDA﹣∠ADE=60°﹣15°=45°∴∠BDN=∠CDE=45°;(2)证明:在△CED中,∠ECD=90°,∠CDE=45°∴∠CED=45°∴CD=CE.8.将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.(1)请写出图中的一对全等三角形并证明;(2)你能发现并证明线段AD,BE,DE之间的关系吗?【解答】解:(1)结论:△ADC≌△CEB.理由:∵AD⊥CE,BE⊥CE,∴∠ACB=∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,∴∠CAD=∠ECB,∵AC=CB,'∴△ADC≌△CEB(AAS).(2)结论:AD=BE+DE.理由:∵△ADC≌△CEB,∴AD=CE,CD=BE,∵CE=CD+DE,∴AD=BE+DE.9.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E 在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=64°,∠CDE=32°;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.故答案为64°,32°;(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB﹣∠AED=40°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.10.已知等腰三角形一腰上的中线将三角形的周长分为12cm和21cm两部分,求这个等腰三角形的底边和腰的长度.【解答】解:如图所示,设AD=DC=x,BC=y,由题意得,或,解得或,当,等腰三角形的三边为8,8,17,显然不符合三角形的三边关系;当时,等腰三角形的三边为14,14,5,所以,这个等腰三角形的底边长是5,综上所述,这个等腰三角形的底边长5.腰长是14.11.△ABC在直角坐标系中的位置如图所示,其中A(﹣3,5),B(﹣5,2),C(﹣1,3),直线l经过点(0,1),并且与x轴平行,△A′B′C′与△ABC关于线1对称.(1)画出△A′B′C′,并写出△A′B′C′三个顶点的坐标:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)观察图中对应点坐标之间的关系,写出点P(a,b)关于直线l的对称点P′的坐标:(a,2﹣b);(3)若直线l′经过点(0,m),并且与x轴平行,根据上面研究的经验,写出点Q(c,d)关于直线1′的对称点Q′的坐标:(c,2m﹣d).【解答】解:(1)如图所示,△A′B′C′即为所求,A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);故答案为:A'(﹣3,﹣3),B'(﹣5,0),C'(﹣1,﹣1);(2)由题可得,点P'的横坐标为a,设点P'的纵坐标为y,则=1,解得y=2﹣b,∴点P(a,b)关于直线l的对称点P′的坐标为(a,2﹣b),故答案为:(a,2﹣b);(3)由题可得,点Q′的横坐标为c,设点Q'的纵坐标为y,则=m,解得y=2m﹣d,∴点Q(c,d)关于直线1′的对称点Q′的坐标为(c,2m﹣d).故答案为:(c,2m﹣d).12.如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【解答】证明:(1)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°﹣∠BAC﹣∠ACB=70°,(2分)∵BD平分∠ABD,∴∠DBC=∠ABD=35°,(3分)∴∠DBC=∠ACB=35°,∴△BCD为等腰三角形;(4分)(2)证法一:如图2,在AC上截取AH=AB,连接EH,由(1)得:△BCD为等腰三角形,∴BD=CD,∴BD+AD=CD+AD=AC,(6分)∵AE平分∠BAC,∴∠EAB=∠EAH,∴△ABE≌△AHE,∴BE=EH,∠AHE=∠ABE=70°,(8分)∴∠HEC=∠AHE﹣∠ACB=35°,∴EH=HC,∴AB+BE=AH+HC=AC,∴BD+AD=AB+BE;(10分)证法二:如图3,在AB的延长线上取AF=AC,连接EF,由(1)得:△BCD为等腰三角形,且BD=CD,∴BD+AD=CD+AD=AC,∵AE平分∠BAC,∴∠EAF=∠EAC,∴△AEF≌△AEC,∴∠F=∠C=35°,(8分)∴BF=BE,∴AB+BE=AB+BF=AF,∴BD+AD=AB+BE;(10分)(3)正确结论:BD+AD=BE﹣AB,理由是:如图4,在BE上截取BF=AB,连接AF,∵∠ABC=70°,∴∠AFB=∠BAF=35°,∵∠BAC=75°,∴∠HAB=105°,∵AE平分∠HAB,∴∠EAB=∠HAB=52.5°,∴∠EAF=52.5°﹣35°=17.5°=∠AEF=17.5°,∴AF=EF,∵∠AFC=∠C=35°,∴AF=AC=EF,∴BE﹣AB=BE﹣BF=EF=AC=AD+CD=AD+BD.(12分)13.如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D 关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.(1)依题意补全图形;(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.【解答】解:(1)依题意补全图形如图所示:(2)结论:DE=2BF.理由:连接AD,设DE交AC于H.∵点E、D关于AC对称,∴AC垂直平分DE.∴AE=AD.∵AE=BD,∴AD=DB.∴∠DAB=∠ABC=45°.∴∠ADC=90°.∴∠ADE+∠BDF=90°.∵BF⊥ED,AC⊥ED,∴∠F=∠AHD=90°.∴∠DBF+∠BDF=90°.∴∠DBF=∠ADH.∴△ADH≌△DBF∴DH=BF又∵DH=EH,∴DE=2BF.14.请按要求完成下面三道小题.(1)如图1,AB=AC.这两条线段一定关于某条直线对称吗?如果是,请画出对称轴a(尺规作图,保留作图痕迹);如果不是,请说明理由.(2)如图2,已知线段AB和点C.求作线段CD(不要求尺规作图),使它与AB成轴对称,且A与C是对称点,标明对称轴b,并简述画图过程.(3)如图3,任意位置的两条线段AB,CD,AB=CD.你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法;如果不能,请说明理由.【解答】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.15.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,AC=AE,BC=DE,连接CE交BD于点F.求证:BF=DF小明经探究发现,过B点作∠CBG=∠EDF,交CF于点G(如图2),从而可证△DEF≌△BCG,使问题得到解决(1)请你按照小明的探究思路,完成他的证明过程:参考小明思考问题的方法,解决下面的问题:(2)如图3,在△ABC与△BDE中,∠ABC=∠BDE,BC=DE,AB=BD,CF、EG分别为AB、BD的中线,连结FG并延长交CE于点H,是否存在与CH相等的线段?若存在,请找出并证明;若不存在,说明理由.【解答】(1)证明:∵∠ACB=∠AED=90°,∴∠DEF+∠AEC=∠ACE+∠BCG=90°,∵AE=AC,∴∠AEC=∠ACE,∴∠DEF=∠BCG,在△BCG与△DEF中,∴△BCG≌△DEF,(ASA),∴BG=DF,∠BGC=∠DFC,∴∠BGF=∠BFG,∴BF=BG,∴BF=DF;(2)解:CH=EH,理由:如图3,延长FH至L,使HL=FG,连接LE,则HL+HG=FG+HG,即LG=FH,∵∠ACB=∠AED=90°,CF、EG分别为AB、BD的中线,∴CF=EG,∵∠ABC=∠BDE,∠CBF=∠CFB,∠D=∠DGE,∴∠BFC=∠DGE,∵AB=BD,∴BF=BG,∴∠BFG=∠BGF,∵∠BGF=∠DGH,∴∠CFH=∠EGL,在△CFH与△EGL中,,∴△CFH≌△EGL,(SAS),∴CH=EL,∠ELH=∠CHF,∴∠ELH=∠EHL,∴EH=EL,∴EH=CH.。

全等三角形与轴对称复习测试卷(含答案)

全等三角形与轴对称复习测试卷(含答案)

全等三角形与轴对称复习测试卷一、选择题(共10小题,每小题4分,满分40分)1.下列各图中,为轴对称图形的是()A.B.C.D.2.观察下列银行标志,从图案看是中心对称图形的有()个.A.1个 B.2个 C.3个 D.4个3.如图,AB=AC,EB=EC,那么图中的全等三角形共有()A.1对 B.2对 C.3对 D.4对(第3题)(第6题)4.已知一个三角形中有两个角度数如下,其中不能构成等腰三角形的是()A.40°,70° B.60°,90° C.50°,80° D.30°,120°5.下列说法错误的是()A.全等三角形的对应边上的高相等 B.全等三角形的对应边上的中线相等C.全等三角形的对应角平分线相等 D.所有等边三角形都全等6.如图,已知AB、CD相交于O点,△AOC≌△BOD,E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可以是()A.CE=DF B.∠CEA=∠DFB C.∠OCE=∠ODF D.OE=OF7.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形.若点A的坐标是(1,3),则点M和点N的坐标分别是()A.M(1,-3),N(-1,-3) B.M(-1,-3),N(-1,3)C.M(-1,-3),N(1,-3) D.M(-1,3),N(1,-3)(第7题)(第8题)8.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直 B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分 D.对应点连线互相平行9.如图,在△ABC中,AB=AC,D是BC边上一点,AD=AE,∠EDC=20°,则∠BAD的度数是()A.20° B.40° C.60° D.无法确定(第9题)(第10题)(第11题)10.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二、填空题(共4小题,每小题5分,满分20分)11.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(只写一个即可,不添加辅助线)12.下列4个图形中,不是轴对称图形的是图形,对称轴最多的轴对称图形是图形.13.如图,D、E为AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=50°,则∠BDF=度.(第13题)(第14题)14.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是度.三、解答题(共9小题,满分90分)15.如图,AC、BD交于点E,添加怎样的两个条件,直接用AAS证明△ADE≌△BCE?16.已知:M、N分别在∠AOB的边OA、OB上.求作:以MN为底边的等腰△MNP,使点P在∠AOB的平分线OC上.(要求:用尺规作图,保留作图痕迹,不必写作法和证明)17.如图,在△ABC与△ABD中,BC=BD.设点E是BC的中点,点F是BD的中点.(1)请你在图中作出点E和点F;(要求用尺规作图,保留作图痕迹,不写作法与证明)(2)连接AE,AF.若∠ABC=∠ABD,请你证明△ABE≌△ABF.18.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.19.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.20.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B.求证:AB=AC+CD.21.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.22.如图,已知∠B+∠D=180°,AE、BD相交于点C,AC=CE,求证:AB=DE.23.如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.答案;一、选择题(共10小题,每小题4分,满分40分)1.故选C.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.故选C.考点:中心对称图形;生活中的旋转现象.分析:根据中心对称图形的概念求解.解答:解:根据中心对称图形的概念,观察可知,只有第四个不是中心对称图形,其它三个都是中心对称图形.故选C.点评:掌握好中心对称与轴对称的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.故选C.考点:全等三角形的判定.分析:三角形全等条件中必须是三个元素,至少有一组对应边相等,根据已知条件和等腰三角形的性质可以得到三组全等三角形.做题要从已知开始找,由易到难.解答:解:∵AB=AC,EB=EC,∴∠ABC=∠ACB,∠EBD=∠ECD,∴∠ABE=∠ACE,∴△ABE≌△ACE(SAS),∴∠BAD=∠CAD,又∠ABC=∠ACB,AD=AD,△ABD≌△ACD(AAS),∴BD=CD,又∠EBD=∠ECD,EB=EC,∴△BDE≌△CDE(SAS).故选C.点评:本题考查全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知入手,结合图形由易到难寻找.4.故选B.考点:三角形内角和定理.分析:等腰三角形有两个底角相等,根据三角形的内角和是180°,进行判断即可.解答:解:A、构成等腰三角形的三个角的度数分别是40°,70°,70°;B、不能同时满足等腰三角形和三角形的内角和是180°,所以不能构成等腰三角形;C、构成等腰三角形的三个角的度数分别是50°,80°,50°;D、构成等腰三角形的三个角的度数分别是30°,120°,30°.故选B.点评:解决此类问题一定要同时满足等腰三角形的两个底角相等和三角形的内角和是180°这两个条件.5.故选D.考点:全等三角形的判定;全等三角形的性质.分析:根据全等三角形的性质进行分析可得答案.解答:解:根据题意,由全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等,可得A、B、C正确,D、每个等边三角形的三边都相等,由于对应边不一定相等,所以不一定全等,D错误,故选D.点评:本题考查全等三角形的性质,两个三角形全等,其对应的边角相等,对应的中线、角平分线、高也相等.6.故选A.考点:全等三角形的判定.分析:因为△AOC≌△BOD,所以要使△EOC≌△FOD,隐含的已知条件是:∠COE=∠DOF,CO=OD;据三角形的判定方法ASA、AAS、SAS,添加条件去判断即可.解答:解:∵△AOC≌△BOD,∴CO=OD,又∵∠COE=∠DOF(对顶角相等),∴要使△EOC≌△FOD,则添加的一个条件是∠CEA=∠DFB,即说明其补角是相等的,符合AAS;或∠OCE=∠ODF,符合ASA;或OE=OF,符合SAS.A选项不符合判定定理,故选A.点评:本题考查了全等三角形的判定;解题的关键是牢记三角形的判定定理,并能熟练应用.从已知条件入手,结合全等的判定方法,通过分析推理,对选项一个个进行验证,做到由易到难,不重不漏7.故选C.考点:坐标与图形变化-旋转;坐标与图形变化-对称.分析:根据轴对称和中心对称图形的概念解答.解答:解:A,M关于原点对称,A的坐标是(1,3),∴M(-1,-3);∵A,N关于x轴对称,A的坐标是(1,3),∴N(1,-3).故选C.点评:两个点关于原点对称,横纵坐标均互为相反数,两个点关于x轴对称,横坐标不变,纵坐标互为相反数.8.故选B.考点:轴对称的性质;平移的性质.专题:压轴题.分析:由已知条件,根据轴对称的性质和平移的基本性质可得答案.解答:解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键.9.故选B .考点:三角形的外角性质.分析:根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD 的度数.解答:解:如图,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=20°,∴∠BAD=40°.故选B .点评:本题主要利用三角形的一个外角等于和它不相邻的两个内角的和的性质,熟练掌握性质是解题的关键. 10.故选A .考点:全等三角形的判定与性质;三角形三边关系.分析:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,证明△ACP 和△AEP 全等,推出PE=PC ,根据三角形任意两边之和大于第三边即可得到m+n >b+c .解答:解:在BA 的延长线上取点E ,使AE=AC ,连接ED ,EP ,∵AD 是∠A 的外角平分线,∴∠CAD=∠EAD,在△ACP 和△AEP 中,⎩⎪⎨⎪⎧AE =AC ∠CAD =∠EAD AP =AP , ∴△ACP≌△AEP(SAS ),∴PE=PC,在△P BE 中,PB+PE >AB+AE ,∵PB=m,PC=n ,AB=c ,AC=b ,∴m+n>b+c .故选A .点评:本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以m 、n 、b 、c 的长度为边的三角形是解题的关键,也是解本题的难点.二、填空题(共4小题,每小题5分,满分20分)11.故填OA=OB.考点:全等三角形的判定.专题:压轴题;开放型.分析:OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解答:解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.点评:本题考查了全等三角形的判定;题目是开放型题目,根据已知条件结合判定方法,找出所需条件,一般答案不唯一,只要符合要求即可.12.故填(1).考点:轴对称图形.分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.解答:解:图(1)是轴对称图形,它有3条对称轴;图(2)是轴对称图形,它有2条对称轴;图(3)不是轴对称图形;图(4)是轴对称图形,它有1条对称轴;故4个图形中,不是轴对称图形的是图形(3),对称轴最多的轴对称图形是图形(1).点评:掌握好轴对称图形的有关概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,一个轴对称图形的对称轴可以不只一条.13.故填80.考点:翻折变换(折叠问题);平行线的性质.专题:计算题;压轴题.分析:根据中位线的定义得出ED∥BC,再根据平行的性质和折叠的性质即可求.解答:解:∵D、E为AB、AC的中点,∴DE为△ABC的中位线,ED∥BC,∴∠ADE=∠ABC∵∠ABC=50°,∴∠ADE=50°,由于对折前后两图形全等,故∠EDF=50°,∠BDF=180°-50°×2=80°.点评:本题通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作,易得出答案.14.故填125.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.专题:压轴题.分析:根据等腰三角形的性质,依题意可得等腰三角形的顶角为110°,又根据三角形的一个外角等于和它不相邻的内角的和可求出最大角的度数.解答:解:根据等腰三角形的性质:等边对等角.以及三角形的内角和是180°,解得等腰三角形的顶角是180°-35°×2=110°.根据三角形的一个外角等于和它不相邻的内角的和求得四边形的第四个角是90°+35°=125°.比较四边形的四个内角,最大角的度数是125°.故填125.点评:本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质;利用三角形外角的性质求得四边形的内角后与其它三个角进行比较式正确解答本题的关键.三、解答题(共9小题,满分90分)15.考点:全等三角形的判定.专题:证明题;开放型.分析:在△ADE与△BCE中,∠BEC=∠AED,两三角形有一组角对应相等,添加一组角、一组边对应相等(不是两组对应角的夹边),才能用AAS证明△ADE≌△BCE.解答:解:可添加∠B=∠A,EC=ED;或∠C=∠D,BE=AE;∵∠B=∠A,EC=ED,又∠BEC=∠AED,∴△ADE≌△BCE.点评:本题考查了全等三角形的判定;是开放型题目,答案不唯一.注意应用对顶角相等这一条件.16.考点:作图—复杂作图.专题:作图题.分析:以MN为底边的等腰△MNP,则点P在MN的垂直平分线上,点P在∠AO B的平分线OC上.则又要做角的角平分线,两线的交点就是点P的位置.解答:解:点评:本题综合考查了角平分线和线段的垂直平分线的性质.17.考点:全等三角形的判定.专题:作图题.分析:(1)由作一条线段中垂线的方法作出点E和点F.(2)由题意BC=BD推出BE=BF,然后证明△ABE≌△ABF.解答:解:(1)能看到“分别以B,C为圆心,以大于12BC,长为半径画弧,两弧交于点M、N,连接MN,交BC于E”的痕迹,能看到用同样的方法“作出另一点F(或以B为圆心,BE 为半径画弧交BD于点F)”的痕迹(凡正确作出点E,F中的一个后,另一个只要在图上标注了大致位置.,(2)∵BC=BD,E,F分别是BC,BD的中点,∴BE=BF,在△ABE和△ABF中BE=BF,∠ABE=∠ABF,AB=AB,∴△ABE≌△ABF.点评:本题考查了全等三角形的判定;命题意图:掌握知识同时要培养学生的能力,尺规作图就是考查动手能力,三角形全等的证明是几何证明的基础,考查是必要的.中点作法用作垂直平分线的方法,三角形全等利用边角边定理.18.考点:等腰三角形的判定;全等三角形的判定与性质.专题:探究型.分析:要判断△AFC的形状,可通过判断角的关系来得出结论,那么就要看∠FAC和∠FCA 的关系.因为∠BAD=∠B CE,因此我们只比较∠BAC和∠BCA的关系即可.根据题中的条件:BD=BE,∠BAD=∠BCE,△BDA和△BEC又有一个公共角,因此两三角形全等,那么AB=AC,于是∠BAC=∠BCA,由此便可推导出∠FAC=∠FCA,那么三角形AFC应该是个等腰三角形.解答:解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.点评:本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.19.考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:(1)关于原点对称的两个点的坐标特点是:横坐标,纵坐标都互为相反数;(2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.解答:解:(1)A1(-4,-4),B1(-1,-3),C1(-3,-3),D1(-3,-1).(正确写出每个点的坐标得4分;正确画出四边形A1B1C1D1给2分)(2)正确画出图形A2B2C2D2给(3分);(3)正确画出图形A3B3C3D3给(3分).点评:本题实际上就是坐标系里的轴对称,中心对称的问题,要明确关于原点对称,关于x 轴对称,y 轴对称的点的坐标特点;通过画图,图形由部分到整体,体现了对称的美感. 20.考点:全等三角形的判定与性质.专题:证明题.解答:证明:∵∠1=∠B(已知),∴∠AED=2∠B(三角形外角的性质),DE=BE (等角对等边),又∠C=2∠B,∴∠C=∠AED(等量代换),在△ACD 和△AED 中,⎩⎪⎨⎪⎧∠CAD=∠EAD∠C =∠AED AD =AD ∴△ACD≌△AED(AAS ),∴AC=AE,CD=DE (对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD.点评:此题考查了学生对角平分线的性质及全等三角形的判定方法的理解及运用能力,要熟练掌握并灵活运用这些知识. 21.考点:全等三角形的判定.专题:证明题;开放型.分析:要找出全部的全等三角形,就要从已知的条件求出未知的条件.△ABC 是等边三角形,所以AC=BC ,又CD=CE ,所以BD=AE=EF ,很容易就可以求得△CDE,△AEF 为等边三角形,所以∠BDE=∠CEF,所以△BDE≌△FEC,从而得BE=CF ,由SSS 可得△BCE≌△FDC,因AB=BC=CF ,AE=AF ,∠BAE=∠EAF=60°,由SAS 可求△ABE≌△ACF,然后任意选择一组加以证明即可.解答:答:△BDE≌△FEC,△BCE≌△FDC,△ABE≌△ACF;证明:(以△BDE≌△FEC 为例)∵△ABC 是等边三角形,∴BC=AC,∠ACB=60°,∵CD=CE,∴△EDC 是等边三角形,∴∠EDC=∠DEC=60°,∴∠BDE=∠FEC=120°,∵CD=CE,∴BC -CD=AC-CE ,∴BD=AE,又∵EF=AE,∴BD=FE, 在△BDE 与△FEC 中,⎩⎪⎨⎪⎧DE =CE ∠EDB =∠CEF BD =EF , ∴△BDE≌△FEC(SAS ).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由已知条件快速的找出一组全等的三角形,然后求出未知的条件,作为下组全等三角形的判定条件,可出从中找出相似的三角形,试着找条件证明全等,数形结合是很重要的数学解题思路. 22.考点:全等三角形的判定与性质;平行线的性质.专题:证明题.分析:要求AB=DE ,而且两边分别在两个三角形中,所以只能通过全等,但由题意两三角形不全等,但根据AC=CE 知需要作辅助线AF∥DE 交BC 于F ,证得△ACF≌△EDC,再根据题中条件即可得到AB=DE .解答:证明:如图,过A 点作AF∥DE 交BC 于F ,∴∠CAF=∠CED,∠CFA=∠CDE,又∵AC=CE,∴△ACF≌△EDC,∴∠D=∠AFC,AF=DE ,∵∠B+∠D=180°,∠AFC+∠AFB=180°,∴∠B=∠AFB,∴AB=AF,∴AB=DE.点评:本题考查了两直线平行性质及全等三角形的判定和性质,要善于观察、利用题中的隐含条件,对此类题要求有一定转化思想的能力. 23.考点:等腰三角形的判定与性质;全等三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题;探究型.分析:分析:(1)由于△ABC 是直角三角形,点O 是BC 的中点,根据直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,故有OA=OB=OC=12 BC ; (2)由于OA 是等腰直角三角形的斜边上的中线,根据等腰直角三角形的性质知,∠CAO=∠B=45°,OA=OB ,又有AN=MB ,所以由SAS 证得△AON≌△BOM 可得:ON=OM ①∠NOA=∠MOB,于是有,∠NOM=∠AOB=90°,所以△OMN 是等腰直角三角形.解答:解:(1)∵在Rt△ABC 中,∠BAC=90°,O 为BC 的中点,∴OA=12BC=OB=OC , 即OA=OB=OC ;(2)△OMN 是等腰直角三角形.理由如下:连接AO∵AC=AB,OC=OB∴OA=OB,∠NAO=∠B=45°, 在△AON 与△BOM 中⎩⎪⎨⎪⎧AN =BM∠NAO =∠B OA =OB∴△AON≌△BOM(SAS )∴ON=OM,∠NOA=∠MOB∴∠NOA+∠AOM=∠MOB+∠AOM∴∠NOM=∠AOB=90°,∴△OMN 是等腰直角三角形.点评:本题利用了等腰直角三角形的性质,全等三角形的判定和性质求解.。

《全等三角形》《轴对称》期末复习提优题及答案解析

《全等三角形》《轴对称》期末复习提优题及答案解析

A ①②③ .
B.①②④
C.②③④
D ①②③④ .
3.如图,Rt△ACB 中,∠ACB=90°,△ABC 的角平分线 AD、BE 相交于点 P,过 P 作 PF⊥AD 交 BC 的延长线于点 F,交 AC 于点 H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S 四边形 ABDE= S△ABP,其中正 确的是( )
八年级[丄]数学期末《全等三角形》《轴对称》复 习提优题【大海之音组卷】
一.选择题(共 4 小题) 1.如图,Rt△ACB 中,∠ACB=90°,∠ABC 的角平分线 BE 和∠BAC 的外角平分线 AD 相交于点 P,分别交 AC 和 BC 的延长线于 E,D.过 P 作 PF⊥AD 交 AC 的延长线于点 H,交 BC 的延长线于点 F,连接 AF 交 DH 于点 G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣ AH=AB;④DG=AP+GH.其中正确的是( )
②③先根据直角的关系求出∠AHP=∠FDP,然后利用角角边证明△AHP 与△FDP 全等,根据全等三角形对 应边相等可得 DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角的关系求出∠BAP=∠BFP,再利用角 角边证明△ABP 与△FBP 全等,然后根据全等三角形对应边相等得到 AB=BF,从而得解; ④根据 PF⊥AD,∠ACB=90°,可得 AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得 DG=AG,再根据等腰直角三角形两腰相等可得 GH=GF,然后求出 DG=GH+AF,有直角三角形斜边大于 直角边,AF>AP,从而得出本小题错误. 解答: 解:①∵∠ABC 的角平分线 BE 和∠BAC 的外角平分线,

人教版八年级数学上《全等三角形》《轴对称》期末复习提优题及答案解析

人教版八年级数学上《全等三角形》《轴对称》期末复习提优题及答案解析

新世纪教育网精选资料 版权全部 @新世纪教育网先学后教、当堂达标(数学科)导教案一、学习目标:1、经过类比分数的乘除运算法例,获取分式的乘除运算法例,并利用法例进行运算及解决相关的简单的实质问题;2、经历探究分式的运算法例的过程,并能联合详细状况说明其合理性。

3、理解分式的乘除混淆运算法例,并能解决简单的实质问题二、要点难点:要点: 掌握分式的乘除运算难点: 分子、分母为多项式的分式乘除法运算,及乘除运算法例。

三、学习过程:㈠、回首练习 : 1、在分式2 y 中,当 y 1时,分式没存心义; 当 y_0___时,分式的值为零, 当 __ y15 y 155时,分式存心义。

2、填出以下各等式中未知的分子或分母。

x y x2a 2 aba by xy ;x yx2y2abb3、分解因式:① 2x-6= 2( x 3) ;② x2-4x+4= ( x2)2 ;③ 1-2x+x 2= ; ④ x 2-9y 2= ;㈡、预习看书 10— 13 页,并做好思虑,察看,练习题㈢、达成以下预习作业:1、察看以下运算:5 2 5 9 5 9 . 7 9 7 27 2概括分数的乘除法法例:乘法法例: __________________________________________________________除法法例: ___________________________________________________________猜一猜ad ? b d ? 与伙伴沟通。

bca c2、①两个分式相乘,把分子相乘的积作为积的 _分子 _____, 把分母相乘的积作为积的___分母___, 如ac acb dbd②两个分式相除,把除式的 分子 _____和分母 _____ 颠倒地点后再与 __被除式 _______相乘,如ac ad ad。

可把这个法例简单的说成:bd bcbc3、试一试:( 1)4 y x( 2)ab 2 3a 2b 23x 2y 32c 24cd解:( 2)原式( 1)4 y x3x 2y 3新世纪教育网精选资料版权全部@新世纪教育网2ab(4cd )24ab cd2d3ac四、当堂达标测试2 41、计算:( 1)x x(2)( x 2)( x 3) x2x21x2、化简求值:x22x 1 x五、讲堂反省:4xy323y224x x2x解:x 412(x 2)( x3) x2xx21x3 x(x2)( x3) x x1 3( x1)(x1)x3x(x2)x1x2,此中 x=2x 1。

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)

人教版数学八年级上册第12章《全等三角形》复习测试题(配套练习附答案)
∴△ABD≌△C'DB (HL) ,
同理△DCB≌△C'DB,
∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,
∴△AOB≌△C'OD (AAS) ,
所以共有四对全等三角形.
故答案为4.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
故选D.
二.填空题(本大题共8小题,共24.0分)
9.如图,在 和 中, ,若利用“HL”证明 ≌ ,则需要加条件______.
【答案】 ,
【解析】
【分析】
添加∠C=∠D=90°,由HL证明△ABC≌△ABD即可.
【详解】添加∠C=∠D=90°,理由如下:
∵∠C=∠D=90°,
∴在Rt△ABC和Rt△ABD中,
A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB= CD
【答案】D
【解析】
【分析】
根据垂直定义求出∠CFD=∠AEB=90°,由已知 ,再根据全等三角形的判定定理推出即可.
【详解】添加的条件是AB=CD;理由如下:
∵AE⊥BC,DF⊥BC,
∴∠CFD=∠AEB=90°,
在Rt△ABE和Rt△DCF中,
【详解】①∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,

∴Rt△ARP≌Rt△ASP(HL),
∴AR=AS,∴①正确;

八年级数学全等三角形专题练习(解析版)

八年级数学全等三角形专题练习(解析版)

八年级数学全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.2.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=433,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,3S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN 2233142312--5353.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.3.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.4.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.5.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键6.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.7.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_____cm.【答案】8cm.【解析】【详解】解:如图,延长ED交BC于M,延长AD交BC于N,作DF∥BC,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∴△EFD为等边三角形,∵BE=6cm,DE=2cm,∴DM=4,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=36°,∴NM=2,∴BN=4,∴BC=8.8.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.9.已知,∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A7B7A8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.10.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长.在△ABC中,利用面积法可求出BQ的长度,此题得解.【详解】 ∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,已知一条线段的长度为a ,作边长为a 的等边三角形的方法是:①画射线AM ;②连结AC 、BC ;③分别以A 、B 为圆心,以a 的长为半径作圆弧,两弧交于点C ;④在射线AM 上截取AB =a ;以上画法正确的顺序是( )A .①②③④B .①④③②C .①④②③D .②①④③【答案】B【解析】【分析】 根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.12.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.13.如图,△ABC、△CDE都是等腰三角形,且CA=CB, CD=CE,∠ACB=∠DCE=α,AD,BE相交于点O,点M,N分别是线段AD,BE的中点,以下4个结论:①AD=BE;②∠DOB=180°-α;③△CMN是等边三角形;④连OC,则OC平分∠AOE.正确的是()A.①②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°-∠DOE=180°-α,故②正确;③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中AC BCACD BCECD CE⎪∠⎪⎩∠⎧⎨===∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;②设CD与BE交于F,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵∠CFE=∠DFO,∴∠DOE=∠DCE=α,∴∠BOD=180°-∠DOE=180°-α,故②正确;③∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,AD=BE ,AC=BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM=12AD ,BN=12BE , ∴AM=BN ,在△ACM 和△BCN 中 AC BC CAM CBN AM BN ⎪∠⎪⎩∠⎧⎨=== ∴△ACM ≌△BCN (SAS ),∴CM=CN ,∠ACM=∠BCN ,又∠ACB=α,∴∠ACM+∠MCB=α,∴∠BCN+∠MCB=α,∴∠MCN=α,∴△MNC 不一定是等边三角形,故③不符合题意;④过C 作CG ⊥BE 于G ,CH ⊥AD 于H ,∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH ,CE=CD ,∴△CGE ≌△CHD (AAS ),∴CH=CG ,∴OC 平分∠AOE ,故④正确,故选:B .【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.14.如图钢架中,∠A=a ,焊上等长的钢条P 1P 2, P 2P 3, P 3P 4, P 4P 5……来加固钢架.著P 1A= P 1P 2,且恰好用了4根钢条,则α的取值范圈是( )A .15°≤ a <18°B .15°< a ≤18°C .18°≤ a <22.5°D .18° < a ≤ 22.5°【答案】C【解析】【分析】由每根钢管长度相等,可知图中都是等腰三角形,利用等腰三角形底角一定是锐角,可推出取值范围.【详解】∵AB=BC=CD=DE=EF∴∠P 1P 2A=∠A=a由三角形外角性质,可得∠P 2P 1P 3=2∠A=2a同理可得,∠P 1P 3P 2=∠P 2P 1P 3=2a ,∠P 3P 2P 4=∠P 3P 4P 2=∠A+∠P 1P 3P 2=3a ,∠P 4P 3P 5=∠P 4P 5P 3=∠A+∠P 3P 4P 2=4a ,在△P 4P 3P 5中,∠P 3P 4P 5=180°-2∠P 4P 3P 5=180°-8a当∠P 5P 4B ≥90°即∠P 5P 4A ≤90°时,不能再放钢管,∴3180890+-≤a a ,解得a ≥18°又∵等腰三角形底角只能是锐角,∴4a <90°,解得a <22.5∴1822.5οο≤<a故选C.【点睛】本题考查等腰三角形的性质,掌握等腰三角形的底角只能是锐角是关键.15.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1B .2C .3D .4 【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.16.如图,已知等边△ABC的面积为43, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.23C.15D.4【答案】B【解析】如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PE的长就是PR+QR的最小值,设等边△ABC的边长为x,则高为32x,∵等边△ABC的面积为43,∴12x×32x=43,解得x=4,∴等边△ABC的高为32x=23,即PE=23,所以PR+QR的最小值是23,故选B.【点睛】本题考查了轴对称的性质,最短路径问题等,解题的关键是正确添加辅助线构造出最短路径.17.如图,已知,点A(0,0)、B(43,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A 3B3C3D3【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=3OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A1AB=60°,进而可得∠CAA1=30°,∠CA1O=90°,因此可推导出∠A2A1B=30°,同理得到∠CA2B1=∠CA3B2=∠CA4B3=90°,∠A2A1B=∠A3A2B2=∠A4A3B3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA1=OCcos∠CAA1=3B1A2=1232⨯2017个等边三角形的边长为:2017201513()4322⨯=.故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.18.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12323故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+34×32=6+934,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A.19.如图,将△ABC沿DE、EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠CDO+∠CFO=108°,则∠C的度数为()A.40°B.41°C.32°D.36°【答案】D【解析】分析:如图,连接AO、BO.由题意EA=EB=EO,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA,FO=FB,推出∠DAO=∠DOA,∠FOB=∠FBO,推出∠CDO=2∠DAO,∠CFO=2∠FBO,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.详解:如图,连接AO、BO.由题意得:EA=EB=EO,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA,FO=FB,∴∠DAO=∠DOA,∠FOB=∠FBO,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.点睛:本题考查了三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.1+22C.2D2-1【答案】B【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22;第一次折叠后,等腰三角形的底边长为22,腰长为12,所以周长为1122122++=+.故答案为B.。

几何-全等三角形及轴对称(含答案)

几何-全等三角形及轴对称(含答案)

初二数学上学期期末考试复习建议(几何部分)一. 考试范围第十一章 三角形 第十二章 全等三角形 第十三章 轴对称 二. 复习目的1. 通过复习使学生对已学过的数学知识系统化, 条理化. 更有利于学生掌握基础知识和基本方法, 为进一步学习数学打下良好的基础.2. 逐步培养学生识图能力, 逻辑思维和推理论证的能力, 作图能力, 分析问题和解决问题的能力, 提高学生的数学素质.3. 使学生初步会运用数形结合、转化与化归、分类讨论等数学思想方法.三. 总体复习建议1. 重视基础: 对每一章的知识点进行总结, 使学生掌握所有重要的定义、公式、性质和判定; 掌握每章必须掌握的基本方法(包括解题规范) , 且“每一步推理都要有根据”; 关注教材中数学应用(包括尺规作图) 的实例及其数学原理.2. 优选例题习题, 使学生熟悉一些基本题型, 掌握常用辅助线的添加. 证明书写格式要规范, 思路清楚.3. 适当的综合题的训练.4. 关注新旧教材的对比与变化.5. 充分利用区里的教育资源.第十二章 全等三角形 第十三章 轴对称 一、通过框架图进行知识梳理轴对称等腰三角形 等边三角形画轴对称图形画轴对称图形的对称轴 关于坐标轴对称的点的坐标的关系 生活中的轴对称二、基本尺规作图: 作法及原理作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;作已知线段的垂直平分线(作已知线段的中点) ;三、适当总结证明方法:(1) 证明线段相等的方法①利用线段中点. ②利用数量相等.③证明两条线段所在的两个三角形全等④利用角平分线的性质证明角平分线上的点到角两边的距离相等⑤等腰三角形顶角平分线、底边上的高线平分底边⑥线段垂直平分线上的点到线段两端点的距离相等(2) 证明角相等的方法:①利用数量相等. ②利用平行线的性质进行证明.③利用角平分线证明. ④证明两个角所在的两个三角形全等⑤同角(或等角) 的余角(或补角) 相等⑥等腰三角形底边上的高线或底边中线平分顶角⑦等式性质⑧等边对等角(3) 证明两条线段的位置关系(平行、垂直) 的方法.(4) 常添加的辅助线:截长补短倍长中线角分线双垂直角分线翻折平行线+角分线: 等腰三角形角分线+垂直: 补全等腰三角形四、从图形变换的角度来复习全等同时复习几何的平移、轴对称两种变换, 归纳定义及性质, 渗透旋转变换的思想全等三角形的常见图形平移型:A'AB C C'B'轴对称型:旋转型:补充习题(一) 全等的性质和判定1. 如图, 正方形ABCD 的边长为4, 将一个足够大的直角三角板的直角顶点放于点A 处, 该三角板的两条直角边与CD 交于点F , 与CB 延长线交于点E . 四边形AECF 的面积是( ) . A A. 16 B. 12 C. 8 D. 42. 已知: 如图, AC 、BD 相交于点O , ∠A = ∠D , 请你再补充一个条件, 使△AOB ≌△DOC , 你补充的条件是____________.CA A' BABCB'C' ABCC' B'AB CC' B'B (C' )C (B' ) AA'ABB'C'CABB'C' C A'AA'B (C' )C (B' )A A'BB' C C' AA'B' BCC' ABB'C'C A'ABCDO3. 在△ABC 与△A'B'C' 中, 已知∠A = ∠A', CD 和C'D' 分别为∠ACB 和∠A'C'B' 的平分线, 再从以下三个条件: ①∠B = ∠B', ②AC = A'C', ③CD = C'D' 中任取两个为题设, 另一个为结论, 则可以构成 ( ) 个正确的命题.A . 1B . 2C . 3D . 4 4. 根据下列已知条件, 不能唯一确定......△ABC 的大小和形状的是( ) . B A. AB =3, BC =4, AC =5 B. AB =4, BC =3, ∠A =30º C. ∠A =60º, ∠B =45º, AB =4D. ∠C =90º, AB =6, AC = 55. 如图, 已知△ABC , 则甲、乙、丙三个三角形中和△ABC 全等的是( ) . Dbaca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 只有丙C. 甲和乙D. 乙和丙6. 已知: 如图, CB = DE , ∠B = ∠E , ∠BAE = ∠CAD . 求证: ∠ACD = ∠ADC .7. 如图, 锐角△ABC 中, D , E 分别是AB , AC 边上的点, △ADC ≌△ADC ′, △AEB ≌△AE B′, 且C ′D ∥EB ′∥BC , 记BE , CD 交于点F , 若BAC x ∠=︒, 则∠BFC 的大小是__________°. (用含x 的式子表示) (1802x -)E ABCDF E DB'C'ABC第6题图第7题图(二) 轴对称图形和垂直平分线1. 在下列各图中, 对称轴最多的图形有________条对称轴.2. (1) 点P (3, − 5) 关于x 轴的对称点坐标为( ) D A. (−3, −5) B. (5, 3) C. (−3, 5) D. (3, 5)(2) 如图, 数轴上A B ,两点表示的数分别为1-和3, 点B 关于点A 的对称点为C , 则点C 所表示的数为( ) A A. 23-- B. 13--C. 23-+D. 13+(3) 如图, 在正方形网格纸上有三个点A , B , C , 现要在图中网格范围内再找格点D , 使得A , B , C , D 四点组成的凸四边形是轴对称图形, 在图中标出所有满足条件的点D 的位置. (两个解)3. 如图, 在Rt △ABC 中, ∠ACB = 90°, ∠A = 15°, AB 的垂直平分线与 AC 交于点D , 与AB 交于点E , 连结BD . 若AD =12cm, 则BC 的长为 cm.4. 如图, 已知△ABC 中, ∠BAC = 120°, 分别作AC , AB 边的垂直平分线PM , PN 交于点P , 分别交BC 于点E 和点F . 则以下各说法中: ①∠P = 60°, ②∠EAF = 60°, ③点P 到点B 和点C 的距离相等, ④PE = PF , 正确的说法是______________. (填序号) ①②③FEPMN CAB第3题图第4题图5. 已知∠AOB =45°, 点P 在∠AOB 的内部, P 1与P 关于OB 对称, P 2与P 关于OA 对称, 则P 1、P 2与O 三点构成的三角形是( ) D A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形(三) 等腰三角形的性质和判定1. 等腰直角三角形的底边长为5, 则它的面积是( ). D A. 50B. 25C. 12.5D. 6.252. 已知: 如图3, △ABC 中, 给出下列四个命题: ① 若AB =AC , AD ⊥BC , 则∠1=∠2; ②若AB =AC , ∠1=∠2, 则BD =DC ; ③若AB =AC , BD =DC , 则AD ⊥BC ;④若AB =AC , AD ⊥BC , BE ⊥AC , 则∠1=∠3; 其中, 真命题的个数是( ). D A. 1个 B. 2个 C. 3个 D. 4个A O B3. 如图, 在△ABC 中, D 是BC 边上一点, 且AB = AD = DC , ∠BAD = 40°, 则∠C 为( ) . B A. 25° B. 35°C. 40°D. 50°4. 如图, 在△ABC 中, AB = AC , ∠BAC = 30°. 点D 为△ABC 内一点, 且DB = DC , ∠DCB = 30°. 点E 为BD 延长线上一点, 且AE = AB .(1) 求∠ADE 的度数;(2) 若点M 在DE 上, 且DM = DA , 求证: ME = DC .5. 已知: 如图, △ABC 中, 点,D E 分别在,AB AC 边上, F 是CD 中点, 连BF 交AC 于点E , 180ABE CEB ∠+∠=︒, 比较线段BD 与CE 的大小, 并证明你的结论.(提示, 注意AE = AB ; 过D 作AC 的平行线交BE 于点G )(四) 等边三角形(30° 角直角三角形)1. 下列条件中, 不能..得到等边三角形的是( ) . B A. 有两个内角是60°的三角形 B. 有两边相等且是轴对称图形的三角形 C. 三边都相等的三角形D. 有一个角是60°且是轴对称图形的三角形2. 如图, △ABC 中, AB =AC , ∠BAC =120°, DE 垂直平分AC . 根据以上条件, 可知∠B =______, ∠BAD =_______, BD : DC =_______. (30, 90, 2: 1)3. 如图, 在纸片△ABC 中, AC = 6, ∠A = 30º, ∠C = 90º, 将∠A 沿DE 折叠, 使点A 与点B 重合, 则折痕DE 的长为_____. (2)4. 如图所示△ABC 中, AB = AC , AG 平分∠BAC ; ∠FBC = ∠BFG = 60︒, 若FG = 3, FB = 7, 求BC 的长. (答案10. 提示: 延长AG 、FG 与BC 相交)ABCDABCDEADMC(五) 最值问题1. 如图, P 、Q 为ABC 边上的两个定点. 在BC 边上求作一点M , 使PM +MQ 最短2. 已知: 如图, 牧马营地在M 处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最后回到营地M . 请在图上画出最短的放牧路线..M河草地第1题图第2题图3. 如图, 四边形EFGH 是一长方形的台球桌面, 现在黑、白两球分别位于A 、B 两点的位置上. 试问怎样撞击黑球A , 才能使黑球A 先碰到球台边EF , 反弹一次后再击中白球B ?4. 如图, MN 是正方形ABCD 的一条对称轴, 点P 是直线MN 上的一个动点, 当PC +PD 最小时, ∠PCD = _________°. (45)DAMNBCP5. 已知两点M (4, 2) , N (1, 1) , 点P 是x 轴上一动点, 若使PM +PN 最短, 则点P 的坐标应为___________. (2, 0)6. 平面直角坐标系xOy 中, 已知点A (0, 4) , 直线x = 3, 一个动点P 自OA 的中点M 出发, 先到达x 轴上的某点(设为点E ) , 再到达直线x = 6上某点(设为点F ) 最后运动到点A , 求使点P 运动的路径中最短的点E 、F 的坐标. E (4, 0) , F (6, 1)几何专题复习 (一) 分类讨论1. ① 等腰三角形的一个角是110︒, 求其另两角? ② 等腰三角形的一个角是80︒, 求其另两角?③ 等腰三角形两内角之比为2: 1, 求其三个内角的大小? 2. ① 等腰三角形的两边长为5cm 、6cm, 求其周长? ② 等腰三角形的两边长为10cm 、21cm, 求其周长?3. ① 等腰三角形一腰上的中线将周长分为12cm 和21cm 两部分, 求其底边长? ② 等腰三角形一腰上的中线将周长分为24cm 和27cm 两部分, 求其底边长?4. 等腰三角形一腰上的高与另一腰的夹角为30°, 则其顶角为_______.(按高的位置分类)5. 等腰三角形一边上的高等于底边的一半, 则其顶角为___________.6. 等腰三角形一腰上的高等于腰的一半, 则其顶角为___________.7. 等腰三角形一边上的高等于这边的一半, 则其顶角为___________.8. △ABC 中, AB = AC, AB 的中垂线EF 与AC 所在直线相交所成锐角为40︒, 则∠B = _____. (按一腰中垂线与另一腰的交点所在位置分类)9. 已知: ()()ABC x C B A ∆-轴上一点且为、,4,00,2为等腰三角形 , 问满足条件的C 点有几个? 4个10. 在正方形ABCD 所在平面上找一点P, 使△PAD 、△PAB 、△PBC 、△PCD 均为等腰三角形, 这样的P 点有几个? 9个11. 平面内有一点D 到△ABC 三个顶点的距离DA = DB = DC , 若∠DAB = 30°, ∠DAC = 40°, 则∠BDC 的大小是_________°. (20或140)(二) 几何作图1. 如图, 某地区要在区域S 内建一个超市M , 按照要求, 超市M 到两个新建的居民小区A , B 的距离相等, 到两条公路OC , OD 的距离也相等. 这个超市应该建在何处? (本题要求: 尺规作图, 不写作法, 保留作图痕迹)SD2. 尺规作图作AOB 的平分线方法如下: 以O 为圆心, 任意长为半径画弧交OA 、OB 于C 、D , 再分别以点C 、D 为圆心, 以大于12CD 长为半径画弧, 两弧交于点P , 则作射线OP 即为所求. 由作法得OCP ODP △≌△的根据是( ) . DA. SASB. ASAC. AASD. SSS3. 如图, 用圆规以直角顶点O 为圆心, 以适当半径画一条弧 交两直角边于A 、B 两点, 若再以A 为圆心, 以OA 为半径画弧, 与弧AB 交于点C , 则∠AOC 等于 __________ °4. 小明同学在学习了全等三角形的相关知识后发现, 只用两把完全相同的长方形直尺就可以作出一个锐角的平分线. 如图: 一把直尺压住射线OB , 另一把直尺压住射线OA 并且与第一把直尺交于点P , 小明说: “射线OP 就是∠BOA 的角平分线. ”你认为小明的想法正确吗? 请说明理由.5. 阅读下列材料:木工张师傅在加工制作家具的时候, 用下面的方法在木板上画直角:如图1, 他首先在需要加工的位置画一条线段AB , 接着分别以点A 、点B 为圆心, 以大于12AB 的适当长为半径画弧, 两弧相交于点C , 再以C 为圆心, 以同样长为半径画弧交AC 的延长线于点D (点D 需落在木板上) , 连接DB . 则∠ABD 就是直角. 木工张师傅把上面的这种作直角的方法叫做“三弧法.图2EF ACBD 图1OAB解决下列问题:(1) 利用图1就∠ABD是直角作出合理解释(要求: 先写出已知、求证, 再进行证明);(2) 图2表示的一块残缺的圆形木板, 请你用“三弧法”, 在木板上...画出一个以EF为一条直角边的直角三角形EFG(要求: 尺规作图, 不写作法, 保留作图痕迹) .(三) 操作问题第1题图①图②第2题图1. 如图①, 一张四边形纸片ABCD, ∠A=50︒, ∠C=150︒. 若将其按照图②所示方式折叠后, 恰好MD'∥AB, ND'∥BC, 则∠D的度数为( ). CA. 70°B. 75°C. 80°D. 85°2. 如图所示, 把一个三角形纸片ABC顶角向内折叠3次之后, 3个顶点不重合, 那么图中∠1+ ∠2+∠3+∠4+∠5+∠6的值为( ) CA. 180°B. 270°C. 360°D. 无法确定3. 将一个菱形纸片依次按下图①、②的方式对折, 然后沿图③中的虚线裁剪, 成图④样式. 将纸展开铺平. 所得到的图形是图中的( ) A4. 如图, 等边△ABC的边长为1cm, D、E分别是AB、AC上的点, 将△ADE沿直线DE折叠, 点A落在点A´处, 且点在△ABC外部, 则阴影部分图形的周长为____________cm. (3)5. 如图, 将一张三角形纸片ABC 折叠, 使点A 落在BC 边上, 折痕EF ∥BC , 得到△EFG ; 再继续将纸片沿△BEG 的对称轴EM 折叠, 依照上述做法, 再将△CFG 折叠, 最终得到矩形EMNF , 折叠后的△EMG 和△FNG 的面积分别为1和2, 则△ABC 的面积为( ) A . 6B . 9C . 12D . 186. 将如图1所示的长方形纸片ABCD 沿过点A 的直线折叠, 使点B 落在AD 边上, 折痕为AE (如图2) ; 再继续将纸片沿过点E 的直线折叠, 使点A 落在EC 边上, 折痕为EF (如图3) , 则在图3中, ∠F AE = _______°, ∠AFE = _______°. (45, 67.5)图1 图2 图37.(1) 已知ABC △中, 90A ∠=, 67.5B ∠=, 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把所有不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数)(2) 已知ABC △中, C ∠是其最小的内角, 过顶点B 的一条直线把这个三角形分割成了两个等腰三角形, 请探求ABC ∠与C ∠之间的所有可能的关系.8. 当身边没有量角器时, 怎样得到一些特定度数的角呢? 动手操作有时可以解“燃眉之急”. 如图, 已知矩形ABCD , 我们按如下步骤操作可以得到一个特定的角: (1) 以点A 所在直线为折痕, 折叠纸片, 使点B 落在AD 上, 折痕与BC 交于E ; (2) 将纸片展平后, 再一次折叠纸片, 以E 所在直线为折痕, 使点A 落在BC 上, 折痕EF 交AD 于F . 则∠AFE = _______°. (67.5)A BC 备用图①A BC 备用图②ABC备用图③AC B GFEACBAM GFECB NM G FEACB A BCD ED CB AFD CEA9. 如图(1)所示Rt △ABC 中, ∠A = 90°, 三边a b c >>. 现以△ABC 某一边的垂直平分线为对称轴, 作△ABC 的轴对称图形, 记作一次操作. 例如, 若图(1)中△ABC 以a 边的垂直平分线为对称轴, 作轴对称图形得到图(2)中的△ABC , 记作“a 操作”一次; 图(2)中△ABC 继续以b 边的垂直平分线为对称轴, 作轴对称图形得到图(3)中的△ABC , 记作“b 操作”一次. 现对图(1)中的△ABC 分别按以下顺序连续进行若干次操作, 则最后得到的△ABC 与图(1)中△ABC 重合的是( ) . BA. a 操作 − b 操作 − c 操作B. b 操作 − c 操作 − b 操作 − c 操作C. a 操作 − c 操作 − b 操作 − a 操作D. b 操作 − a 操作 − b 操作 − a 操作c ba a(1)ABC (2) a 操作 (3) b 操作BCAA BCACB四、探究性问题1. 已知: 如图, Rt △ABC 中, AB = AC , ∠BAC = 90°, 直线AE 是经过点A 的任一直线, BD ⊥AE 于D , CE ⊥AE 于E , BD > CE . (1) AD 与CE 的大小关系如何? 请说明理由. (2) 求证: DE =BD -CE .2. 已知: 如图, B 、A 、C 三点共线, 并且Rt △ABD ≌Rt △ECA , M 是DE 的中点. 问题:(1) 判断△ADE 的形状并证明;(2) 判断线段AM 与线段DE 的关系并证明; (3) 判断△MBC 的形状并证明.MCDAEB3.已知: 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB .(1) 如图1, 若21α=, ∠ABC = 32°, 且AP 交BC 于点P , 试探究线段AB , AC 与PB 之间的数量关系, 并对你的结论加以证明;(2) 如图2, 若∠ABC = 60α-, 点P 在△ABC 的内部, 且使∠CBP = 30°, 求∠APC 的度数(用含α的代数式表示) .五、关于旋转的问题、动点问题1. 已知: 如图, △AOB 和△COD 都是等边三角形, 作直线AC 、直线BD 交于E . 求证: (1) AC =BD ; (2) ∠AEB =60°.2. 已知: 如图, 等边三角形ABC 中, AB = 2, 点P 是AB 边上的一动点(点P 可以与点A 重合, 但不与点B 重合) , 过点P 作PE ⊥BC , 垂足为E , 过点E 作EF ⊥AC , 垂足为F , 过点F 作FQ ⊥AB , 垂足为Q . 设BP = x , AQ = y . (1) 请用x 的代数式表示y (直接写出) ; (2) 当BP 的长等于多少时, 点P 与点Q 重合; (128x y =+; 43) 3. 已知: 如图, △ABC 中, ∠A =90°, AB =AC . D 是斜边BC 的中点; E 、F 分别在线段AB 、AC 上, 且∠EDF =90°.(1) 求证: △DEF 为等腰直角三角形.(2) 如果E 点运动到AB 的反向..延长线...上, F 在直线..CA 上且仍保持∠EDF =90°, 那么△DEF 还仍然是等腰直角三角形吗? 请画图(右图) 并直接写出....你的结论. 图1ABCP图2AC PBACB P EFQC4. 如图所示, 长方形ABCD 中, AB = 4, BC 点E 是折线段A —D —C 上的一个动点(点E 与点A 不重合) , 点P 是点A 关于BE 的对称点. 在点E 运动的过程中, 能使△PCB 为等腰三角形.....的点E 的位置共有( ) . CA. 2个B. 3个C. 4个D. 5个5. 如图ABC △中, 10AB AC ==厘米, 8BC =厘米, 点D 为AB 中点. (1) 如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动, 同时, 点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等, 经过1秒后, BPD △与CQP △是否全等, 请说明理由;②若点Q 的运动速度与点P 的运动速度不相等, 当点Q 的运动速度为多少时, 能够使BPD △与CQP △全等?(2) 若点Q 以②中的运动速度从点C 出发, 点P 以原来的运动速度从点B 同时出发, 都逆时针沿ABC △三边运动, 求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? ( (1) ①SAS 全等; ②415厘米/秒. (2) 经过803秒点P 与点Q 第一次在边AB 上相遇. )六、综合应用1. 在平面直角坐标系中, 直线l 过点M (3,0), 且平行于y 轴.如果△ABC 三个顶点的坐标分别是A (-2,0), B (-1,0),C (-1,2), △ABC 关于y 轴的对称图形是△A 1B 1C 1, △A 1B 1C 1关于直线l 的对称图形是△A 2B 2C 2, 在右面的坐标系中画出△A 2B 2C 2,并写出它的三个顶点的坐标.AB CDEPB2. 已知: 如图, 在△ABC 中, AB = AC , ∠BAC = α, 且60° < α < 120°. P 为△ABC 内部一点, 且PC = AC , ∠PCA = 120° − α.(1) 用含α的代数式表示∠APC , 得∠APC = ________; (2) 求证: ∠BAP = ∠PCB ; (3) 求∠PBC 的度数.3. 在△ABC 中, AD 是△ABC 的角平分线.(1) 如图1, 过C 作CE ∥AD 交BA 延长线于点E , 若F 为CE 的中点, 连结AF , 求证: AF ⊥AD ;(2) 如图2, M 为BC 的中点, 过M 作MN ∥AD 交AC 于点N , 若AB = 4, AC = 7, 求NC 的长.4.在ABC △中, BA BC BAC =∠=α,, M 是AC 的中点, P 是线段BM 上的动点, 将线段PA 绕点P 顺时针旋转2α得到线段PQ .(1) 若α=60︒且点P 与点M 重合(如图1) , 线段CQ 的延长线交射线BM 于点D , 请补全图形, 并写出CDB ∠的度数;(2) 在图2中, 点P 不与点B M ,重合, 线段CQ 的延长线与射线BM 交于点D , 猜想CDB ∠的大小(用含α的代数式表示) , 并加以证明.图1 图2BCPA5. 在Rt△ABC中, ∠ACB = 90°, ∠A = 30°, BD是△ABC的角平分线, DE⊥AB于点E.(1) 如图1, 连接EC, 求证: △EBC是等边三角形;(2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作∠BMG = 60°, MG交DE延长线于点G. 请你在图2中画出完整图形, 并直接写出MD, DG与AD之间的数量关系;(3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作∠BNG= 60°, NG交DE延长线于点G. 试探究ND, DG与AD数量之间的关系, 并说明理由.。

八年级数学上册 全等三角形专题练习(解析版)

八年级数学上册 全等三角形专题练习(解析版)

八年级数学上册全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.3.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;②点O 到ABC ∆各边的距离相等;③1902BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2AD AB AC BC =+-.其中正确的结论是.__________.【答案】①②③⑤【解析】【分析】由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得④设OD =m ,AE +AF =n ,则S △AEF =12mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.【详解】∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣12∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A;故③正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE•OM+12AF•OD=12OD•(AE+AF)=12mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;同理可证:BM=BN,CD=CN.∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=12(AB+AC﹣BC)故⑤正确.故答案为:①②③⑤.【点睛】本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.4.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.5.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2=32,以此类推△A n B n A n+1的边长为 2n.故答案为:2n.【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.6.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键7.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【答案】10【解析】【分析】作点P 关于OB 的对称点P′,点P 关于OA 的对称点P″,连接P′P″交OB 于R ,交OA 于Q ,连接PR 、PQ ,如图3,利用对称的性质得到△PQR 周长=P′P″,根据两点之间线段最短可判断此时△PQR 周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR 周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.8.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,QF⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .9.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.【详解】解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC -=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85, 故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .32B .332C .32D .不能确定【答案】B 【解析】 已知,如图,P 为等边三角形内任意一点,PD 、PE 、PF 分别是点P 到边AB 、BC 、AC 的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.12.已知:如图,点D ,E 分别在△ABC 的边AC 和BC 上,AE 与BD 相交于点F ,给出下面四个条件:①∠1=∠2;②AD=BE ;③AF=BF ;④DF=EF ,从这四个条件中选取两个,不能判定△ABC 是等腰三角形的是( )A .①②B .①④C .②③D .③④【答案】C【解析】【分析】 根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF ∆ 和BEF ∆ 中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF ∆ 和BEF ∆ 中 1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.如图所示,在ABC 中,AC BC =,90ACB ︒∠=,AD 平分BAC ∠,BE AD ⊥交AC 的延长线F ,E 为垂足.则有:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】【分析】 利用全等三角形的判定定理及其性质以及等腰三角形的三线合一的性质逐项分析即可得出答案.【详解】解:∵AC BC =,90ACB ︒∠=∴45CAB ABC ︒∠=∠=∵AD 平分BAC ∠∴22.5BAE EAF ︒∠=∠=∵90EAF F FBC F ︒∠+∠=∠+∠=∴EAF FBC ∠=∠∴ADC BFC ≅∴AD=BF ,CF=CD ,故①②正确;∵CD=CF,∴AC+CD=AC+CF=AF∵67.5F ︒∠=∵18018067.54567.5ABF F CAB ︒︒︒︒︒∠=-∠-∠=--=∴AF=AB ,即AC+CD=AB ,故③正确;由③可知,三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = 若BE CF =,则30CBF ∠=︒与②中结论相矛盾,故④错误;∵三角形ABF 是等腰三角形,∵BE AD ⊥∴12BE BF = ∴BF=2BE ,故⑤正确;综上所述,正确的选项有4个.故选:D .【点睛】本题考查的知识点是全等三角形的判定定理及其性质,等腰三角形的判定与性质,等腰直角三角形的性质,掌握以上知识点是解此题的关键.14.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.15.如图,AOB α∠=,点P 是AOB ∠内的一定点,点,M N 分别在OA OB 、上移动,当PMN ∆的周长最小时,MPN ∠的值为( )A .90α+B .1902α+C .180α-D .1802α-【答案】D【解析】【分析】 过P 点作角的两边的对称点,在连接两个对称点,此时线段与角两边的交点,构成的三角形周长最小.再根据角的关系求解.【详解】解:过P 点作OB 的对称点1P ,过P 作OA 的对称点2P ,连接12PP ,交点为M,N ,则此时PMN 的周长最小,且△1P NP 和△2PMP 为等腰三角形.此时∠12P PP =180°-α;设∠NPM=x°,则180°-x°=2(∠12P PP -x°) 所以 x°=180°-2α 【点睛】求出M,N 在什么位子△PMN 周长最小是解此题的关键.16.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A .①②B .①②③C .①②④D .①②③④【答案】C【解析】【分析】 ①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明②正确;③若DM 平分∠EDF ,则∠EDM=90°,从而得到∠ABC 为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC是否等于90°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM是BC的垂直平分线,∴DB=DC.在Rt△BED和Rt△CFD中DE DFBD DC⎧⎨⎩==,∴Rt△BED≌Rt△CFD.∴BE=FC.∴AB+AC=AE-BE+AF+FC又∵AE=AF,BE=FC,∴AB+AC=2AE.故④正确.综上所述,①②④正确,故选:C.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.17.如图,C 是线段 AB 上一点,且△ACD 和△BCE 都是等边三角形,连接 AE、BD 相交于点O,AE、BD 分别交 CD、CE 于 M、N,连接 MN、OC,则下列所给的结论中:①AE=BD;②CM=CN;③MN∥AB;④∠AOB=120º;⑤OC 平分∠AOB.其中结论正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由题意易证:△ACE≅△DCB,进而可得AE=BD;由△ACE≅△DCB,可得∠CAE=∠CDB,从而△ACM ≅△DCN,可得:CM=CN;易证△MCN是等边三角形,可得∠MNC=∠BCE,即MN∥AB;由∠CAE=∠CDB,∠AMC=∠DMO,得∠ACM=∠DOM=60°,即∠AOB=120º;作CG⊥AE,CH⊥BD,易证CG=CH,即:OC 平分∠AOB.【详解】∵△ACD 和△BCE 都是等边三角形,∴AC=DC,CE=CB,∠ACE=∠DCB=120°,∴△ACE≅△DCB(SAS)∴AE=BD,∴①正确;∵△ACE≅△DCB,∴∠CAE=∠CDB,∵△ACD 和△BCE 都是等边三角形,∴∠ACD=∠BCE=∠DCE=60°,AC=DC,在△ACM 和△DCN中,∵60CAE CDB AC DCACD DCE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴△ACM ≅△DCN (ASA ),∴CM =CN ,∴②正确;∵CM =CN ,∠DCE=60°,∴△MCN 是等边三角形,∴∠MNC=60°,∴∠MNC=∠BCE ,∴MN ∥AB ,∴③正确;∵△ACE ≅△DCB ,∴∠CAE=∠CDB ,∵∠AMC=∠DMO ,∴180°-∠CAE-∠AMC=180°-∠CDB-∠DMO ,即:∠ACM=∠DOM=60°,∴∠AOB =120º,∴④正确;作CG ⊥AE ,CH ⊥BD ,垂足分别为点G ,点H ,如图,在△ACG 和△DCH 中,∵90?AMC DHC CAE CDB AC DC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴△ACG ≅△DCH (AAS ),∴CG =CH ,∴OC 平分∠AOB ,∴⑤正确.故选D.【点睛】本题主要考查全等三角形的判定定理和性质定理,等边三角形的性质定理以及角平分线性质定理的逆定理,添加合适的辅助线,是解题的关键.18.如图,等腰三角形ABC的底边BC长为4,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,若△CDM周长的最小值为8,则△ABC的面积为()A.12 B.16 C.24 D.32【答案】A【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,再根据三角形的周长求出AD的长,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∵△CDM周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.19.如图,已知,点A(0,0)、B(43,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于()A .201532B .201632C .3D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=43,OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=23,B 1A 2=1232⨯,以此类推,可知第2017个等边三角形的边长为:201713()432⨯=. 故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.20.如图,在△ABC 中,AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,则△BCD 的周长为( )A .13B .15C .18D .21【答案】A【解析】 根据线段垂直平分线的性质,可由AB=AC=8,BC=5,AB 的垂直平分线交AC 于D ,得到AD=BD ,进而得出△BCD 的周长为:CD+BD+BC=AC+BC=8+5=13.故选A .点睛:此题主要考查了线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.。

专题 轴对称十大重难题型(期末真题精选)(解析版)

专题 轴对称十大重难题型(期末真题精选)(解析版)

专题03 轴对称十大重难题型一.轴对称图形的存在性之格点类(钥匙---对称轴)1.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个试题分析:解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.答案详解:解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG共5个,所以选:C.2.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.试题分析:根据轴对称图形的定义与判断可知.答案详解:解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△ABD,△BCE,△GHF,△EMN,△AMQ,共有5个.所以答案是:5.二.轴对称的性质3.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为n5+36°(用含n的式子表示).试题分析:由矩形的性质和折叠的性质即可得出答案.答案详解:解:如图,设∠BAD ′=x ,则∠CAE =2x ,由翻折变换的性质可知,∠DAE =∠EAD ′=2x +n ,∵∠DAB =90°,∴4x +2n +x =90°,∴x =15(90°﹣2n ),∴∠DAE =2×15(90°﹣2n )+n =n 5+36°. 所以答案是:n 5+36°. 4.如图,点P 为∠AOB 内部任意一点,点P 与点P 1关于OA 对称,点P 与点P 2关于OB 对称,OP =8,∠AOB =45°,则△OP 1P 2的面积为 32 .试题分析:根据轴对称的性质,可得OP 1、OP 2的长度等于OP 的长,∠P 1OP 2的度数等于∠AOB 的度数的两倍,再根据直角三角形的面积计算公式解答即可.答案详解:解:∵点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,∴OP 1=OP =OP 2=8,且∠P 1OP 2=2∠AOB =90°.∴△P 1OP 2是直角三角形,∴△OP 1P 2的面积为12×8×8=32, 所以答案是:32.三.尺规作图:轴对称,角平分,垂直平分线5.已知直线l 及其两侧两点A 、B ,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)试题分析:(1)作线段AB的垂直平分线与l的交点即为所求;(2)作点A关于l的对称点A′,连接BA′并延长交l于点Q,点Q即为所求.答案详解:解:6.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N 的距离分别相等(保留作图痕迹).试题分析:点P是∠AOB的平分线与线段MN的中垂线的交点.答案详解:解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分7.线段的垂直平分线的性质1:线段垂直平分线上的点与这条线段两个端点的距离相等.如图,△ABC中,AB=AC=16cm,(1)作线段AB的垂直平分线DE,交AB于点E,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,如果BC=10cm,则△BCD的周长为26cm.试题分析:根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案;(1)利用线段垂直平分线的作法进而得出即可;(2)由线段的垂直平分线的性质可得:AD=BD,从而将△BCD的周长转化为:AD+CD+BC,即AC+BC=16+10=26cm.答案详解:解:线段垂直平分线上的点与这条线段两个端点的距离相等,所以答案是:两个端点;相等;(1)如图所示,(2)连接BD,∵DE是AB的垂直平分线,∴AD =BD ,∵△BCD 的周长=BD +DC +BC ,∴△BCD 的周长=AD +DC +BC ,即AC +BC =16+10=26cm .所以答案是:26.8.如图,在正方形网格中,△ABC 的三个顶点分别在正方形网格的格点上,△A ′B ′C ′和△ABC 关于直线l 成轴对称,其中A ′点的对应为A 点.(1)请画出△A ′B ′C ′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A ′B ′C ′的面积.试题分析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案.答案详解:解:(1)如图所示:△A ′B ′C ′,即为所求;(2)△A ′B ′C ′的面积为:12×2×4=4.9.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (﹣1,﹣1),B (4,﹣1),C (3,1).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1;(2)请直接写出以AB 为边且与△ABC 全等的三角形的第三个顶点(不与C 重合)的坐标.试题分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A′、B′、C′的位置,然后顺次连接即可;(2)利用轴对称性确定出另一个点,然后根据平面直角坐标系写出坐标即可.答案详解:解:(1)△A1B1C1如图所示;(2)如图,第三个点的坐标为(0,1)或(0,﹣3)或(3,﹣3).四.坐标的轴对称10.已知点P(a,3),Q(﹣2,b)关于x轴对称,则a+b的值为()A.1B.−1C.5D.﹣5试题分析:关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数得出a,b的值,进而得出a+b的值.答案详解:解:∵点P(a,3),Q(﹣2,b)关于x轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.所以选:D.11.已知点P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,则(a+b)2021的值为()A.0B.﹣1C.1D.(﹣3)2021试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入计算即可得解.答案详解:解:∵P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,∴a=1,b﹣1=﹣2,解得a=1,b=﹣1,∴a+b=0,∴(a+b)2021=02021=0.所以选:A.12.若点M与点N关于x轴对称,点M和点P关于y轴对称,点P的坐标为(2,﹣3),那么点N 的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)试题分析:作出相关对称后可得点P与点N关于原点对称,那么依据点P的坐标为(2,﹣3),可得点N的坐标.答案详解:解:∵点M与点N关于x轴对称,点M和点P关于y轴对称,∴点N与点P关于原点对称,又∵点P的坐标为(2,﹣3),∴点N的坐标为(﹣2,3),所以选:D.13.已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.试题分析:(1)直接利用点A在第一象限或第三象限或点A在第二象限或第四象限,分别得出答案;(2)直接利用平移的性质结合关于x轴对称点的性质得出答案.答案详解:解:(1)若点A在第一象限或第三象限,则a﹣5=1﹣2a,解得:a=2,则a﹣5=1﹣2a=﹣3,∴点A 的坐标为(﹣3,﹣3),若点A 在第二象限或第四象限,则a ﹣5+1﹣2a =0,解得a =﹣4,则a ﹣5=﹣9,1﹣2a =9,∴点A 的坐标为(﹣9,9),综上所述,点A 的坐标为(﹣3,﹣3)或(﹣9,9);(2)∵若点A 向右平移若干个单位,其纵坐标不变为(1﹣2a ),又∵点A 向右平移若干个单位后与点B (﹣2,﹣3)关于x 轴对称,∴1﹣2a +(﹣3)=0,a =﹣1,a ﹣5=﹣1﹣5=﹣6,1﹣2a =1﹣2×(﹣1)=3,即点A 的坐标为(﹣6,3).14.已知有序数对(a ,b )及常数k ,我们称有序数对(ka +b ,a ﹣b )为有序数对(a ,b )的“k 阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3﹣2)即(5,1).若有序数对(a ,b )(b ≠0)与它的“k 阶结伴数对”关于y 轴对称,则此时k 的值为( )A .﹣2B .−32C .0D .−12 试题分析:根据新定义可得:有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),并根据y 轴对称:横坐标互为相反数,纵坐标相等,可列方程组,从而可解答.答案详解:解:∵有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),∴{a −b =b a +ka +b =0, 解得:k =−32.所以选:B . 五.格点等腰三角形15.如图,在4×3的正方形网格中,点A 、B 分别在格点上,在图中确定格点C ,则以A 、B 、C 为顶点的等腰三角形有 3 个.试题分析:首先由勾股定理可求得AB的长,然后分别从AB=BC,AB=AC,AC=BC去分析求解即可求得答案.答案详解:解:如图,则符合要求的有:C1,C2,C3共3个点;所以答案是:3.16.如图所示的正方形网格中,网格线的交点称为格点.已知点A、B是两格点,若点C也是图中的格点,则使得△ABC是以AB为腰的等腰三角形时,点C的个数是()A.1B.2C.3D.4试题分析:根据AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,答案详解:解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.所以选:D.17.如图是4×4的正方形网格,每个小正方形的顶点称为格点,且边长为1,点A,B均在格点上,在网格中建立平面直角坐标系.如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,请写出一个满足条件的点C的坐标(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),;满足条件的点C一共有8个.试题分析:根据题意,画出图形,由等腰三角形的判定找出满足条件的C点,选择正确答案.答案详解:解:满足条件的点C的坐标为(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),满足条件的点C一共有8个,所以答案是:(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),8.六.规律类--坐标与图形的变化18.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A、B、C的坐标分别为(1,3)、(1,1)、(3,1),规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为()A.(2022,2)B.(2022,﹣2)C.(2020,2)D.(2020,﹣2)试题分析:首先由正方形ABCD,顶点A(1,3),B(1,1),C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),继而求得把正方形ABCD连续经过2015次这样的变换得到正方形ABCD的对角线交点M的坐标.答案详解:解:∵正方形ABCD,顶点A(1,3),B(1,1),C(3,1),∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2+1,﹣2),即(3,﹣2),第2次变换后的点M的对应点的坐标为:(2+2,2),即(4,2),第3次变换后的点M的对应点的坐标为(2+3,﹣2),即(5,﹣2),第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),∴连续经过2020次变换后,正方形ABCD的对角线交点M的坐标变为(2022,2).所以选:A.19.如图,将边长为1的正方形OABC沿x轴正方向连续翻转2020次,点A依次落在点A1、A2、A3、A4…A2020的位置上,则点A2020的坐标为()A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)试题分析:探究规律,利用规律即可解决问题.答案详解:解:由题意A1(0,1),A2(2,1),A3(3,0),A4(3,0),A5(4,1),A6(5,1),A7(6,0),A8(7,0),A9(8,1),…每4个一循环,∵2020÷4=505则2020个应该在x轴,坐标应该是(2019,0),所以选:A.20.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)试题分析:观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.答案详解:解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).所以选:C.七.等腰三角形判定与性质21.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为8.试题分析:根据角平分线+平行可以证明等腰三角形,所以可得EB=ED,GC=GD,从而求出DE的长,最后求出BE的长.答案详解:解:∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴EB=ED,∵CD平分∠ACF,∴∠ACD=∠DCF,∵DE∥BC,∴∠EDC=∠DCF,∴∠EDC=∠ACD,∴GC=GD=6,∵EG=2,∴ED=EG+GD=2+6=8,∴BE=ED=8,所以答案是:8.22.如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是①②④⑤(直接填写序号).试题分析:根据角平分线的定义得到∠PCB=12∠ACB,∠BCD=12∠BCF,根据垂直的定义得到CP⊥CD;故①正确;延长CB,根据角平分线的定义和三角形外角的性质得到∠P=12∠A,故②正确;根据平行线的判定定理得到AB∥CD,推出△ABC是等边三角形,而△ABC中,∠A=∠ACB,于是得到假设不成立,故③错误;根据角平分线的定义得到∠EBD=∠DBC,∠BCD=∠DCF,推出∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,求得∠D=90°−12∠A,故④正确;根据三角形的外角的性质得到∠EBC=∠A+∠ACB,∠A=∠ACB,求得∠EBD=∠A,于是得到PD∥AC.故⑤正确.答案详解:解:∵CP平分∠ACB,CD平分∠BCF,∴∠PCB=12∠ACB,∠BCD=12∠BCF,∵∠ACB+∠BCF=180°,∴∠PCD=∠PCB+∠BCD=12∠ACB+12∠BCF=12(∠ACB+∠BCF)=90°,∴CP⊥CD;故①正确;延长CB,∵BD平分∠CBE,∠CBE=∠ABH,∴BP平分∠ABH,∴∠PBH=∠BCP+∠P,∵∠A+2∠PCB=2∠PBH,∴∠A+2∠PCB=2∠BCP+2∠P,∴∠A=2∠P,即:∠P=12∠A,故②正确;假设BC=CD,∴∠CBD=∠D,∵∠EBD=∠CBD,∴∠EBD=∠D,∴AB∥CD,∴∠DCF=∠A,∵∠ACB=∠A,CD平分∠BCF,∴∠ACB=∠BCD=∠DCF,∴∠A=∠ACB=60°,∴△ABC是等边三角形,而△ABC中,∠A=∠ACB,∴△ABC是等腰三角形,∴假设不成立,故③错误;∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∴∠DBC+∠DCB+∠D=180°,∴∠A+∠ABC+∠ACB=180°,而∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A﹣2∠D=180°,∴∠D=90°−12∠A,故④正确;∵∠EBC=∠A+∠ACB,∠A=∠ACB,∴∠A=12∠EBC,∵∠EBD=12∠EBC,∴∠EBD=∠A,∴PD∥AC.故⑤正确;所以答案是:①②④⑤.23.Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为8.试题分析:根据已知条件得到BC=8,根据平行线的性质得到∠ABO=∠BOE由角平分线的定义得到∠ABO=∠OBE,等量代换得到∠ABO=∠BOE于是得到BE=OE,则同理可得CE=OE即可得到结论.答案详解:解:∵AC=BC,∠ACB=90°,S△ABC=32,∴12BC2=32,∴BC=8,∵OE∥AB∴∠ABO=∠BOE∵OB平分∠ABC∴∠ABO=∠OBE∴∠ABO=∠BOE∴BE=OE,则同理可得OF=CF,∴△OEF的周长=OE+OF+EF=BE+EF+FC=BC=8.所以答案是:8.24.如图,△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC,分别交AB,AC于点E,F.那么下列结论:①BD=DC;②△BED和△CFD都是等腰三角形;③点D是EF的中点;④△AEF的周长等于AB与AC的和.其中正确的有②④.(只填序号)试题分析:利用角平分线的定义可得∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,然后根据∠ABC≠∠ACB,从而可得∠DBC≠∠DCB,进而可得DB≠DC,即可判断①;利用平行线的性质可得∠EDB=∠DBC,∠FDC=∠DCB,从而可得∠ABD=∠EDB,∠ACD=∠FDC,进而利用等角对等边可得ED=EB,FD=FC,即可判断②;根据EB≠FC,可得ED≠FD,即可判断③;利用等量代换可得△AEF的周长=AB+AC,即可判断④.答案详解:解:∵BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,∵∠ABC≠∠ACB,∴∠DBC≠∠DCB,∴DB≠DC,故①不正确;∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,∴ED=EB,FD=FC,∴△BED和△CFD都是等腰三角形,故②正确;∵EB≠FC,∴ED≠FD,故③不正确;∵EB=ED,FD=FC,∴△AEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+AF+FC=AB+AC,故④正确;综上所述:上列结论其中正确的有②④,所以答案是:②④.八.等边三角形的判定与性质25.如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC=7.试题分析:作出辅助线后根据等腰三角形的性质得出△BEM为等边三角形,得出BM=EM=BE=5,从而得出BN的长,进而求出答案.答案详解:解:延长ED交BC于M,延长AD交BC于N,如图,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠DEB=60°,∴△BEM为等边三角形,∴BM=EM=BE=5,∠EMB=60°,∵DE=2,∴DM=3,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=12DM=32,∴BN=BM﹣MN=5−32=72,∴BC=2BN=7.所以答案是:7.26.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.试题分析:(1)根据等边三角形性质得出AC =BC ,CD =CE ,∠ACB =∠DCE =60°,求出∠ACD =∠BCE ,证△ACD ≌△BCE 即可;(2)根据全等求出∠ADC =∠BEC ,求出∠ADE +∠BED 的值,根据三角形的内角和定理求出即可;(3)求出AM =BN ,根据SAS 证△ACM ≌△BCN ,推出CM =CN ,求出∠NCM =60°即可. 答案详解:解:(1)∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE ,∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°﹣(∠ADE +∠BED )=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN ,∴CM =CN ,∠ACM =∠BCN ,又∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.27.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB 的垂直平分线分别交AB 和AC 于点D ,E .(1)求证:AE =2CE ;(2)连接CD ,请判断△BCD 的形状,并说明理由.试题分析:(1)连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE 中,由直角三角形的性质可证得BE=2CE,则可证得结论;(2)由垂直平分线的性质可求得CD=BD,且∠ABC=60°,可证明△BCD为等边三角形.答案详解:(1)证明:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)解:△BCD是等边三角形,理由如下:连接CD.∵DE垂直平分AB,∴D为AB中点,∵∠ACB=90°,∴CD=BD,∵∠ABC=60°,∴△BCD是等边三角形.九.直角三角形斜中线的灵活运用。

人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析

人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析

人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析一.选择题(共9小题)1.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部2.如图,D、E分别是△ABC的边AC、BC的中点,则下列说法不正确的是()第2题第3题第5题A.DE是△ABC的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.DE是△BCD的中线3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF4.给出下列命题:①两边及第三边上的高线对应相等的两个三角形全等;②腰上的高线和底边对应相等的两个等腰三角形全等;③斜边上的中线及一锐角对应相等的两个直角三角形全等.其中属于真命题的是()A.①②B.①③C.②③D.①②③5.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC 于F,则图中全等的直角三角形有()A.3对 B.4对 C.5对 D.6对6.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对第6题第7题第8题第9题7.已知:如图在△ABC中,边AB、BC的垂直平分线交于点P.下列结论一定成立的有()个.①PA=PB=PC.②点P在AC的垂直平分线上.③∠APB=2∠ACB ④∠BPC=90°+∠BAC⑤∠BAP=∠CAP.A.2个 B.3个 C.4个 D.5个8.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=50°,则∠BDC=()A.120°B.130°C.140°D.150°9.如图,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P 为BC的中点,过P作BC的垂线交OA于点D,∠MON=130°,则∠BDC=()A.50°B.60°C.70°D.不确定二.填空题(共6小题)10.如果多边形的内角和等于外角和,则这个多边形的边数是4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是.(n为正整数,用n表示)11.以下三题任选一题作答:①等腰三角形一边长为4,周长为11,则腰长是.②如果等腰三角形一个内角等于62°,则它的底角等于.③从中午12时整到下午3时整,钟表时针所转过的角的度数是.12.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.第12题第14题第15题13.在△ABC中,AD是中线,已知AB=5,AC=3,那么中线AD的取值范围是.14.如图,D是△ABC的边AB上一点,DF交AC于点E,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.15.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.三.解答题(共10小题)16.有两张完全重合的三角形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到三角形AMF (如图1),若此时他测得BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系,并简要说明理由;(2)小红与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求旋转角β的度数;(3)在图2基础上小强同学继续探究,过点K作KC∥B1D1交AB1于点C,连接CM,(如图3)求证:△ACM∽△AKF;(4)若将△AFM沿AB方向平移得到△A2F2M2(如图4),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.18.阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠DCA=60°,∠DAC=75°,∠CAB=30°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.∵在△ADC与△CEA中,∴△ADC≌△CEA,得CD=AE=AB.请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.19.已知:如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,EF交AD于点G.(1)判断AD与EF的位置关系,并加以说明理由.(2)若AE=,DE=2,求EF的长.20.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?21.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.22.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是.23.△ABC中,射线AD平分∠BAC,AD交边BC于E点.(1)如图1,若AB=AC,∠BAC=90°,则;(2)如图2,若AB≠AC,则(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若AB>AC,∠BAC=∠BDC=90°,∠ABD为锐角,DH⊥AB于H,则线段AB、AC、BH 之间的数量关系是,并证明.24.如图,在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,求证:AD﹣BE=DE;=2S△ACD,求AE的长.(直接写结果)(3)在(1)的条件下,若CD=18,S△BCE25.如图①所示,已知AE⊥FE,垂足为E,且E是DC的中点(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C、D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件去掉“AD=DC”,其余条件不变,(1)中的结论成立吗?请说明理由.(3)如图③,如果(1)的条件改为,AD∥FC,(1)中的结论仍成立吗?请说明理由.人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析参考答案与试题解析一.选择题(共9小题)1.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部【解答】解:A、三角形的角平分线是线段,故本选项错误;B、应为过三角形的顶点,且过对边中点的线段是三角形的一条中线,故本选项错误;C、由垂线段最短,一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短正确,故本选项正确;D、三角形的中线、角平分线一定在三角形的内部,高线不一定在三角形的内部,故本选项错误.故选:C.2.如图,D、E分别是△ABC的边AC、BC的中点,则下列说法不正确的是()A.DE是△ABC的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.DE是△BCD的中线【解答】解:∵D、E分别是△ABC的边AC、BC的中点,∴DE是△ABC的中位线,不是中线;BD是△ABC的中线;AD=DC,BE=EC;DE是△BCD的中线;故选:A.3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.4.给出下列命题:①两边及第三边上的高线对应相等的两个三角形全等;②腰上的高线和底边对应相等的两个等腰三角形全等;③斜边上的中线及一锐角对应相等的两个直角三角形全等.其中属于真命题的是()A.①②B.①③C.②③D.①②③【解答】解:①有两边及第三边上的高对应相等,这两边的夹角有可能一个是锐角一个是钝角,所以这两个三角形不一定全等,故为假命题;②腰上的高线和底边对应相等的两个等腰三角形全等是真命题;③斜边上的中线及一锐角对应相等的两个直角三角形全等是真命题,故选:C.5.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC 于F,则图中全等的直角三角形有()A.3对 B.4对 C.5对 D.6对【解答】解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB;∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD;∴BE=CD,∴AD=AE,∵AO=AO,∴△AOD≌△AOE;∵∠DOC=∠EOB,∴△COD≌△BOE;∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF,△COF≌△BOF.∵∠ABO=∠ACO共6对,故选D.6.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对【解答】解:∵四边形ABCD为平行四边形,其平行四边形的对角线相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△AOE≌△COF(ASA),△DOE≌△BOF(ASA),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS).故图中的全等三角形共有6对.故选:C.7.已知:如图,在△ABC中,边AB、BC的垂直平分线交于点P.则下列结论一定成立的有()个.①PA=PB=PC.②点P在AC的垂直平分线上.③∠APB=2∠ACB④∠BPC=90°+∠BAC⑤∠BAP=∠CAP.A.2个 B.3个 C.4个 D.5个【解答】解:∵边AB、BC的垂直平分线交于点P,∴PA=PB=PC,①成立;∵PA=PC,∴点P在AC的垂直平分线上,②正确;∵边AB、BC的垂直平分线交于点P,∴点P是△ABC的外心,∴∠BPC=2∠BAC,③正确;∠BPC不一定等于90°+∠BAC,④错误;AP不一定是∠BAC的平分线,∴∠BAP不一定等于∠CAP,⑤错误;故选:B.8.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=50°,则∠BDC=()A.120°B.130°C.140°D.150°【解答】解:过点D作DE⊥OM于点E,作DF⊥ON于点F,如图,∵P为BC的中点,且DP⊥BC,∴DB=DC,∵OD平分∠MON,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴∠DCF=∠DBE,∵∠DBE+∠OBD=180°∴∠DCF+∠OBD=180°,∴∠MON+∠BDC=180°,∵∠MON=50°,∴∠BDC=130°.9.如图,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P 为BC的中点,过P作BC的垂线交OA于点D,∠MON=130°,则∠BDC=()A.50°B.60°C.70°D.不确定【解答】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°﹣90°﹣90°﹣130°=50°,∵DE⊥OM,DF⊥ON,OD∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:A.二.填空题(共6小题)10.如果多边形的内角和等于外角和,则这个多边形的边数是4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是2n+2.(n为正整数,用n表示)【解答】解:如果多边形的内角和等于外角和,则这个多边形的边数是2×1+2=4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是2×2+2=6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是2×3+2=8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是2n+2,故答案为:2n+2.11.以下三题任选一题作答:①等腰三角形一边长为4,周长为11,则腰长是 3.5或4.②如果等腰三角形一个内角等于62°,则它的底角等于59°或62°.③从中午12时整到下午3时整,钟表时针所转过的角的度数是90°.【解答】解:①此题分两种情况:(1)当底长为4cm,腰长是:(11﹣4)÷2=3.5cm;(2)腰长即为4cm,此时底长为:11﹣2×4=3cm;经检验两种情况均符合三角形三边关系.故答案为3.5或4.②当62°的角为等腰三角形的顶角时,底角的度数=(180﹣62)÷2=59°;当62°的角为等腰三角形的底角时,其底角为62°,故它的底角的度数是59°或62°.故答案为:59°或62°.③时针经过3个小时,那么它转过的角度是30°×3=90°.故答案为:90°.12.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=36度.【解答】解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.13.在△ABC中,AD是中线,已知AB=5,AC=3,那么中线AD的取值范围是1<AD<4.【解答】解:如图,延长AD至E,是DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=5,AC=3,5﹣3=2,5+3=8,∴2<AE<8,∴1<AD<4.故答案为:1<AD<4.14.如图,D是△ABC的边AB上一点,DF交AC于点E,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是3.【解答】解:第一种情况:若以①②条件,以③为结论.证明:在△ADE与△CFE中,⇒△ADE≌△CFE⇒∠A=∠ECF⇒FC∥AB本结论成立;第二种情况:若以①③条件,以②为结论.证明:∵FC∥AB∴∠ADE=∠CFE在△ADE与△CFE中,⇒△ADE≌△CFE⇒AE=CE本结论成立;第三种情况:以②③条件,以①为结论.证明:∵FC∥AB∴∠ADE=∠CFE在△ADE与△CFE中,⇒△ADE≌△CFE⇒DE=FE本结论成立;总上证明正确命题的个数是3.故答案为3.15.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°.三.解答题(共10小题)16.有两张完全重合的三角形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到三角形AMF (如图1),若此时他测得BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系,并简要说明理由;(2)小红与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求旋转角β的度数;(3)在图2基础上小强同学继续探究,过点K作KC∥B1D1交AB1于点C,连接CM,(如图3)求证:△ACM∽△AKF;(4)若将△AFM沿AB方向平移得到△A2F2M2(如图4),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?【解答】(1)线段BD与MF的数量关系是:BD=MF.证明:∵△MAF是由△BAD旋转得来的,∴△BAD≌△MAF.∴BD=MF.∴BD与MF的数量关系是:BD=MF.(2)解:当∠F为顶角时,∴∠AKF=∠KAF,∴∠AKF+∠KAF+∠F=180°,且∠F=30°.∴∠KAF==75°.∴∠MAK=15°.即β=15°.当∠F为底角时,∠F=∠KAF,∵∠F=30°.∴∠KAF=30°.∴∠MAK=60°,即β=60°.综上所述:当∠F为顶角时,β=15°.当∠F为底角时,β=60°.(3)证明:∵KC∥B1D1,∴△ACK∽△AB1D1.∴=.∵△AB1D1≌△AMF,∴AB1=AM,AF=AD1,∴=.∵∠B1AD1=∠MAF=90°,∴∠B1AM=∠D1AF,∴△ACM∽△AKF.(4)解:如图4,由题意知四边形PNA2A为矩形,设A2A=x,则PN=x.在Rt△A2M2F2中,∵M2F2=MF=BD=8,∠A2F2M2=∠AFM=∠ADB=30°.∴M2A2=4,A2F2=,∴AF2=﹣x.在Rt△PAF2中,∵∠PF2A=30°.∴AP=AF2•tan30°=(﹣x)•=4﹣x.∴PD=AD﹣AP=﹣4+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DNP∽△DBA.∴=∴=,解得x=6﹣.即A2A=6﹣.故平移的距离是(6﹣)cm.17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4).18.阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠DCA=60°,∠DAC=75°,∠CAB=30°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.∵在△ADC与△CEA中,∴△ADC≌△CEA,得CD=AE=AB.请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.【解答】解:结论:CD=AB.证明:延长BC至E使AE=AB,则∠B=∠E.∵∠B=∠D∴∠D=∠E∵∠ACB+∠CAD=180°,∠ACB+∠ACE=180°,∴∠CAD=∠ACE在△CAD与△ACE中,∴△CAD≌△ACE∴CD=AE,∵AE=AB,∴CD=AB.19.已知:如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,EF交AD于点G.(1)判断AD与EF的位置关系,并加以说明理由.(2)若AE=,DE=2,求EF的长.【解答】(1)解:AD⊥EF.理由如下:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.又∵∠EAD=∠FAD,AG=AG,∴△AEG≌△AFG,∴EG=GF,∠AGE=∠AGF=90°,∴AD是线段EF的垂直平分线.∴EF⊥AD;(2)在直角△AED中,根据勾股定理,得AD=3.∵AE•DE=AD•EG,∴EG=,∴EF=2EG=.20.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?【解答】证明:(1)∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,∴AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.21.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.【解答】解:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,由,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE,在△AEG和△AEF中,∴△AEG≌△AEF(SSS),∴∠EAG=∠EAF,∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,∴∠EAF=45°.答:∠EAF的角度为45°.22.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是.【解答】解:(1)∵∠DAB=∠CAE,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE.在△ADC和△ABE中,∴△ADC≌△ABE(SAS),∴DC=BE;(2)连接AG.∵△ADC≌△ABE,∴∠ADC=∠ABE.AD=AB.∵G、F分别是DC与BE的中点,∴DG=DC,BF=BE,∴DG=BF.在△ADG和△ABF中,∴△ADG≌△ABF(SAS),∴AG=AF,∠DAG=∠BAF,∴∠AGF=∠AFG,∠DAG﹣∠BAG=∠BAF﹣∠BAG,∴∠DAB=∠GAF.∵∠DAB=80°,∴∠GAF=80°.∵∠GAF+∠AFG+∠AGF=180°,∴∠AFG=50°.答:∠AFG=50°;(3)∵∠DAB=α,∴∠GAF=α.∵∠GAF+∠AFG+∠AGF=180°,∴α+2∠AFG=180°,∴∠AFG=90°﹣α.故答案为:∠AFG=50°,90°﹣α.23.△ABC中,射线AD平分∠BAC,AD交边BC于E点.(1)如图1,若AB=AC,∠BAC=90°,则=;(2)如图2,若AB≠AC,则(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若AB>AC,∠BAC=∠BDC=90°,∠ABD为锐角,DH⊥AB于H,则线段AB、AC、BH 之间的数量关系是AB﹣AC=2BH.,并证明.【解答】解:(1)∵AB=AC,AD平分∠BAC,∴BE=CE.∴.∵AB=AC,∴,∴=.故答案为:=;(2)成立,证明:作EH⊥AB于H,EQ⊥AC于Q,AN⊥BC于N,则EH=EQ,设AB=c,AC=b,BE=m,EC=n,EH=h1,AN=h2,∵S△ABE:S△AEC=h1c÷h1b=c:b,S△ABE:S△AEC=h2m÷h2n=m:n,∴c:b=m:n,即=;(3)AB﹣AC=2BH.理由:作DQ⊥AC交AC的延长线于Q,∴∠Q=90°∵DH⊥AB,AD平分∠BAC,∴DH=DQ,∠AHD=90°,∠HAD=∠CAD.∴∠AHD=∠Q.在△AHD和△AQD中,,∴△AHD≌△AQD(AAS),∴AH=AQ.∵∠BAC=90°,∠AHD=∠Q=90°,∴四边形AHDQ是矩形,∴∠HDQ=90°.∵∠BDC=90°,∴∠HDQ=∠BDC,∴∠HDQ﹣∠HDC=∠BDC=∠HDC,∴∠CDQ=∠BDH.在△DHB和△DQC中∴△DHB≌△DQC(AAS),∴BH=CQ,∵AB﹣BH=AH,∴AB﹣BH=AQ,∴AB﹣BH=AC+CQ,∴AB﹣AC=2BH.故答案为:AB﹣AC=2BH.24.如图,在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,求证:AD﹣BE=DE;=2S△ACD,求AE的长.(直接写结果)(3)在(1)的条件下,若CD=18,S△BCE【解答】解:(1)如图①,延长DA到F,使DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°,又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE,在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)如图②,在AD上截取DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°,又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE,∵在△ACF和△BCE中,,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD﹣BE=DE;(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=18,=2S△ACD,∵S△BCE∴AF=2AD,∴AD=×18=6,∴AE=AD+DE=6+18=24.25.如图①所示,已知AE⊥FE,垂足为E,且E是DC的中点(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C、D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件去掉“AD=DC”,其余条件不变,(1)中的结论成立吗?请说明理由.(3)如图③,如果(1)的条件改为,AD∥FC,(1)中的结论仍成立吗?请说明理由.【解答】解:(1)AE是∠FAD的角平分线;(2)成立,如图②,延长FE交AD于点B,∵E是DC的中点,∴EC=ED,∵FC⊥DC,AD⊥DC,∴∠FCE=∠EDB=90°,在△FCE和△BDE中,,∴△FCE≌△BDE,∴EF=EB,∵AE⊥FE,∴AF=AB,∴AE是∠FAD的角平分线;(3)成立,如图③,延长FE交AD于点B,∵AD=DC,∴∠FCE=∠EDB,在△FCE和△BDE中,,∴△FCE≌△BDE,∴EF=EB,∵AE⊥FE,∴AF=AB,∴AE是∠FAD的角平分线;。

(全等三角形)(轴对称)年末复习提优题及解析解析

(全等三角形)(轴对称)年末复习提优题及解析解析

(全等三角形)(轴对称)年末复习提优题及解析解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC旳角平分线BE和∠BAC旳外角平分线AD相交于点P,分别交AC 和BC旳延长线于E,D.过P作PF⊥AD交AC旳延长线于点H,交BC旳延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确旳是()A.①②③B.①②④C.②③④D.①②③④2.如图,将30°旳直角三角尺ABC绕直角顶点A逆时针旋转到ADE旳位置,使B点旳对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC旳垂直平分线;③EB平分∠AED;④ED=2AB.其中正确旳是()A.①②③B.①②④C.②③④D.①②③④3.如图,Rt△ACB中,∠ACB=90°,△ABC旳角平分线AD、BE相交于点P,过P作PF⊥AD交BC旳延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确旳是()A.①③B.①②④C.①②③D.②③4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC旳平分线相交于BC边上旳M点,则下列结论:①∠AMD=90°;②M为BC旳中点;③AB+CD=AD;④;⑤M到AD旳距离等于BC旳一半;其中正确旳有()A.2个B.3个C.4个D.5个二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA旳延长线交BC旳延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=_________,∠CBE=_________度;(2)当把△DEF绕点C旋转到如图2所示旳位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=_________,∠CFE=_________度;(3)把△DEC绕点C旋转到如图3所示旳位置时,请求出∠CFE旳度数_________.7.已知△ABC为边长为10旳等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE旳大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB旳外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 旳值为定值;②DG﹣CD旳值为定值.其中有且只有一个是正确旳,请你选择正确旳结论加以证明并求出其值.8.如图,点A、C分别在一个含45°旳直角三角板HBE旳两条直角边BH和BE上,且BA=BC,过点C作BE旳垂线CD,过E点作EF上AE交∠DCE旳角平分线于F点,交HE于P.(1)试判断△PCE旳形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF旳长.9.如图,AD是△ABC旳角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足旳等量关系,并加以证明.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE旳中点F,CD 旳中点G,连接GF.(1)FG与DC旳位置关系是_________,FG与DC旳数量关系是_________;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中旳结论是否仍然成立?请证明你旳结论.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA旳垂线,垂足分别为P、Q.(1)试探究EP与FQ之间旳数量关系,并证明你旳结论.(2)若连接EF交GA旳延长线于H,由(1)中旳结论你能判断并证明EH与FH旳大小关系吗?(3)图2中旳△ABC与△AEF旳面积相等吗?(不用证明)12.已知如图1:△ABC中,AB=AC,∠B、∠C旳平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样旳关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间旳关系还存在吗?③若△ABC中,∠B旳平分线与三角形外角∠ACD旳平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间旳关系如何?为什么?八年级[丄]数学期末《全等三角形》《轴对称》复习提优题【大海之音组卷】参考答案与试题解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC旳角平分线BE和∠BAC旳外角平分线AD相交于点P,分别交AC 和BC旳延长线于E,D.过P作PF⊥AD交AC旳延长线于点H,交BC旳延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确旳是()A.①②③B.①②④C.②③④D.①②③④考点:直角三角形旳性质;角平分线旳定义;垂线;全等三角形旳判定与性质.专题:推理填空题.分析:①根据三角形旳一个外角等于与它不相邻旳两个内角旳和与角平分线旳定义表示出∠CAP,再根据角平分线旳定义∠ABP=∠ABC,然后利用三角形旳内角和定理整理即可得解;②③先根据直角旳关系求出∠AHP=∠FDP,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角旳关系求出∠BAP=∠BFP,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到AB=BF,从而得解;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.解答:解:①∵∠ABC旳角平分线BE和∠BAC旳外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,=45°,故本小题正确;②③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,∵AD为∠BAC旳外角平分线,∠PFD=∠HAP,∴∠PAE+∠BAP=180°,又∵∠PFD+∠BFP=180°,∴∠PAE=∠PFD,∵∠ABC旳角平分线,∴∠ABP=∠FBP,在△ABP与△FBP中,,∴△ABP≌△FBP(AAS),∴AB=BF,AP=PF故②小题正确;∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,综上所述①②③正确.故选A.点评:本题考查了直角三角形旳性质,全等三角形旳判定,以及等腰直角三角形旳判定与性质,等角对等边,等边对等角旳性质,综合性较强,难度较大,做题时要分清角旳关系与边旳关系.2.如图,将30°旳直角三角尺ABC绕直角顶点A逆时针旋转到ADE旳位置,使B点旳对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC旳垂直平分线;③EB平分∠AED;④ED=2AB.其中正确旳是()A.①②③B.①②④C.②③④D.①②③④考点:旋转旳性质;含30度角旳直角三角形.分析:根据直角三角形中30°旳角所对旳直角边等于斜边旳一半,以及旋转旳性质即可判断.解答:解:①根据旋转旳性质可以得到:AB=AD,而∠ABD=60°,则△ABD是等边三角形,可得到∠DAC=30°,∴∠DAC=∠DCA,故正确;②根据①可得AD=CD,并且根据旋转旳性质可得:AC=AE,∠EAC=60°,则△ACE是等边三角形,则EA=EC,即D、E都到AC两端旳距离相等,则DE在AC旳垂直平分线上,故正确;③根据条件AB∥DE,而AB≠AE,即可证得EB平分∠AED不正确,故错误;④根据旋转旳性质,DE=BC,而BC=2AB,即可证得ED=2AB,故正确;故正确旳是:①②④.故选B.点评:正确理解旋转旳性质,图形旋转前后两个图形全等是解决本题旳关键.3.如图,Rt△ACB中,∠ACB=90°,△ABC旳角平分线AD、BE相交于点P,过P作PF⊥AD交BC旳延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE=S△ABP,其中正确旳是()A.①③B.①②④C.①②③D.②③考点:全等三角形旳判定与性质;等腰三角形旳性质.分析:根据三角形全等旳判定和性质以及三角形内角和定理逐条分析判断.解答:解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.故③正确.∵△ABP≌△FBP,△APH≌△FPD,∴S四边形ABDE=S△ABP+S△BDP+S△APH﹣S△EOH+S△DOP=S△ABP+S△ABP﹣S△EOH+S△DOP=2S△ABP﹣S△EOH+S△DOP.故选C.点评:本题考查三角形全等旳判定方法,判定两个三角形全等旳一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边旳参与,若有两边一角对应相等时,角必须是两边旳夹角.4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC旳平分线相交于BC边上旳M点,则下列结论:①∠AMD=90°;②M为BC旳中点;③AB+CD=AD;④;⑤M到AD旳距离等于BC旳一半;其中正确旳有()A.2个B.3个C.4个D.5个考点:全等三角形旳判定与性质;角平分线旳性质.分析:过M作ME⊥AD于E,得出∠MDE=∠CDA,∠MAD=∠BAD,求出∠MDA+∠MAD=(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S=S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.三角形DEM解答:解:过M作ME⊥AD于E,∵∠DAB与∠ADC旳平分线相交于BC边上旳M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD旳距离等于BC旳一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),∴S三角形DEM=S三角形DCM同理S三角形AEM=S三角形ABM,∴S三角形AMD=S梯形ABCD,∴④正确;故选D.点评:本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形旳性质和判定等知识点旳应用,主要考查学生运用定理进行推理旳能力.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD为边作等边△BDE,EA旳延长线交BC旳延长线于F,设CD=n,(1)当n=1时,则AF=2;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角旳直角三角形;全等三角形旳判定与性质;等边三角形旳性质.专题:动点型.分析:(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对旳直角边等于斜边旳一半求解即可;(2)根据三角形旳任意一个外角等于与它不相邻旳两个内角旳和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形旳判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对旳直角边等于斜边旳一半旳性质,全等三角形旳判定与性质,等边三角形旳性质与判定,以及三角形旳一个外角等于与它不相邻旳两个内角旳和旳性质,(2)中求出∠ADE=∠HBE是解题旳关键.6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=1,∠CBE=45度;(2)当把△DEF绕点C旋转到如图2所示旳位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=1,∠CFE=45度;(3)把△DEC绕点C旋转到如图3所示旳位置时,请求出∠CFE旳度数135°.考点:圆周角定理;全等三角形旳判定与性质;等腰直角三角形;确定圆旳条件.分析:(1)先证明∠ACD=∠BCE,再根据边角边定理证明△ACD≌△BCE,然后根据全等三角形对应边相等和对应角相等解答;(2)根据(1)旳思路证明△ACD和△BCE全等,再根据全等三角形对应边相等得BE=AD,对应角相等得∠DAC=∠DBF,又AC⊥CD,所以AF⊥BF,从而可以得到C、E、F、D四点共圆,根据同弧所对旳圆周角相等即可求出∠CFE=∠CDE=45°;(3)同(2)旳思路,证明C、F、D、E四点共圆,得出∠CFD=∠CED=45°,而∠DEF=90°,所以∠CFE 旳度数即可求出.解答:解:(1)∵△ABC和△DCE是等腰三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD=45°,因此=1,∠CBE=45°;(2)同(1)可得BE=AD,∴=1,∠CBE=∠CAD;又∵∠ACD=90°,∠ADC=∠BDF,∴∠BFD=∠ACD=90°;又∵∠DCE=90°,∴C、E、F、D四点共圆,∴∠CFE=∠CDE=45°;(3)同(2)可得∠BFA=90°,∴∠DFE=90°;又∵∠DCE=90°,∴C、F、D、E四点共圆,∴∠CFD=∠CED=45°,∴∠CFE=∠CFD+∠DFE=45°+90°=135°.点评:本题综合考查了等边对等角旳性质,三角形全等旳判定和全等三角形旳性质,四点共圆以及同弧所对旳圆周角相等旳性质,需要熟练掌握并灵活运用.7.已知△ABC为边长为10旳等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE旳大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB旳外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG 旳值为定值;②DG﹣CD旳值为定值.其中有且只有一个是正确旳,请你选择正确旳结论加以证明并求出其值.考点:等边三角形旳性质;全等三角形旳判定与性质.专题:探究型.分析:①∠AFE旳大小不变,其度数为60°,理由如下:由三角形ABC为等边三角形,得到三条边相等,三个内角相等,都为60°,可得出AB=BC,∠ABD=∠C,再由BD=CE,利用SAS可得出三角形ABD与三角形BCE全等,根据全等三角形旳对应角相等可得出∠BAD=∠CBE,在三角形ABD中,由∠ABD为60°,得到∠BAD+∠ADB旳度数,等量代换可得出∠CBE+∠ADB旳度数,利用三角形旳内角和定理求出∠BFD 旳度数,根据对应角相等可得出∠AFE=∠BFD,可得出∠AFE旳度数不变;②连接AG,如图所示,由三角形ABC为等边三角形,得出三条边相等,三个内角都相等,都为60°,再由CG为外角平分线,得出∠ACG也为60°,由∠ADG为60°,可得出A,D,C,G四点共圆,根据圆内接四边形旳对角互补可得出∠DAG与∠DCG互补,而∠DCG为120°,可得出∠DAG为60°,根据∠BAD+∠DAC=∠DAC+∠CAG=60°,利用等式旳性质得到∠BAD=∠CAG,利用ASA可证明三角形ABD 与三角形ACG全等,利用全等三角形旳对应边相等可得出BD=CG,由BC=BD+DC,等量代换可得出CG+CD=BC,而BC=10,即可得到DC+CG为定值10,得证.解答:解:①∠AFE旳大小不变,其度数为60°,理由为:∵△ABC为等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∠BAD+∠ADB=120°,∴∠CBE+∠ADB=120°,∴∠BFD=60°,则∠AFE=∠BFD=60°;②正确旳结论为:DC+CG旳值为定值,理由如下:连接AG,如图2所示:∵△ABC为等边三角形,∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,又CG为∠ACB旳外角平分线,∴∠ACG=60°,又∵∠ADG=60°,∴∠ADG=∠ACG,即A,D,C,G四点共圆,∴∠DAG+∠DCG=180°,又∠DCG=120°,∴∠DAG=60°,即∠DAC+∠CAG=60°,又∵∠BAD+∠DAC=60°,∴∠BAD=∠GAC,在△ABD和△ACG中,∵,∴△ABD≌△ACG(ASA),∴DB=GC,又BC=10,则BC=BD+DC=DC+CG=10,即DC+CG旳值为定值.点评:此题考查了等边三角形旳判定与性质,全等三角形旳判定与性质,四点共圆旳条件,以及圆内接四边形旳性质,利用了等量代换及转化旳思想,熟练掌握等边三角形旳判定与性质是解本题旳关键.8.如图,点A、C分别在一个含45°旳直角三角板HBE旳两条直角边BH和BE上,且BA=BC,过点C作BE旳垂线CD,过E点作EF上AE交∠DCE旳角平分线于F点,交HE于P.(1)试判断△PCE旳形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF旳长.考点:全等三角形旳判定与性质;等腰直角三角形.专题:计算题;证明题.分析:(1)根据∠PCE=∠DCE=×90°=45°,求证∠CPE=90°,然后即可判断三角形旳形状.(2)根据∠HEB=∠H=45°得HB=BE,再根据BA=BC和∠HAE=120°,利用ASA求证△HAE≌△CEF,得AE=EF,又因为AE=2AB.然后即可求得EF.解答:解:(1)△PCE是等腰直角三角形,理由如下:∵∠PCE=∠DCE=×90°=45°∠PEC=45°∴∠PCE=∠PEC∠CPE=90°∴△PCE是等腰直角三角形(2)∵∠HEB=∠H=45°∴HB=BE∵BA=BC∴AH=CE而∠HAE=120°∴∠BAE=60°,∠AEB=30°又∵∠AEF=90°∴∠CEF=120°=∠HAE而∠H=∠FCE=45°∴△HAE≌△CEF(ASA)∴AE=EF又∵AE=2AB=2×3=6∴EF=6点评:此题主要考查学生对全等三角形旳判定与性质和等腰直角三角形等知识点旳理解和掌握,解答(2)旳关键是利用ASA求证△HAE≌△CEF,此题有一定旳拔高难度,属于中档题.9.如图,AD是△ABC旳角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足旳等量关系,并加以证明.考点:全等三角形旳判定与性质.专题:证明题.分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样旳转化可证明∠B与∠AHD互补.(2)由(1)旳结论中得出旳∠AHD=∠AMD,结合三角形旳外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.解答:证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.点评:本题考查了全等三角形旳判定及性质,结合了等腰三角形旳知识,解决这两问旳关键都是通过全等图形旳对应边相等、对应角相等,将题目涉及旳角或边进行转化.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE旳中点F,CD旳中点G,连接GF.(1)FG与DC旳位置关系是FG⊥CD,FG与DC旳数量关系是FG=CD;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中旳结论是否仍然成立?请证明你旳结论.考点:全等三角形旳判定与性质;等腰直角三角形.专题:探究型.分析:(1)证FG和CD旳大小和位置关系,我们已知了G是CD旳中点,猜想应该是FG⊥CD,FG=CD.可通过构建三角形连接FD,FC,证三角形DFC是等腰直角三角形来得出上述结论,可通过全等三角形来证明;延长DE交AC于M,连接FM,证明三角形DEF和FMC全等即可.我们发现BDMC是个矩形,因此BD=CM=DE.由于三角形DEB和ABC都是等腰直角三角形,∠BED=∠A=45°,因此∠AEM=∠A=45°,这样我们得出三角形AEM是个等腰直角三角形,F是斜边AE旳中点,因此MF=EF,∠AMF=∠BED=45°,那么这两个角旳补角也应当相等,由此可得出∠DEF=∠FMC,这样就构成了三角形DEF和CMF旳全等旳所有条件,可得到DF=FC,即三角形DFC是等腰三角形,下面证直角.根据两三角形全等,我们还能得出∠MFC=∠DFE,我们知道∠MFC+∠CFE=90°,因此∠DFE+∠CFE=∠DFC=90°,这样就得出三角形DFC是等腰直角三角形了,也就能得出FG⊥CD,FG=CD旳结论了.(2)和(1)旳证法完全一样.解答:解:(1)FG⊥CD,FG=CD.(2)延长ED交AC旳延长线于M,连接FC、FD、FM,∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE旳中点,∴MF⊥AE,EF=MF,∠EDF=∠MCF.∵在△EFD和△MFC中,∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD旳中点,∴FG=CD,FG⊥CD.点评:本题中通过构建全等三角形来证明线段和角相等是解题旳关键.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE 和等腰Rt△ACF,过点E、F作射线GA旳垂线,垂足分别为P、Q.(1)试探究EP与FQ之间旳数量关系,并证明你旳结论.(2)若连接EF交GA旳延长线于H,由(1)中旳结论你能判断并证明EH与FH旳大小关系吗?(3)图2中旳△ABC与△AEF旳面积相等吗?(不用证明)考点:全等三角形旳判定与性质;等腰直角三角形.分析:(1)根据全等三角形旳判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.(2)过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形旳判定和性质即可解题.(3)由(1)、(2)中旳全等三角形可以推知△ABC与△AEF旳面积相等.解答:解:(1)EP=FQ,理由如下:如图1,∵Rt△ABE是等腰三角形,∴EA=BA.∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG在△EAP与△ABG中,,∴△EAP≌△ABG(AAS),∴EP=AG.同理AG=FQ.∴EP=FQ.(2)如图2,HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.由(1)知EP=FQ.在△EPH与△FQH中,∵,∴△EPH≌△FQH(AAS).∴HE=HF;(3)相等.理由如下:由(1)知,△ABG≌△EAP,△FQA≌△AGC,则S△ABG=S△EAP,S△FQA=S△AGC.由(2)知,△EPH≌△FQH,则S△EPH=S△FQH,所以S△ABC=S△ABG+S△AGC=S△EAP﹣S△EPH+S△FQA﹣S△FQH=S△EAP+S△FQA=S△AEF,即S△ABC=S△AEF.故图2中旳△ABC与△AEF旳面积相等.点评:本题考查了全等三角形旳证明,考查了全等三角形对应边相等旳性质,考查了三角形内角和为180°旳性质,考查了等腰三角形腰长相等旳性质,本题中求证△AFQ≌△CAG是解题旳关键.12.已知如图1:△ABC中,AB=AC,∠B、∠C旳平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样旳关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间旳关系还存在吗?③若△ABC中,∠B旳平分线与三角形外角∠ACD旳平分线CO交于O,过O点作OE∥BC交AB于E,交AC 于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间旳关系如何?为什么?考点:等腰三角形旳判定与性质;平行线旳性质.专题:计算题;证明题.分析:(1)根据EF∥BC,∠B、∠C旳平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出旳AB=AC,共5个等腰三角形;根据等腰三角形旳性质,即可得出EF 与BE、CF间有怎样旳关系.(2)根据EF∥BC 和∠B、∠C旳平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形旳性质即可得出EF与BE,CF旳关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL旳角平分线,还可以证明出△BEO和△CFO是等腰三角形.解答:解:(1)有5个等腰三角形,EF与BE、CF间有怎样旳关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C旳平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中旳EF与BE,CF旳关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上旳一点)又∵OB,OC分别是∠ABC与∠ACG旳角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.点评:此题主要考查学生对等腰三角形旳判定与性质和平行线性质旳理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.。

专题 全等三角形压轴题(30题)(解析版)

专题 全等三角形压轴题(30题)(解析版)

八年级上册数学《第十二章全等三角形》专题全等三角形压轴题训练(30题)1.(2022秋•忠县期末)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.【分析】(1)在BC上截取BM=BD,连接FM,证明△BFD≌△BFM,△ECF≌△MCF,进而可以解决问题;(2)根据已知条件证明△BDF≌△CDA,进而可以解决问题.【解答】证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2,BF=BF∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC,∠3=∠4∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD,∠1=∠3∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.【点评】本题属于三角形的综合题,考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握全等三角形的判定与性质.2.如图,△ABC中,AB=AC,D为AC边上一点,E为AB延长线上一点,且CD=BE,DE与BC相交于点F.(1)求证:DF=EF.=5,求EG的长.(2)过点F作FG⊥DE,交线段CE于点G,若CE⊥AC,CD=4,S△EFG【分析】(1)过点D作DH∥AB交BC于点H,根据等腰三角形的性质及平行线的性质得到∠BEF=∠HDF,∠DHC=∠DCH,则DH=CD,结合∠BFE=∠HFD,即可利用AAS判定△BEF≌△HDF,根据全等三角形的性质即可得解;(2)根据三角形的面积公式求解即可.【解答】(1)过点D作DH∥AB交BC于点H,∵AB=AC,∴∠ABC=∠ACB,∵DH∥AB,∴∠DHC=∠ABC,∴∠DHC=∠ACB=∠DCH,∴DH=CD,∵CD=BE,∴DH=BE,∵DH∥AB,∴∠BEF=∠HDF,在△BEF和△HDF中,∠BFE=∠HFD∠BEF=∠HDFBE=DH,∴△BEF≌△HDF(AAS),∴DF=EF;(2)连接DG,∵DF=EF,FG⊥DE,∴S△DFG =S△EFG=5,∴S△DEG=10,∵CE⊥AC,CD=4,∴S△DEG =12EG•CD=12EG×4,∴12EG×4=10,∴EG=5.【点评】此题考查了全等三角形的判定与性质,利用AAS判定△BEF≌△HDF是解题的关键.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD.(1)当点P在线段BC上时(不与点B重合),求证:△BAP≌△CAD;(2)当点P在线段BC的延长线上时(如图2),试猜想线段BP和CD的数量关系与位置关系分别是什么?请给予证明.【分析】(1)证得∠BAP=∠CAD,根据SAS可证明△BAP≌△CAD;(2)可得∠BAP=∠CAD,由SAS可证明△BAP≌△CAD,可得BP=CD,∠B=∠ACD,则结论得证.【解答】(1)证明:∵∠BAC=∠PAD=90°,∴∠BAC﹣∠PAC=∠PAD﹣∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS);(2)猜想:BP=CD,BP⊥CD.证明:∵∠BAC=∠PAD=90°,∴∠BAC+∠PAC=∠PAD+∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS),∴BP=CD(全等三角形的对应边相等),∠B=∠ACD(全等三角形的对应角相等),∵∠B+∠ACB=90°,∴∠ACD+∠ACB=90°,即:BP⊥CD.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.4.在△ABC中,∠ABC=90°.点G在直线BC上,点E在直线AB上,且AG与CE相交于点F,过点A 作边AB的垂线AD,且CD∥AG,EB=AD,AE=BC.(1)如图①,当点E在△ABC的边AB上时,求∠DCE的度数;(2)如图②,当点E在线段BA的延长线上时,求证:AB=BG.【分析】(1)如图①,连接ED,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED=∠BCE,ED=CE,于是得到结论;(2)如图②,连接DE,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED =∠BCE,ED=CE,根据等腰三角形的性质得到∠EDC=∠ECD,推出AF平分∠DAE,于是得到结论.【解答】解:(1)如图①连接ED,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠AED=∠BCE,ED=CE,∴∠AED+∠BEC=∠BCE+∠BEC;∴∠AED+∠CEB=90°,∴∠DEC=90°,∴∠DCE=45°;(2)如图②,连接DE,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∴∠DAE=∠ABC,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠ADE=∠BEC,ED=CE,∵ED=CE,∴∠EDC=∠ECD,即∠ADE+∠ADC=∠ECD,∴∠BEC+∠DAF=∠AFC,∵∠BEC+∠EAF=∠AFC,∴∠DAF=∠EAF,∴AF平分∠DAE,∵∠DAE=90°,∴∠EAF=45°,∵∠EAF=∠BAG,∴∠BAG=45°,∵∠ABC=90°,∴∠ABG=90°,∴∠BGA=∠BAG,∴AB=BG.【点评】本题考查了平行线的性质,全等三角形的判定和性质,角平分线的定义,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.5.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△BMK≌△BGK.6.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.7.(2022秋•新市区校级期中)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【分析】(1)由△BCD和△BEA为等腰三角形,∠ABD=∠EBC,得出∠BCD=∠BEA,由△ABD≌△EBC可得∠BCE=∠BDA,由∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA得出∠BCD+∠DCE=∠DAE+∠BEA,进而得出∠DCE=∠DAE,即可证明AE=EC;(2)过点E作EG⊥BC交BC的延长线于点G,由“HL”得出Rt△BFE≌Rt△BGE和Rt△BFE≌Rt△BGE,从而得出BF=BG,FA=CG,再通过等量代换即可得出结论.【解答】(1)证明:∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD与△EBC中,AB=EB∠ABD=∠EBD,BD=BC∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠BCD+∠DCE=∠DAE+∠BEA,∵BD=BC,BE=BA,∴△BCD和△BEA为等腰三角形,∵∠ABD=∠EBC,∴∠BCD=∠BEA,∴∠DCE=∠DAE,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE;(2)证明:如图,过点E作EG⊥BC交BC的延长线于点G,∵BE平分∠ABC,EF⊥AB,EG⊥BG,∴EF=EG,在Rt△BFE与Rt△BGE中,EF=EGBE=BE,∴Rt△BFE≌Rt△BGE(HL),∴BF=BG,在Rt△AFE与Rt△CGE中,EF=EGEA=EC,∴Rt△AFE≌Rt△CGE(HL),∴FA=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.【点评】本题考查了全等三角形的判定与性质,掌握三角形全等的判定方法是解决问题的关键.8.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为 cm.(3)猜想AE与BD的位置关系,并说明理由.【分析】(1)根据SAS证明△CBD≌△CAE即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质和垂直的定义解答即可.【解答】解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,BC=AC∠BCD=∠ACE,DC=EC∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:AE与CD相交于点O,在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.【点评】此题考查全等三角形的判定和性质,关键是根据SAS得出△CBD与△CAE全等解答.9.已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.【分析】(1)根据等腰三角形的性质得到∠B=45°,根据角平分线的性质得到CE=EH=BH,根据全等三角形的性质得到AH=AC,于是得到结论;(2)先连接AD,依据AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,进而得到BG=BE.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠B=45°,∵AE平分∠BAC时,EH⊥AB于H,∴CE=EH=BH,在Rt△ACE与Rt△AHE中,CE=EH AE=AE,∴Rt△ACE与Rt△AHE(HL),∴AH=AC,∴AH=BC,∵△EHB的周长为10m,∴AB=AH+BH=BC+BH=10m;(2)如图所示,连接AD,线段AE绕点A顺时针旋转90°得线段AF,则AE=AF,∠EAF=90°,∵AC⊥BD,DC=BC,∴AD=AB,∠ABE=∠ADC=45°,∴∠BAD=90°=∠EAF,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴DF=BE,∠ADF=∠ABE=45°,∴∠FDC=90°,∵BG⊥BC,∴∠CBG=∠CDF=90°,又∵BC=DC,∠BCG=∠DCF,∴△BCG≌△DCF(ASA),∴DF=BG,∴BG=BE.【点评】本题主要考查了旋转的性质,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形的对应边相等得出结论.10.在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图②,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)利用SAS即可证明△BMD≌△AMC.(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠CEF.【解答】(1)证明:∵∠ABM=45°,AM⊥BM,在△BMD和△AMC中,DM=CM∠BMD=∠AMC BM=AM,∴△BMD≌△AMC(SAS);(2)证明:延长EF到点G,使得FG=EF,连接BG.如图所示:∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,BF=FC∠BFG=∠EFC FG=FE,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF.【点评】本题主要考查全等三角形的判定与性质,等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.11.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE =AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,∠BAE=∠FAE∠ABE=∠AFE,AE=AE∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=12(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.12.(2022秋•渝北区校级期末)已在等腰Rt△ABC中,∠ABC=90°,AB=CB,D为直线AB上一点,连接CD,过点C作CE⊥CD,且CE=CD,连接DE,交AC于点F.(1)如图1,当点D在线段AB上,且∠DCB=30°时,请探究DF,EF,CF之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,在FC上任取一点G,连接DG,作射线GP使∠DGP=60°,交∠DFG 的平分线于点Q,求证:FD+FG=FQ.【分析】(1)在EF上找到G点使得FG=CF,易证△CFG是等边三角形,可得CG=CF=GF,即可求得∠ECG=∠ACD,即可证明△ECG≌△CDF,可得DF=EG,即可解题;(2)在FP上找到H点,使得FH=FG,易证△FGH是等边三角形,可得∠GHF=∠FGH=60°,GH =FG=FH,即可求得∠FGD=∠QGH,即可证明△DFG≌△QHG,可得DF=QH,即可解题.【解答】(1)解:EF=DF+CF;在EF上找到G点使得FG=CF,如图2,∵∠BCD=30°,∠ACB=45°,∴∠ACD=15°,∴∠CFG=∠CDE+∠ACD=60°,∵FG=CF,∴△CFG是等边三角形,∴CG=CF=GF,∠FCG=60°,∴∠GCE=90°﹣15°﹣60°=15°,在△ECG和△CDF中,CG=CF∠ECG=∠ACD,CE=CD∴△ECG≌△CDF,(SAS)∴DF=EG,∵EF=EG+GF,∴EF=DF+CF;(2)证明:在FQ上找到H点,使得FH=FG,如图3,∵FQ平分∠DFG,∴∠QFG=60°,∵FG=FH,∴△FGH是等边三角形,∴∠GHF=∠FGH=60°,GH=FG=FH,∵∠AFD=∠CDE+∠ACD=60°,∴∠GHQ=∠DFG=120°,∵∠FGD+∠DGH=60°,∠DGH+∠QGH=60°,∠QGH=∠DGF,∴∠FGD=∠QGH,在△DFG和△QHG中,∠DFG=∠QHG=120°FG=HG,∠FGD=∠QGH∴△DFG≌△QHG,(ASA)∴DF=QH,∵FQ=FH+QH,∴FQ=FG+FD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ECG≌△CDF和△DFG≌△QHG是解题的关键.13.(2022春•运城期末)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠AEC=∠ADB,结合平角的定义可得∠DAE+∠DFE=180°,根据∠BFC+∠DFE=180°,可求得∠BFC=∠DAE,即可求解;(3)连接AF,过点A作AJ⊥CF于点J.结合全等三角形的性质利用HL证明Rt△AFJ≌Rt△AFH,Rt△AJE≌Rt△AHD可得FJ=FH,EJ=DH,进而可证明结论.【解答】(1)证明:∵∠BAC=∠DAE.∴∠CAE=∠BAD.在△ACE和△ABD中,AC=AB∠CAE=∠BAD,AE=AD∴△ACE ≌△ABD (SAS );(2)解:∵△ACE ≌△ABD ,∴∠AEC =∠ADB ,∴∠AEF +∠AEC =∠AEF +∠ADB =180°.∴∠DAE +∠DFE =180°,∵∠BFC +∠DFE =180°,∴∠BFC =∠DAE =∠BAC =50°;(3)证明:如图,连接AF ,过点A 作AJ ⊥CF 于点J .∵△ACE ≌△ABD ,∴S △ACE =S △ABD ,CE =BD ,∵AJ ⊥CE ,AH ⊥BD .∴12CE ⋅AJ =12BD ⋅AH ,∴AJ =AH .在Rt △AFJ 和Rt △AFH 中,AF =AF AJ =AH ,∴Rt △AFJ ≌Rt △AFH (HL ),∴FJ =FH .在Rt △AJE 和Rt △AHD 中,AE =AD AJ =AH ,∴Rt △AJE ≌Rt △AHD (HL ),∴EJ =DH ,∴EF +DH =EF +EJ =FJ =FH .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定条件是解题的关键.14.(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)方法一:先求∠ABC 和∠ACB 的和为100°,再根据角平分线求∠DBC +∠DCB =50°,再根据外角即可解决问题;方法二:在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°−12∠ABC ﹣∠DMB =180°−12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF ≌△DMF (SAS ),可得GF =MF ,进而可以解决问题.【解答】(1)解:方法一:∵∠A =80°,∴∠ABC +∠ACB =100°,∵BE 平分∠ABC 、CD 平分∠ACB ,∴∠DBC +∠DCB =50°,∴∠EDC =∠DBC +∠DCB =50°;方法二:如图,在BC 上取点M ,使CM =CE ,∵CD 平分∠ACB ,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°−12∠ABC﹣∠DMB=180°−12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解决本题的关键是根据题意准确作出辅助线得到△DGF≌△DMF.15.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长.【分析】(1)证△ACD≌△AED(AAS),即可得出结论;(2)设∠DAC=∠DAE=α,在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得∠DME=∠B,然后证∠FDB=90°+90°﹣2α=180°﹣2α,即可得出结论;(3)求出MB=AB﹣AM=8,由全等三角形的性质得ME=BE,即可求解.【解答】(1)证明:∵AD平分∠BAC,∴∠DAC=∠DAE,∵DE⊥BA,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD和△AED中,∠C=∠DEA∠DAC=∠DAE,AD=AD∴△ACD≌△AED(AAS),∴AC=AE;(2)证明:设∠DAC=∠DAE=α,∵∠C=∠DEA=90°,∴∠ADC=90°﹣α,∠ADE=90°﹣α,则∠FDB=∠FCD+∠DFC=90°+∠DFC,在AB上截取AM=AF,连接MD,如图所示:在△FAD和△MAD中,AF=AM∠DAF=∠DAM,AD=AD∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,MD=BDDE=DE∴Rt△MDE≌Rt△BDE(HL),∴∠DME=∠B,∵∠DAC=∠DAE=α,∴∠DAC+∠ADF=∠ADM+∠ADM,在△FAD中,∠DAC+∠ADF=∠DFC,在△AMD中,∠DAE+∠ADM=∠DME,∴∠DFC=∠DME,∴∠DFC=∠B,∵∠C=90°,在△ABC中,∠B=90°﹣2α,∴∠DFC=90°﹣2α,∴∠FDB=90°+90°﹣2α=180°﹣2α,∵∠BAC=∠DAC+∠DAE=2α,∴∠FDB+∠BAC=180°﹣2α+2α=180°;(3)解:∵AF=AM,且AF=1.5,∴AM=1.5,∵AB=9.5,∴MB=AB﹣AM=9.5﹣1.5=8,由(2)得:Rt△MDE≌Rt△BDE,∴ME=BE,∴BE=12BM=4,即BM的长为4.【点评】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接DE,CE.(1)如图,当点D在BC延长线上移动时,求证:BD=CE.(2)设∠BAC=α,∠DCE=β.①当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由.②当点D分别在线段BC上、线段BC的反向延长线上移动时,α与β之间有什么数量关系?请说明理由.【分析】(1)根据SAS证△BAD≌△CAE,可得结论;(2)①由△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),(2)解:①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:由(1)知△BAD≌△CAE,∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:i)当D在线段BC上时,如图2,α+β=180°,理由是:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°,ii)当点D在线段BC反向延长线上时,如图3,α=β.如图3,同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;ii)当点D在线段BC的延长线上时,如图1,α=β.综上,当点D在BC上移动时,α=β或α+β=180°.【点评】本题是三角形的综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(2022春•南海区校级月考)如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应的图形并说明理由;(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF与BD 的位置关系.【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形的性质及等腰直角三角形的性质求解即可;②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF 和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF ⊥BD.【解答】解:(1)①CF=BD,CF⊥BD,理由如下:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠CAF+∠CAD=90°,∠BAD+∠CAD=90°,∠B=∠ACB=45°,∴∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B=45°,∵∠ACB=45°,∴∠FCB=45°+45°=90°,∴CF⊥BD;②①中的结论成立,理由如下:如图②:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠BAC=∠DAF=90°,∠B=∠ACB=45°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(3)如图③,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,AC=AE∠CAF=∠EAD,AF=AD∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BC.【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,作出合理的辅助线根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.18.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)△ABC≌△ADE吗?为什么?(2)求∠FAE的度数;(3)延长BF到G,使得FG=FB,试说明CD=2BF+DE.【分析】(1)由“SAS”可证△ABC≌△ADE;(2)由等腰直角三角形的性质可得∠AEC=∠ACE=45°,由全等三角形的性质可得∠ACB=∠AED=45°,即可求解;(3)由全等三角形的性质可得∠ABC=∠ADE,BC=DE,由线段垂直平分线的性质和等腰三角形的性质可得AB=AG=AD,∠ABG=∠AGB=∠ADC,由“AAS”可证△ACD≌△ACG,可得CD=CG,可得结论.【解答】证明:(1)△ABC≌△ADE,理由如下:∵∠BAD=∠CAE=90°,∴∠EAD=∠CAB,在△ABC和△ADE中,AB=AD∠BAC=∠DAE,AC=AE∴△ABC≌△ADE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠AEC=∠ACE=45°,∵△ABC≌△ADE,∴∠ACB=∠AED=45°,∵AF⊥CB,∴∠FAC=45°,∴∠FAE=135°;(3)∵△ABC≌△ADE,∴∠ABC=∠ADE,BC=DE,∴∠ADC=∠ABG,∵AF⊥BF,BF=FG,∴AB=AG,∴AG=AD,∠ABG=∠AGB=∠ADC,又∵∠ACG=∠ACD=45°,∴△ACD≌△ACG(AAS),∴CD=CG,∴CD=BG+CB=2BF+DE.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的性质等知识,证明△ACD≌△ACG是解题的关键.19.Rt△ABC中,∠C=90°,点D在直线AC上,点E在直线AB上,∠ADE=∠ABC.(1)如图1,当点D、E分别在边AC、AB上时,求证:DE⊥AB;(2)如图2,当点D在CA延长线上,点E在BA延长线上时,DE、BC延长线交于点F,作∠EAC的角平分线AG交DF于点G,求证:∠D+2∠DGA=90°;(3)如图3,在(2)的条件下,连接BG交CD于点H,若∠DGH=∠DHG,∠AGB=3∠CBH,求∠DGA的度数.【分析】(1)根据直角三角形的两锐角互余得到∠ABC+∠A=90°,等量代换得出∠ADE+∠A=90°,进而得出∠AED=90°,根据垂直的定义即可得解;(2)过点G作GN∥FB交CD于点N,根据平行线的性质及垂直的定义推出∠AEG=∠ANG=90°,根据角平分线定义得出∠EAG=∠NAG,利用AAS证明△EAG≌△NAG,根据全等三角形的性质及直角三角形的性质即可得解;(3)根据直角三角形的性质及对顶角相等得出∠DGH=90°−13∠AGB,根据等腰三角形的性质推出∠DGH=90°−12∠D,则90°−13∠AGB=90°−12∠D,进而推出∠AGB=32∠D,则∠DGA+32∠D=90°−12∠D,结合(2)求解即可.【解答】(1)证明:∵∠C=90°,∴∠ABC+∠A=90°,∵∠ADE=∠ABC,∴∠ADE+∠A=90°,∴∠AED=90°,∴DE⊥AB;(2)证明:如图2,过点G作GN∥FB交CD于点N,则∠GNC=∠ACB=90°,∴GN⊥CD,∵∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ADE=∠ABC,∠BAC=∠DAE,∴∠ADE+∠DAE=90°,∴∠DEA=90°,∴BE⊥DF,∴∠AEG=∠ANG=90°,∵AG平分∠EAC,∴∠EAG=∠NAG,在△EAG和△NAG中,∠AEG=∠ANG∠EAG=∠NAGAG=AG,∴△EAG≌△NAG(AAS),∴∠DGA=∠NGA,∴∠DGN=2∠DGA,∵∠D+∠DGN=90°,∴∠D+2∠DGA=90°;(3)解:∵∠AGB=3∠CBH,∴∠CBH=13∠AGB,∵∠DHG=∠CHB=90°﹣∠CBH,∴∠DGH=90°−13∠AGB,∵∠DGH=∠DHG,∴∠DGH=12(180°﹣∠D)=90°−12∠D,∴90°−13∠AGB=90°−12∠D,∴∠AGB=32∠D,∵∠DGH=∠DGA+∠AGB,∴∠DGA+∠AGB=90°−12∠D,∴∠DGA+32∠D=90°−12∠D,∴2∠D+∠DGA=90°,由(2)知,∠D+2∠DGA=90°,∴∠D=∠DGA,∴3∠DGA=90°,∴∠DGA=30°.【点评】此题是三角形综合题,考查了直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质并作出合理的辅助线是解题的关键.20.(2023春•新市区期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明;(3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.(3)过D作DH⊥CB交CB的延长线于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC.理由如下:过D作DH⊥CB于H,∴∠DHC=∠DHB=90°,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠EFC=∠DHC=90°∠FCE=∠DCH,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠ACB=90°,AC=BC,∴∠B=45°,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CB+HB,∴AC=FC+EF;(2)依题意补全图形,结论:AC=EF﹣CF,理由如下:过D作DH⊥CB交BC的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠FCE=∠DCH∠EFC=∠DHC=90°,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=HB﹣CH,∴AC=EF﹣CF;(3)AC=CF﹣EF.如图3,过D作DH⊥CB交CB的延长线于H,同理可证△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CH﹣BH,∴AC=CF﹣EF.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(1)如图1,∠B=∠D=90°,E是BD的中点,AE平分∠BAC,求证:CE平分∠ACD.(2)如图2,AM∥CN,∠BAC和∠ACD的平分线并于点E,过点E作BD⊥AM,分别交AM、CN于B、D,请猜想AB、CD、AC三者之间的数量关系,请直接写出结论,不要求证明.(3)如图3,AM∥CN,∠BAC和∠ACD的平分线交于点E,过点E作不垂直于AM的线段BD,分别交AM、CN于B、D点,且B、D两点都在AC的同侧,(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)过点E作EF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)如图2,过E作EF⊥AC于F,根据平行线的性质得到BD⊥CD,由角平分线的性质得到BE=EF,证得Rt△AEF≌Rt△ABE,根据全等三角形到现在得到AF=AB,同理CF=CD,等量代换得到结论;(3)成立,如图3,在AC上截取AF=AB,根据角平分线的定义得到∠BAE=∠FAE,推出△ABE≌△AFE,根据全等三角形的性质得到∠AFE=∠ABE,根据角平行线的性质得到∠ABE+∠CDE=180°,求得∠CFE=∠CDE,证得△CEF≌△CDE,根据全等三角形的性质即可得到结论.【解答】解:(1)如图1,过E作EF⊥AC于F,∵∠B=90°,AE平分∠BAC,∴EF=BE,∵E是BD的中点,∴BE=DE,∴EF=DE,∵∠D=90°,∴CE平分∠ACD;(2)如图2,过E作EF⊥AC于F,∵AM∥CN,BD⊥AM,∴BD⊥CD,∵AE平分∠BAC,∴BE=EF,在Rt△AEF与Rt△ABE中,BE=EF AE=AE,∴Rt△AEF≌Rt△ABE,∴AF=AB,同理CF=CD,∵AC=AF+CF,∴AC=AB+CD;(3)成立,如图3,在AC上截取AF=AB,∵AE平分∠BAC,∴∠BAE=∠FAE,在△ABE与△AFE中,AB=AF∠BAE=∠FAEAE=AE,∴△ABE≌△AFE,∴∠AFE=∠ABE,∵AM∥CN,∴∠ABE+∠CDE=180°,∵∠AFE+∠EFC=180°,∴∠CFE=∠CDE,∵CE平分∠ACD,∴∠FCE=∠DCE,在△CEF与△CDE中,∠CFE=∠CDE ∠FCE=∠DCE CE=CE,∴△CEF≌△CDE,∴CF=CD,∵AC=AF+CF,∴AC=AB+CD.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,角平分线的定义,平行线的性质,正确的作出辅助线构造全等三角形是解题的关键.23.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)结论不成立.结论:AF=DE+EF.同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.结论:AF=DE+EF.。

(要)《全等三角形》《轴对称》期末复习提优题及答案解析

(要)《全等三角形》《轴对称》期末复习提优题及答案解析

八年级数学《全等三角形》《轴对称》复习提优题一•选择题(共4小题)1如图,Rt△ ACB中,/ ACB=90 ° / ABC的角平分线BE和/ BAC的外角平分线AD相交于点P,分别交AC 和BC的延长线于E, D .过P作PF丄AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①/APB=45 °②PF=PA;③BD - AH=AB ;④DG=AP+GH .其中正确的是()C.②③④ D .①②③④2.如图,将30°勺直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①/ DAC= / DCA ;②ED为AC的垂直平分线;③EB平分/ AED ;④ED=2AB .其中正确的是()A .①②③B .①②④C.②③④ D .①②③④3.如图,RtA ACB中,/ ACB=90 ° △ ABC的角平分线AD、BE相交于点P,过P作PF丄AD交BC的延长线于点F,交AC于点H,则下列结论:①/ APB=135 °②PF=PA;③AH+BD=AB ;④S四边形ABDE^S^ABP,其中正确的是()A .①③B .①②④C.①②③ D .②③4.如图,在四边形 ABCD 中,/ B= / C=90° / DAB 与/ADC 的平分线相交于 BC 边上的M 点,则下列结论:C . 4个 ,/ ABC=30 °AC=1点D 为AC 上一动点,连接BD ,以BD 为边作等边 △ BDE , CD=n , 上截取BH=AD ,连接EH ,求证:△ AEH 为等边三角形.① / AMD=90 °②M 为BC 的中点;③ AB+CD=AD ;④ :⑤M 到AD 的距离等于BC 的一 二•解答题(共8小题)5.如图 1 在 Rt △ ACB 中,/ ACB=90EA 的延长线交BC 的延长线于F ,设(1) 当 n=1 时,贝U AF= ______(2) 当0V n V 1时,如图2,在 BA 半;其中正确的有(A . 2个6.两个等腰直角 △ ABC和等腰直角△ DCE 如图1摆放,其中D 点在AB 上,连接BE . (1) 则里=AD(2) 当把△ DEF 绕点C 旋转到如图2所示的位置时(D 点在BC 上),连接AD 并延长交BE 于点F ,连接FC ,则 AD ,/ CBE= ,/ CFE= 度; 度; (3) 把△ DEC 绕点C 旋转到如图 3所示的位置时,请求出 / CFE 的度数7.已知△ ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE , BE交AD于F,当D点滑动时,/ AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作/ADG=60。

人教版数学八年级上册《第十三章 轴对称》期末高分突破卷附解析教师版

人教版数学八年级上册《第十三章 轴对称》期末高分突破卷附解析教师版

人教版数学八年级上册《第十三章轴对称》期末高分突破卷附解析教师版一、单选题(每题3分,共30分)(共10题;共30分)1.(3分)下列四幅图案中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【解答】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形. 2.(3分)点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(2,-1)D.(1,-2)【答案】D【解析】【解答】解:点M(1,2)关于x轴对称点的坐标为(1,-2).故答案为:D【分析】利用关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可得答案.3.(3分)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称【答案】A【解析】【解答】解:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.纵坐标都乘以−1,即纵坐标变为相反数,横坐标不变,符合关于x轴对称.故答案为:A.【分析】由题意可得图形A、图形B上的点的坐标满足:纵坐标互为相反数,横坐标相等,据此判断.4.(3分)下列说法正确的有()A.全等的两个三角形一定关于某直线对称B.关于某直线对称的两个图形一定能完全重合C.轴对称图形的对称轴一定只有一条D.等腰三角形的对称轴是底边上的高线【答案】B【解析】【解答】解:A、全等的两个三角形不一定关于某直线对称,原说法错误,故本选项不合题意;B、关于某直线对称的两个图形一定能完全重合,说法正确,故本选项符合题意;C、轴对称图形的对称轴不一定只有一条,可以有多条,如圆有无数条对称轴,原说法错误,故本选项不合题意;D、等腰三角形的对称轴是底边上的高线所在的直线,原说法错误,故本选项不合题意.故答案为:B.【分析】把一个平面图形,沿着某一条直线折叠,直线两旁的部分能完全重合的平面图形就是轴对称图形,折迹所在的直线,就是对称轴,据此可判断C、D;把一个图形沿着某一条直线折叠,能与另一个图形完全重合的两个图形就关于这条直线对称,据此可判断A、B.5.(3分)如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.18【答案】B【解析】【解答】解:∵DE是△ABC的边BC的垂直平分线,∴BD=CD,∵△ACD的周长为AD+CD+AC=AD+BD+AC=AB+AC=9+6=15.故答案为:B【分析】利用线段垂直平分线上的点到线段两个端点的距离相等,可证得BD=CD;再证明△ACD的周长为AB+AC,代入计算可求解.6.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF= DE,则∠EFD=()A.10∘B.15∘C.30∘D.25∘【答案】B【解析】【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠DFE=∠E=15°.故答案为:B.【分析】根据等边三角形的性质可得△ACB=60°,由等腰三角形的性质可得△CGD=△CDG,△DFE=△E,结合外角的性质可得△CGD+△CDG=2△GDC=△ACB、△DFE+△E=2△EFD=△GDC,据此计算.7.(3分)如图,在ΔABC中,AB=AC,∠A=120°,BC=15cm.AB的垂直平分线交AB于点D,交BC于点E;AC的垂直平分线交AC于点G,交BC于点F.EF的长为()A.3cm B.4cm C.5cm D.6cm【答案】C【解析】【解答】解:连接AE,AF,∵AB的垂直平分线交AB于点D,交BC于点E;AC的垂直平分线交AC于点G,∴BE=AE,CF=AF,∴∠EAB=∠B,∠CAF=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAE+∠CAF=60°,∠AEF=∠AFE=60°,∴ΔAEF是等边三角形,∴AE=AF=EF,∴BE=EF=FC,∵BC=15=BE+EF+FC=3EF,∴EF=5.故答案为:C.【分析】连接AE,AF,先证明ΔAEF是等边三角形,可得AE=AF=EF,再结合BC=15=BE+ EF+FC=3EF,求出EF=5即可。

八年级数学上册全等三角形专题练习(解析版)

八年级数学上册全等三角形专题练习(解析版)

八年级数学上册全等三角形专题练习(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.中取点P使得PA,PB,PC的长分别为3, 4, 5,则2.如图,在等边ABCAPC APB S S ∆∆+=_________.【答案】936 【解析】【分析】把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =332+12×3×4=936+. 【详解】将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD∴AD =AP ,∠DAP =60︒,又∵△ABC 为等边三角形,∴∠BAC =60︒,AB =AC ,∴∠DAB +∠BAP =∠PAC +∠BAP ,∴∠DAB =∠PAC ,又AB=AC,AD=AP∴△ADB ≌△APC∵DA =PA ,∠DAP =60︒,∴△ADP 为等边三角形,在△PBD 中,PB =4,PD =3,BD =PC =5,∵32+42=52,即PD 2+PB 2=BD 2,∴△PBD 为直角三角形,∠BPD =90︒,∵△ADB ≌△APC ,∴S △ADB =S △APC ,∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =34×32+12×3×4=9364+.故答案为:9364 .【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.3.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=12B′E=BE=2,3,∴GD=B′F=2,∴3∵AB=10,∴AG=10﹣6=4,∴7考点:1轴对称;2等边三角形.4.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【解析】【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.5.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,已知每个小方格的边长为1,A 、B 两点都在小方格的格点(顶点)上,请在图中找一个格点C ,使△ABC 是等腰三角形,这样的格点C 有________个。

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)一.解答题(共60小题)1.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠DEC的度数.2.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.3.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.4.如图,AB平分∠CAD,AC=AD,求证:BC=BD.5.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.6.如图,CE=DE,AE=BE,∠1=∠2,点D在AC边上,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠3的度数.7.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,AC=BD.求证:∠C=∠D.8.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.9.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.10.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.(Ⅰ)求证:△ADM≌△CDN.(Ⅱ)若AM=2,AB=AC,求四边形DMBN的周长.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.13.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.14.如图,点C、E、F、B在同一直线上,CE=BF,AB=CD,AB∥CD.(1)求证∠A=∠D;(2)若AB=BE,∠B=40°,求∠D的度数.15.如图,AC=AE,∠1=∠2,AB=AD.求证:△ABC≌△ADE.16.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.17.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.18.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.19.如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.20.如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.21.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;22.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.23.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.24.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.26.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.27.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.28.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.29.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.31.如图,△ABC和△EFD的边BC、DF在同一直线上(D点在C点的左边),已知∠A=∠E,AB∥EF,BD=CF.(1)求证:△ABC≌△EFD;(2)求证:AC∥DE.32.如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;33.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.34.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.35.如图,∠1=∠2,∠C=∠D,求证:AC=AD.36.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.37.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,并加以证明.38.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.39.如图,已知AB=AD,∠B=∠D=90°.求证:△ABC≌△ADC.40.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.判断BE和DF的位置关系,并说明理由.41.如图,△ABC中,AB=AC,点D,E在边BC上,且BD=CE.(1)求证:△ABD≌△ACE;(2)若∠B=40°,AB=BE,求∠DAE的度数.42.已知:如图,B,A,E在同一直线上,AC∥BD且AC=BE,∠ABC=∠D.求证:AB=BD.43.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.44.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.45.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.46.如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF,求证:AB∥CD.47.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.48.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN ⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.49.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.50.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.51.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.52.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.53.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.54.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.55.如图,已知∠ABC=∠ADC=90°,E是AC上一点,AB=AD,求证:EB=ED.56.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.57.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.58.如图,D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.59.如图,BE=BC,∠A=∠D,求证:AC=DE.60.如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)当AC=3,AB=5时,求OD的长.2022年11月03日遵义三十二钟的初中数学组卷一.解答题(共60小题)1.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段ADx轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.2.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)直接写出△ABC的面积.3.如图,在△ABC中,∠C=90°,∠A=30°,AB=6cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?4.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.5.如图,在△ABC中,AB=AC,D为CA延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.6.如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD =22°,求∠C的度数.7.△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)作出△ABC关于x对称的△A2B2C2,并写出点A2的坐标;(3)求△AA1A2的面积.8.如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.9.如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是,此时C点关于这条直线的对称点C2的坐标为;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)10.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.11.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积;(2)在坐标系中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.12.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.13.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.14.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使P A+PC的长最短.15.如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.17.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.18.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.19.如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.20.如图:已知AB=AC=AD,且AD∥BC求证:∠C=2∠D.21.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.22.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.23.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.24.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.26.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.28.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.(2)当∠A=50°时,求∠DEF的度数.30.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:AE=BC.31.已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.32.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.34.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.35.如图:△ABC和△ADE是等边三角形.证明:BD=CE.36.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.37.如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.38.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.39.已知:如图,在△ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E,连接BE.(1)求证:CE=CB;(2)若∠CAE=30°,CE=2,求BE的长度.40.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.41.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.(1)若∠ABC=30°,∠ACB=40°,求∠DAE的度数;(2)已知△ADE的周长7cm,分别连接OA、OB、OC,若△OBC的周长为15cm,求OA的长.42.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE =∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.43.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.44.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.45.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.46.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.47.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.48.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.49.已知在△ABC中,AB=AC,且线段BD为△ABC的中线,线段BD将△ABC的周长分成12和6两部分,求△ABC三边的长.50.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE =AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.51.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.52.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.53.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.54.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.55.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.56.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.57.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).58.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.59.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.60.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.。

全等三角形、轴对称综合测精彩试题

全等三角形、轴对称综合测精彩试题

ABCDE 全等三角形、轴对称期末复习1.两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( )A 、两角和一边B 、 两边及夹角C 、 三个角D 、三条边2.如图,在△ABD 和△ACE 都是等边三角形,则ΔADC ≌ΔABE 的根据是( )A 、SSSB 、SASC 、ASAD 、AAS3.如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为( ) A 、2 B 、3 C 、5 D 、2.5 4.使两个直角三角形全等的条件是( )A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两边对应相等 5.如图:在△ABC 中,AB=AC ,∠BAD=∠CAD ,则下列结论:①△ABD ≌△ACD ,②∠B=∠C ,③BD=CD ,④AD ⊥BC 。

其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 6.下列平面图形中,不是轴对称图形的是 ( )7.下列图形:①角,②两相交直线,③圆,④正方形,其中轴对称图形有( )A 、4个B 、3个C 、2个D 、1个8.已知∠AOB=30︒,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则△P 1OP 2是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形 9.已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④A 、B 之间的距离为4,其中正确的有( )A .1个B .2个C .3个D .4个10.如图:AB=AD ,AE 平分∠BAD ,则图中有( )对全等三角形。

A 、2 B 、3 C 、4 D 、5第2题图 第3题图 第5题图 第10题图11.已知点A (a ,b )关于x 轴对称点的坐标是(a ,-12),关于y 轴对称点的坐标是(5,b ),则A 点的坐标是 。

全等三角形与轴对称复习题

全等三角形与轴对称复习题

全等三角形与轴对称复习题一、知识回顾1、全等三角形的性质:判定方法:2、轴对称与轴对称图形的区别与联系:3、线段与角的轴对称性:4、等腰三角形的性质:判定:5、等边三角形的性质:判定:二、学习探究【典型例题】(一)全等的性质和判定例1、如图1,已知正方形ABCD(正方形四条边都相等,四个角都是直角),把一个直角与正方形叠合,使直角顶点与正方形的A点重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时。

(1)证明:BE=DF;(2)如图2,作∠EAF的平分线交CD于G点,连接EG。

证明:BE+DG=EG;(3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF。

线段BE,DF和EF之间有怎样的数量关系?并加以证明。

(二)线段与角的对称性例1、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画 A .6条 B .7条 C .8条 D .9条例2、如图,直线l 1、l 2相交于点A ,点B 是直线外一点,在直线l 1 、l 2上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有…………………………………… ( )A .2个B .4个C .6个D .8个变式1、已知:如图,∠AOB 外有一点M ,作点M 关于直线OA 的对称点N ,再作点N 关于直线OB 的对称点P.(1)试探索∠MOP 与∠AOB 的大小关系;(2)若点M 在∠AOB 的内部,上述结论还成立吗?请补全图形并证明.(五)翻折题型例1、如图,△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为 _______OABMNPOABl 2l 1AB(六)旋转题型例2、如图1,两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)在图1中,你发现线段AC,BD 的数量关系是 ,直线AC,BD 相交成角的度数是 .(2)将图1中的△OAB 绕点O 顺时针旋转90°角,在图2中画出旋转后的△OAB 。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学期中期末《全等三角形》《轴对称》拔高题一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()①②④C.②③④D.①②③④A.①②③*B.2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB平分∠AED;④ED=2AB.其中正确的是()|①②③④A.①②③B.①②④C.②③④%D.3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE =S△ABP,其中正确的是()A.①③(①②④C.①②③D.②③B.4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M 到AD的距离等于BC的一半;其中正确的有(){5个A.2个B.3个C.4个<D.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD 为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=_________;(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.@6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=_________,∠CBE=_________度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=_________,∠CFE=_________度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数_________.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:、①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.{9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是_________,FG与DC的数量关系是_________;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.!11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC 外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)·12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?…八年级上册数学期中期末《全等三角形》《轴对称》拔高题参考答案与试题解析一.选择题(共4小题)1.如图,Rt△ACB中,∠ACB=90°,∠ABC的角平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是()A.、①②③B.①②④C.②③④D.①②③④、考点:直角三角形的性质;角平分线的定义;垂线;全等三角形的判定与性质.专题:推理填空题.分析:①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=∠ABC,然后利用三角形的内角和定理整理即可得解;②③先根据直角的关系求出∠AHP=∠FDP,然后利用角角边证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH,对应角相等可得∠PFD=∠HAP,然后利用平角的关系求出∠BAP=∠BFP,再利用角角边证明△ABP与△FBP全等,然后根据全等三角形对应边相等得到AB=BF,从而得解;④根据PF⊥AD,∠ACB=90°,可得AG⊥DH,然后求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.'解答:解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=∠ABC,∠CAP=(90°+∠ABC)=45°+∠ABC,在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,=180°﹣(45°+∠ABC+90°﹣∠ABC )﹣∠ABC,=180°﹣45°﹣∠ABC﹣90°+∠ABC ﹣∠ABC,=45°,故本小题正确;`②③∵∠ACB=90°,PF⊥AD,∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,∴∠AHP=∠FDP,∵PF⊥AD,∴∠APH=∠FPD=90°,在△AHP与△FDP中,,∴△AHP≌△FDP(AAS),∴DF=AH,]∵AD为∠BAC的外角平分线,∠PFD=∠HAP,∴∠PAE+∠BAP=180°,又∵∠PFD+∠BFP=180°,∴∠PAE=∠PFD,∵∠ABC的角平分线,∴∠ABP=∠FBP,在△ABP与△FBP中,,∴△ABP≌△FBP(AAS),!∴AB=BF,AP=PF故②小题正确;∵BD=DF+BF,∴BD=AH+AB,∴BD﹣AH=AB,故③小题正确;④∵PF⊥AD,∠ACB=90°,∴AG⊥DH,∵AP=PF,PF⊥AD,∴∠PAF=45°,]∴∠ADG=∠DAG=45°,∴DG=AG,∵∠PAF=45°,AG⊥DH,∴△ADG与△FGH都是等腰直角三角形,∴DG=AG,GH=GF,∴DG=GH+AF,∵AF>AP,∴DG=AP+GH不成立,故本小题错误,)综上所述①②③正确.故选A.点评:本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.2.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:①∠DAC=∠DCA;②ED为AC的垂直平分线;③EB 平分∠AED;④ED=2AB.其中正确的是()①②③B.①②④C.②③④D.①②③④\A.《考点:旋转的性质;含30度角的直角三角形.分析:根据直角三角形中30°的角所对的直角边等于斜边的一半,以及旋转的性质即可判断.解答:解:①根据旋转的性质可以得到:AB=AD,而∠ABD=60°,则△ABD是等边三角形,可得到∠DAC=30°,∴∠DAC=∠DCA,故正确;②根据①可得AD=CD,并且根据旋转的性质可得:AC=AE,∠EAC=60°,则△ACE是等边三角形,则EA=EC,即D、E都到AC两端的距离相等,则DE在AC的垂直平分线上,故正确;—③根据条件AB∥DE,而AB≠AE,即可证得EB平分∠AED不正确,故错误;④根据旋转的性质,DE=BC,而BC=2AB,即可证得ED=2AB,故正确;故正确的是:①②④.故选B.点评:正确理解旋转的性质,图形旋转前后两个图形全等是解决本题的关键.3.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=PA;③AH+BD=AB;④S四边形ABDE =S△ABP,其中正确的是()<A.①③B.①②④C.①②③D.{②③考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据三角形全等的判定和性质以及三角形内角和定理逐条分析判断.解答:解:在△ABC中,AD、BE分别平分∠BAC、∠ABC,,∵∠ACB=90°,∴∠A+∠B=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠A+∠B)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,(∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,:∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴AH=FD,又∵AB=FB,∴AB=FD+BD=AH+BD.故③正确.∵△ABP≌△FBP,△APH≌△FPD,!∴S四边形ABDE=S△ABP+S△BDP+S△APH﹣S△EOH+S△DOP=S△ABP+S△ABP﹣S△EOH+S△DOP=2S△ABP﹣S△EOH+S△DOP.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.—4.如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点,则下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④;⑤M 到AD的距离等于BC的一半;其中正确的有()A.2个B.3个C.【4个D.5个考点:全等三角形的判定与性质;角平分线的性质.分析:过M作ME⊥AD于E,得出∠MDE=∠CDA,∠MAD=∠BAD,求出∠MDA+∠MAD=(∠CDA+∠BAD)=90°,根据三角形内角和定理求出∠AMD,即可判断①;根据角平分线性质求出MC=ME,ME=MB,即可判断②和⑤;由勾股定理求出DC=DE,AB=AE,即可判断③;根据SSS证△DEM≌△DCM,推出S三角形DEM =S三角形DCM,同理得出S三角形AEM=S三角形ABM,即可判断④.解答:解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,`∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD的距离等于BC的一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,》∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),∴S三角形DEM=S三角形DCM同理S三角形AEM =S三角形ABM,】∴S三角形AMD=S梯形ABCD,∴④正确;故选D.点评:本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.二.解答题(共8小题)5.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°AC=1点D为AC上一动点,连接BD,以BD 为边作等边△BDE,EA的延长线交BC的延长线于F,设CD=n,(1)当n=1时,则AF=2;)(2)当0<n<1时,如图2,在BA上截取BH=AD,连接EH,求证:△AEH为等边三角形.考点:含30度角的直角三角形;全等三角形的判定与性质;等边三角形的性质.专题:动点型.分析:~(1)根据三角形内角和定理求出∠BAC=60°,再根据平角等于180°求出∠FAC=60°,然后求出∠F=30°,根据30°角所对的直角边等于斜边的一半求解即可;(2)根据三角形的任意一个外角等于与它不相邻的两个内角的和利用∠CBD表示出∠ADE=30°+∠CBD,又∠HBE=30°+∠CBD,从而得到∠ADE=∠HBE,然后根据边角边证明△ADE与△HBE全等,根据全等三角形对应边相等可得AE=HE,对应角相等可得∠AED=∠HEB,然后推出∠AEH=∠BED=60°,再根据等边三角形的判定即可证明.解答:(1)解:∵△BDE是等边三角形,∴∠EDB=60°,∵∠ACB=90°,∠ABC=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴FAC=180°﹣60°﹣60°=60°,、∴∠F=180°﹣90°﹣60°=30°,∵∠ACB=90°,∴∠ACF=180°﹣90°,∴AF=2AC=2×1=2;(2)证明:∵△BDE是等边三角形,∴BE=BD,∠EDB=∠EBD=60°,在△BCD中,∠ADE+∠EDB=∠CBD+∠C,)即∠ADE+60°=∠CBD+90°,∴∠ADE=30°+∠CBD,∵∠HBE+∠ABD=60°,∠CBD+∠ABD=30°,∴∠HBE=30°+∠CBD,∴∠ADE=∠HBE,在△ADE与△HBE中,,∴△ADE≌△HBE(SAS),/∴AE=HE,∠AED=∠HEB,∴∠AED+∠DEH=∠DEH+∠HEB,即∠AEH=∠BED=60°,∴△AEH为等边三角形.点评:本题考查了30°角所对的直角边等于斜边的一半的性质,全等三角形的判定与性质,等边三角形的性质与判定,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,(2)中求出∠ADE=∠HBE是解题的关键.'6.两个等腰直角△ABC和等腰直角△DCE如图1摆放,其中D点在AB上,连接BE.(1)则=1,∠CBE=45度;(2)当把△DEF绕点C旋转到如图2所示的位置时(D点在BC上),连接AD并延长交BE于点F,连接FC,则=1,∠CFE=45度;(3)把△DEC绕点C旋转到如图3所示的位置时,请求出∠CFE的度数135°.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;确定圆的条件.分析:#(1)先证明∠ACD=∠BCE,再根据边角边定理证明△ACD≌△BCE,然后根据全等三角形对应边相等和对应角相等解答;(2)根据(1)的思路证明△ACD和△BCE全等,再根据全等三角形对应边相等得BE=AD,对应角相等得∠DAC=∠DBF,又AC⊥CD,所以AF⊥BF,从而可以得到C、E、F、D四点共圆,根据同弧所对的圆周角相等即可求出∠CFE=∠CDE=45°;(3)同(2)的思路,证明C、F、D、E四点共圆,得出∠CFD=∠CED=45°,而∠DEF=90°,所以∠CFE的度数即可求出.解答:解:(1)∵△ABC和△DCE是等腰三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,^即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD=45°,因此=1,∠CBE=45°;(2)同(1)可得BE=AD,∴=1,、∠CBE=∠CAD;又∵∠ACD=90°,∠ADC=∠BDF,∴∠BFD=∠ACD=90°;又∵∠DCE=90°,∴C、E、F、D四点共圆,∴∠CFE=∠CDE=45°;(3)同(2)可得∠BFA=90°,—∴∠DFE=90°;又∵∠DCE=90°,∴C、F、D、E四点共圆,∴∠CFD=∠CED=45°,∴∠CFE=∠CFD+∠DFE=45°+90°=135°.点评:《本题综合考查了等边对等角的性质,三角形全等的判定和全等三角形的性质,四点共圆以及同弧所对的圆周角相等的性质,需要熟练掌握并灵活运用.7.已知△ABC为边长为10的等边三角形,D是BC边上一动点:①如图1,点E在AC上,且BD=CE,BE交AD于F,当D点滑动时,∠AFE的大小是否变化?若不变,请求出其度数.②如图2,过点D作∠ADG=60°与∠ACB的外角平分线交于G,当点D在BC上滑动时,有下列两个结论:①DC+CG的值为定值;②DG﹣CD的值为定值.其中有且只有一个是正确的,请你选择正确的结论加以证明并求出其值.考点:"等边三角形的性质;全等三角形的判定与性质.专题:探究型.分析:①∠AFE的大小不变,其度数为60°,理由如下:由三角形ABC为等边三角形,得到三条边相等,三个内角相等,都为60°,可得出AB=BC,∠ABD=∠C,再由BD=CE,利用SAS可得出三角形ABD与三角形BCE全等,根据全等三角形的对应角相等可得出∠BAD=∠CBE,在三角形ABD中,由∠ABD为60°,得到∠BAD+∠ADB的度数,等量代换可得出∠CBE+∠ADB的度数,利用三角形的内角和定理求出∠BFD的度数,根据对应角相等可得出∠AFE=∠BFD,可得出∠AFE的度数不变;②连接AG,如图所示,由三角形ABC为等边三角形,得出三条边相等,三个内角都相等,都为60°,再由CG为外角平分线,得出∠ACG也为60°,由∠ADG为60°,可得出A,D,C,G四点共圆,根据圆内接四边形的对角互补可得出∠DAG与∠DCG互补,而∠DCG为120°,可得出∠DAG为60°,根据∠BAD+∠DAC=∠DAC+∠CAG=60°,利用等式的性质得到∠BAD=∠CAG,利用ASA可证明三角形ABD与三角形ACG全等,利用全等三角形的对应边相等可得出BD=CG,由BC=BD+DC,等量代换可得出CG+CD=BC,而BC=10,即可得到DC+CG为定值10,得证.解答:解:①∠AFE的大小不变,其度数为60°,理由为:`∵△ABC为等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,又∠BAD+∠ADB=120°,∴∠CBE+∠ADB=120°,}∴∠BFD=60°,则∠AFE=∠BFD=60°;②正确的结论为:DC+CG的值为定值,理由如下:连接AG,如图2所示:∵△ABC为等边三角形,∴AB=BC=AC,∠ABD=∠ACB=∠BAC=60°,又CG为∠ACB的外角平分线,@∴∠ACG=60°,又∵∠ADG=60°,∴∠ADG=∠ACG,即A,D,C,G四点共圆,∴∠DAG+∠DCG=180°,又∠DCG=120°,∴∠DAG=60°,即∠DAC+∠CAG=60°,又∵∠BAD+∠DAC=60°,∴∠BAD=∠GAC,在△ABD和△ACG中,`∵,∴△ABD≌△ACG(ASA),∴DB=GC,又BC=10,则BC=BD+DC=DC+CG=10,即DC+CG的值为定值.点评:此题考查了等边三角形的判定与性质,全等三角形的判定与性质,四点共圆的条件,以及圆内接四边形的性质,利用了等量代换及转化的思想,熟练掌握等边三角形的判定与性质是解本题的关键.8.如图,点A、C分别在一个含45°的直角三角板HBE的两条直角边BH和BE上,且BA=BC,过点C作BE的垂线CD,过E点作EF上AE交∠DCE的角平分线于F点,交HE于P.}(1)试判断△PCE的形状,并请说明理由;(2)若∠HAE=120°,AB=3,求EF的长.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题;证明题.~(1)根据∠PCE=∠DCE=×90°=45°,求证∠CPE=90°,然后即可判断三角形的形状.分析:(2)根据∠HEB=∠H=45°得HB=BE,再根据BA=BC和∠HAE=120°,利用ASA求证△HAE≌△CEF,得AE=EF,又因为AE=2AB.然后即可求得EF.解答:解:(1)△PCE是等腰直角三角形,理由如下:∵∠PCE=∠DCE=×90°=45°∠PEC=45°;∴∠PCE=∠PEC∠CPE=90°∴△PCE是等腰直角三角形(2)∵∠HEB=∠H=45°∴HB=BE∵BA=BC∴AH=CE而∠HAE=120°—∴∠BAE=60°,∠AEB=30°又∵∠AEF=90°∴∠CEF=120°=∠HAE而∠H=∠FCE=45°∴△HAE≌△CEF(ASA)∴AE=EF又∵AE=2AB=2×3=6∴EF=6}点评:此题主要考查学生对全等三角形的判定与性质和等腰直角三角形等知识点的理解和掌握,解答(2)的关键是利用ASA求证△HAE≌△CEF,此题有一定的拔高难度,属于中档题.9.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.}考点:全等三角形的判定与性质.专题:证明题.分析:(1)在AB上取一点M,使得AM=AH,连接DM,则利用SAS可得出△AHD≌△AMD,从而得出HD=MD=DB,即有∠DMB=∠B,通过这样的转化可证明∠B与∠AHD互补.(2)由(1)的结论中得出的∠AHD=∠AMD,结合三角形的外角可得出∠DGM=∠GDM,可将HD转化为MG,从而在线段AG上可解决问题.解答:>证明:(1)在AB上取一点M,使得AM=AH,连接DM,∵,∴△AHD≌△AMD,∴HD=MD,∠AHD=∠AMD,∵HD=DB,∴DB=MD,∴∠DMB=∠B,∵∠AMD+∠DMB=180°,@∴∠AHD+∠B=180°,即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,∵∠B+2∠DGA=180°,∠AHD=2∠DGA,∴∠AMD=2∠DGM,又∵∠AMD=∠DGM+∠GDM,∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,)∴MD=MG,∴HD=MG,∵AG=AM+MG,∴AG=AH+HD.点评:本题考查了全等三角形的判定及性质,结合了等腰三角形的知识,解决这两问的关键都是通过全等图形的对应边相等、对应角相等,将题目涉及的角或边进行转化.$10.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连接GF.(1)FG与DC的位置关系是FG⊥CD,FG与DC的数量关系是FG=CD;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立?请证明你的结论.考点:全等三角形的判定与性质;等腰直角三角形.专题:-探究型.分析:(1)证FG和CD的大小和位置关系,我们已知了G是CD的中点,猜想应该是FG⊥CD,FG=CD.可通过构建三角形连接FD,FC,证三角形DFC是等腰直角三角形来得出上述结论,可通过全等三角形来证明;延长DE交AC于M,连接FM,证明三角形DEF和FMC全等即可.我们发现BDMC是个矩形,因此BD=CM=DE.由于三角形DEB和ABC都是等腰直角三角形,∠BED=∠A=45°,因此∠AEM=∠A=45°,这样我们得出三角形AEM是个等腰直角三角形,F是斜边AE的中点,因此MF=EF,∠AMF=∠BED=45°,那么这两个角的补角也应当相等,由此可得出∠DEF=∠FMC,这样就构成了三角形DEF和CMF的全等的所有条件,可得到DF=FC,即三角形DFC是等腰三角形,下面证直角.根据两三角形全等,我们还能得出∠MFC=∠DFE,我们知道∠MFC+∠CFE=90°,因此∠DFE+∠CFE=∠DFC=90°,这样就得出三角形DFC是等腰直角三角形了,也就能得出FG⊥CD,FG=CD的结论了.(2)和(1)的证法完全一样.解答:解:(1)FG⊥CD,FG=CD.(2)延长ED交AC的延长线于M,连接FC、FD、FM,)∴四边形BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形,∴ED=BD=CM.∵∠AEM=∠A=45°,∴△AEM是等腰直角三角形.又F是AE的中点,∴MF⊥AE,EF=MF,∠EDF=∠MCF.、∵在△EFD和△MFC中,∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90°,∴∠MFC+∠DFM=90°.即△CDF是等腰直角三角形,又G是CD的中点,(∴FG=CD,FG⊥CD.点评:本题中通过构建全等三角形来证明线段和角相等是解题的关键.11.如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC 外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?;(3)图2中的△ABC与△AEF的面积相等吗?(不用证明)考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)根据全等三角形的判定得出△ABG≌△EAP,进而求出AG=EP.同理AG=FQ,即EP=FQ.(2)过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题.—(3)由(1)、(2)中的全等三角形可以推知△ABC与△AEF的面积相等.解答:解:(1)EP=FQ,理由如下:如图1,∵Rt△ABE是等腰三角形,∴EA=BA.∵∠PEA+∠PAE=90°,∠PAE+∠BAG=90°,∴∠PEA=∠BAG)在△EAP与△ABG中,,∴△EAP≌△ABG(AAS),∴EP=AG.同理AG=FQ.∴EP=FQ.(2)如图2,HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.由(1)知EP=FQ.在△EPH与△FQH中,∵,∴△EPH≌△FQH(AAS).∴HE=HF;(3)相等.理由如下:由(1)知,△ABG≌△EAP,△FQA≌△AGC,则S△ABG=S△EAP,S△FQA=S△AGC.由(2)知,△EPH≌△FQH,则S△EPH=S△FQH,所以S△ABC=S△ABG+S△AGC=S△EAP﹣S△EPH+S△FQA﹣S△FQH=S△EAP+S△FQA=S△AEF,即S△ABC=S△AEF.故图2中的△ABC与△AEF的面积相等.点评:本题考查了全等三角形的证明,考查了全等三角形对应边相等的性质,考查了三角形内角和为180°的性质,考查了等腰三角形腰长相等的性质,本题中求证△AFQ≌△CAG是解题的关键.12.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB 于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?考点:等腰三角形的判定与性质;平行线的性质.专题:计算题;证明题.分析:(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.解答:解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.点评:此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题难度并不大,但是步骤繁琐,属于中档题,还有第(1)中容易忽略△ABC也是等腰三角形,因此这又是一道易错题.要求学生在证明此题时一定要仔细,认真.。

相关文档
最新文档