八年级上册数学 全册全套试卷专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学 全册全套试卷专题练习(word 版
一、八年级数学三角形填空题(难)
1.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为36060︒︒
=6, 所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n ﹣2)•180 (n≥3)且n 为整数);多边形的外角和等于360度.
2.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .
【答案】135
【解析】
解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点
O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.
点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.
3.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD =__________.
【答案】119°
【解析】
【分析】
连接BD ,构△BCD 根据对顶角相等和三角形内角和定理即可求出∠BCD 的度数.
【详解】
如图所示,连接BD ,
∵∠4=∠1=38°,∠3=∠2=23°,
∴∠BCD=180°-∠4-∠3=180°-38°-23°=119°.
故答案为:119°.
【点睛】
本题考查了对顶角的性质与三角形内角和定理. 连接BD,构△BCD是解题的关键.
4.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.
【答案】35
【解析】
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,
∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=1
2
∠ABC,∠OCE=
1 2∠ACE,然后整理可得∠BOC=
1
2
∠BAC.
【详解】
解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,
∴∠OBC=1
2
∠ABC,∠OCE=
1
2
∠ACE,
∴1
2
(∠BAC+∠ABC)=∠BOC+
1
2
∠ABC,
∴∠BOC=1
2
∠BAC,
∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.
【点睛】
本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.
5.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.
【答案】110
【解析】
已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得
∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.
6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
【答案】40°
【解析】
【分析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案为40°.
【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.
二、八年级数学三角形选择题(难)
7.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+
1
2
∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-1
2
∠A.上述说
法正确的个数是()
A.0个B.1个C.2个D.3个【答案】C
【解析】
【分析】
根据三角形的内角和外角之间的关系计算.
【详解】
解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+1
2
∠A;
故(1)的结论正确;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)∠P=180°-(∠PBC+∠PCB)
=180°-1
2
(∠FBC+∠ECB)