激光原理考点总结
激光原理复习知识点
![激光原理复习知识点](https://img.taocdn.com/s3/m/3ab5bb07b207e87101f69e3143323968011cf487.png)
激光原理复习知识点激光原理是激光技术的核心知识之一,它是指光子在受激辐射作用下的放大过程。
下面将详细介绍激光原理的相关知识点。
1.基本概念激光是一种特殊的光,其特点是具有高度的单色性、方向性和相干性。
与常规的自然光不同,激光是一种具有相同频率和相位的光波。
2.受激辐射受激辐射是激光形成的基本原理,它是指当原子或分子受到外界能量激发后,处于激发态的原子或分子会通过辐射的方式从高能级跃迁到低能级,此时会放出光子能量,并与入射光子保持相位一致。
3.激光产生的条件为了产生激光,需要满足以下条件:-有大量的原子或分子处于激发态。
-具有一个能够增加原子或分子跃迁概率的辐射源。
-有一种方法可以让过多的激发态原子或分子跃迁到基态。
4.激光器的结构激光器通常由三个基本部分组成:激活介质、泵浦系统和光学腔。
-激活介质是产生激励能量的介质,如气体、液体或固体。
-泵浦系统是用来提供能量,并将大量原子或分子激发到激发态的装置。
-光学腔是由两个或多个高反射镜组成的光学结构,用来反射和放大光。
5.激光的放大激光的放大是通过在光学腔中来回传播,不断受到受激辐射的作用而增强光波的幅度。
通常,在光学腔中的一个镜子上镀膜,具有高反射率,而另一个镜子具有部分透射和部分反射的特性,用来逐渐放大光。
6.激光的增益介质增益介质是指能够提供光放大的介质,如气体(如CO2、氦氖)、固体(如Nd:YAG)或半导体(如激光二极管)等。
这些介质中的原子或分子通过与激励能量的相互作用,从而达到受激辐射的能量放大。
7.激光的产生方式激光可以通过多种方式产生,其中包括:-激光器:使用激光介质和泵浦系统来产生激光。
-激光二极管:使用半导体材料制成的二极管来产生激光。
-激光腔:使用自激振荡的原理来产生激光。
8.激光的应用激光具有广泛的应用领域,包括但不限于:-激光切割和焊接:激光切割和焊接用于金属加工、制造业等领域。
-激光打印:激光打印用于打印机和复印机等办公设备中。
激光原理 知识点
![激光原理 知识点](https://img.taocdn.com/s3/m/774e192cb94ae45c3b3567ec102de2bd9605decc.png)
激光原理知识点
激光原理的知识点包括:
1.黑体和黑体辐射:黑体是一种理想化的辐射体,黑体辐射是描述黑体发出的辐射规律的理论。
2.自发辐射、受激辐射和受激吸收:这是激光产生的基本过程。
即自发辐射产生光子,受激辐射放大光子,受激吸收则吸收光子。
3.光腔理论:涉及到光腔的稳定性条件、共轴球面腔的稳定性条件、开腔模式的物理概念和行射理论分析方法、高斯光東的基本性质及特征参数等。
4.电磁场和物质的共振相互作用:描述了光和物质相互作用的经典理论。
以及谱线加宽和线型函数等概念。
5.激光振落特性:涉及到激光的特性,如相干性好、方向性好、单色性好、亮度高,这些特性可以归结为激光具有很高的光子简并度。
6.光子简并度:是描述激光光子相干性的物理量。
7.光的多普勒效应:描述了光波在运动中由于光源和观察者的相对运动而产性频率变化的现象。
8.均匀增宽与非均匀增宽:描述了光谱线增宽的两种类型,均匀增宽通常是由于原子或分子的自然热运动引起的,而非均匀增宽则通常是由于原子或分子之间的碰撞弓|起的。
9.自然增宽和多普勒堵宽:自然增宽是由于原子或分子自旋的统计分布引起的,多普勒增宽是由于原子或分子的热运动引起的。
以上只是简单的列举,实际上激光原理所涵盖的知识点还有很多,需
要系统学习和实践。
制表:审核:批准:。
图文并茂知识点总结
![图文并茂知识点总结](https://img.taocdn.com/s3/m/057a504178563c1ec5da50e2524de518974bd35c.png)
图文并茂知识点总结激光技术是一种应用广泛的现代科技,它利用激光器产生的强烈光束进行各种物理、化学、生物和工程领域的研究和应用。
激光技术具有高亮度、单色性、高调制速度、高光束质量等优点,被广泛应用于医疗、通信、材料加工、测量、激光雷达等领域。
本文将对激光技术的原理、分类、应用领域等方面进行详细介绍。
激光技术的原理激光技术是利用能级布居反转原理产生的一种特殊光,它的产生基础是三个元素:增强腔、增益介质和能量泵浦。
激光器内有一个能量增益的介质,当外加能量使介质原子的电子跃迁至高能态时,使其处于非平衡态,利用受激辐射使一部分引起自发辐射,这些辐射在同样频率、同样相位和同样方向上增强产生激光。
激光器内的原子和离子都被激发到高能级,这样的反转能级布居被称为“布居反转”。
激光技术的分类激光技术根据其发射波长、激发方式和应用领域的不同,可以分为不同的类型。
按照波长分,可以分为紫外激光、可见光激光和红外激光;按照激发方式分,可以分为气体激光、液体激光、固体激光和半导体激光;按照应用领域分,可以分为工业激光、医疗激光、通讯激光和科研激光。
每种类型的激光技术都有其独特的特点和应用范围。
激光技术的应用领域激光技术广泛应用于医疗领域、工业领域、通信领域和科研领域。
在医疗领域,激光技术可以用于眼科手术、皮肤治疗和肿瘤治疗;在工业领域,激光技术可以用于材料切割、焊接和雕刻;在通信领域,激光技术可以用于光纤通信和激光雷达;在科研领域,激光技术可以用于原子分子物理、光学和激光化学等研究。
激光技术的应用领域不断扩大,为人类社会的进步和发展做出了重要贡献。
激光技术的发展趋势随着科技的不断发展,激光技术也在不断创新和进步。
未来,激光技术将会在医疗、生物、材料等领域发挥更大的作用。
例如,在医疗领域,激光手术技术将会更加精确和可靠;在生物领域,激光成像技术将会更加高效和高清晰度;在材料领域,激光制造技术将会更加灵活和可持续。
同时,激光技术的成本也将会更加低廉,使其更加广泛地应用于各个领域,并且会和其他相关技术相结合,从而产生更多创新的应用和产品。
激光原理考点总结
![激光原理考点总结](https://img.taocdn.com/s3/m/d53ddb24a88271fe910ef12d2af90242a895abd5.png)
激光原理考点总结激光(Laser)是指一种由集中的电磁辐射所产生的具有高度单色性、相干性和方向性的光。
激光原理是激光器工作的基础,其中涉及到激光的产生和放大过程。
下面将从以下几个方面总结激光原理的考点。
1.电磁辐射:激光器利用电磁辐射的原理产生激光。
电磁辐射是由电场和磁场相互作用产生的波动现象,包括广义上的光波,其中可见光是电磁辐射的一种。
了解光波的特性和传播方式对理解激光原理很重要。
2.反射和吸收:激光器中的反射是激光产生和放大的关键过程。
反射镜的设置可以实现光的反复来回传播,使得光能够在增益介质中多次通过,增强光的能量。
另一方面,激光器中的吸收是影响激光输出功率和效率的因素之一、吸收是指光被介质吸收和转化为热能的过程。
3.激射和跃迁:激射是指从低能级向高能级跃迁的过程。
在激光器中,通过能量输入或外部激发,使得电子从基态跃迁到激发态。
而跃迁是指电子从一个能级到另一个能级的过程。
了解能级和电子跃迁的类型对激光器的设计和调谐至关重要。
4.反转粒子数和增益:激光器中的反转粒子数是指在激光器工作过程中,高能级粒子数目大于低能级粒子数目的情况。
这种不平衡的粒子数分布是产生和放大激光的关键。
通过提供能量,例如光或电能,可以增加反转粒子数,增强激光的输出功率。
5.波长选择和模式锁定:激光器的波长选择是指产生特定波长的激光。
波长选择可以通过选择合适的增益介质和谐振腔的设计来实现。
激光器中的模式锁定是指使光场处于稳定、精确的频率和相位关系的状态。
这对于精密测量、光谱分析和通信应用非常重要。
6.激光器结构和组成:激光器的结构和组成也是激光原理的考点。
激光器通常包括三个主要部分:激活介质(液体、固体或气体)、谐振腔(用于反射和放大光)和泵浦源(提供能量,如光波或电流)。
不同类型的激光器具有不同的结构,如气体激光器、固体激光器和半导体激光器。
综上所述,激光原理的考点包括电磁辐射、反射和吸收、激射和跃迁、反转粒子数和增益、波长选择和模式锁定以及激光器的结构和组成。
激光原理复习知识点
![激光原理复习知识点](https://img.taocdn.com/s3/m/cf6ffc315727a5e9856a6137.png)
一 名词解释1. 损耗系数及振荡条件:0)(m ≥-=ααS o I g I ,即α≥o g 。
α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
2. 线型函数:引入谱线的线型函数p v p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。
按上式定义的v∆称为谱线宽度。
3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。
4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。
5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。
定义p v P w Q ξπξ2==。
ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。
v 为腔内电磁场的振荡频率。
6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。
这种使激光器获得更窄得脉冲技术称为锁模。
8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。
9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。
(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。
激光原理期末知识点总复习材料
![激光原理期末知识点总复习材料](https://img.taocdn.com/s3/m/5ad465bc900ef12d2af90242a8956bec0975a5c8.png)
激光原理期末知识点总复习材料激光原理是物理学和光学学科中的重要内容,它是现代科技发展的基础之一、下面是激光原理期末知识点的总复习材料。
1.激光的定义和概念:激光是指具有相干特性、能量集中、波长单一且紧凑的光束。
其与常规光的最大区别在于具有相干性和能量集中性。
2.激光的产生过程:激光的产生过程主要包括受激辐射和自发辐射。
受激辐射是指在外界光或电磁辐射的刺激下,原子或分子由基态跃迁到激发态并通过受激辐射返回基态时所发射的光。
自发辐射是指原子或分子自发地从激发态返回基态所发射的光。
3.光激发和电子激发的激光:根据产生激发所用的不同方法,激光可以分为光激发和电子激发的激光。
光激发的激光是通过外界光的能量传递使原子或分子激发并产生激光。
电子激发的激光是通过外界电子束或放电使原子或分子激发并产生激光。
4.激光功率和激光能量:激光功率是指单位时间内激光辐射出的能量,单位为瓦特(W);激光能量是指激光脉冲的总能量,单位为焦耳(J)。
5.激光的特性:激光具有相干性、方向性、单色性和高亮度等特性。
相干性是指激光的波长相近的光波的相位关系保持稳定,能够构成干涉图样。
方向性是指激光具有狭窄的发射角度,能够通过透镜等光学元件进行聚焦。
单色性是指激光具有非常狭窄的波长,具有很高的色纯度。
高亮度是指激光能够将能量集中在很小的空间范围内,能够产生很高的光功率密度。
6.激光器的结构和工作原理:激光器主要由激光介质、泵浦能源、光腔和输出镜组成。
激光介质是产生激光的核心部件,泵浦能源是提供激发条件的能源,光腔是激发介质形成激光放大的空间环境,输出镜是选择性反射激光光束的光学元件。
7.常见的激光器种类和应用:常见的激光器种类包括氦氖激光器、二氧化碳激光器、半导体激光器和固体激光器等。
激光器的应用非常广泛,包括科学研究、医学治疗、通信、激光加工和激光雷达等。
8.激光安全:激光具有较强的穿透力和燃烧能力,因此在使用激光器时需要注意安全。
激光安全主要包括对激光光束的防止散焦、眼睛和皮肤的防护、激光辐射的监测和控制等。
激光知识点总结
![激光知识点总结](https://img.taocdn.com/s3/m/6cfba054b6360b4c2e3f5727a5e9856a56122608.png)
激光知识点总结一、激光的工作原理激光是由激光管或半导体激光器等激光器件产生的一种特殊的光,其产生过程涉及到激发、放大和辐射三个过程。
激发过程是激光器内部能级的粒子被外部能量激发,处于高能级,即被激发态。
放大过程是被激发态的粒子受到反射膜的作用,在激光谐振腔内不断来回运动,使得光子通过受激辐射不断放大,形成激光能量。
辐射过程是形成激光光束的过程,激光能量通过谐振腔的光学放大产生足够的光强,经过半透过膜射出。
二、激光的分类根据激光器产生的机理、工作波长和应用领域不同,激光可以分为不同的类型。
常见的激光器包括气体激光器、固体激光器、半导体激光器等。
气体激光器主要包括CO2激光器、氩离子激光器等,工作波长主要在10.6微米和0.5微米左右。
固体激光器主要包括Nd:YAG激光器、Nd:YVO4激光器等,工作波长主要在1微米左右。
半导体激光器主要包括GaAs激光器、InGaN激光器等,工作波长主要在可见光和红外光区域。
三、激光的应用激光在各个领域都有着广泛的应用,包括医学、通信、材料加工等。
在医学领域,激光可以用于手术、治疗、检测等,例如激光近视手术、激光溶脂手术等。
在通信领域,激光可以用于光纤通信、激光雷达等,实现了信息的高速传输和大容量存储。
在材料加工领域,激光可以用于切割、焊接、打标等,高精度、高效率、非接触等优点,深受制造业的青睐。
四、激光的安全问题激光的应用虽然带来了很多便利,但同时也伴随着一些安全问题。
激光具有高能量密度、强聚焦性和直线传播性,如果被不当使用,可能会导致眼睛、皮肤等组织的损伤。
因此,在激光使用过程中,需要采取一系列的安全措施,包括佩戴防护眼镜、设置相应的警示标识、限制激光输出功率等,确保激光的安全使用。
总之,激光作为一种重要的光学技术,在科研和工程实践中有着广泛的应用,具有很高的经济和社会效益。
通过深入理解其工作原理、分类和应用等,可以更好地把握激光的特点和优势,更好地应用于实际工作中。
激光原理知识点总结
![激光原理知识点总结](https://img.taocdn.com/s3/m/5603af43773231126edb6f1aff00bed5b8f37349.png)
激光原理知识点总结激光的产生原理激光是一种与常规光具有本质不同的光。
它是通过一种叫做“受激辐射”的过程产生的,这是量子力学的一种结果。
激光的产生原理主要涉及三个主要过程:光的激发、光的放大和光的辐射。
首先是光的激发。
激光的产生需要通过能量输入来激发原子或分子的能级。
当外界能量激发物质的能级时,原子或分子的电子会从低能级跃迁到高能级,形成“受激辐射”所需的激发态。
然后是光的放大。
在受激辐射的过程中,当一个光子与处于激发态的原子或分子碰撞时,它会与其相互作用,导致后者释放出另一个同频率、同相位和同偏振的光子,并回到低能级。
这个新的光子与已有的光子具有相同的频率、相位和偏振,因此它们会在相互作用的同时相互放大,形成一支激光光束。
最后是光的辐射。
当受激辐射的过程一直不断地发生时,光子会在光学共振腔中来回反射,产生一支具有高度相干性、高亮度和高直线度的激光光束。
这种光具有很强的聚焦能力和穿透能力,因此在很多领域有着广泛的应用价值。
激光的特点激光具有以下几个主要特点:1.高度相干性。
激光光束的波长一致、频率一致、相位一致,因此具有很高的相干性。
这使得激光在干涉、衍射和频谱分析等方面具有很大的优势。
2.高亮度。
激光的辐射强度非常集中,因此具有很高的亮度。
这使得激光可用于制备高清晰度的成像系统和高精度的测量装置。
3.高直线度。
激光的传播路径非常直线,几乎不具有散射,因此具有很高的直线度。
这使得激光在通信、激光雷达和光刻等领域有着广泛的应用。
激光器件的工作原理和应用激光器件是产生激光光束的重要设备,其工作原理一般基于受激辐射过程。
目前常用的激光器件主要包括气体激光器、固体激光器、半导体激光器和光纤激光器。
气体激光器是将气体放电或者由光泵浦的气体装置转变成激光的光源。
其中最著名的就是氦氖激光器。
使用稳态直流电源或者交变电源将氦气充入放电管,并保持一定的氦气气压。
然后用电子束或者泵浦光源来使得氦原子激发至高能级,然后在碰撞的作用下通过受激辐射作用形成激光光束。
激光知识点归纳总结
![激光知识点归纳总结](https://img.taocdn.com/s3/m/5e60f2bef71fb7360b4c2e3f5727a5e9856a27a2.png)
激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。
2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。
3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。
4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。
二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。
2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。
3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。
4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。
三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。
2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。
3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。
4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。
5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。
6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。
四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。
2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。
3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。
4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。
激光原理复习总结
![激光原理复习总结](https://img.taocdn.com/s3/m/db148bbff121dd36a32d8235.png)
激光原理复习总结一、填空1、处于同一光子态的光子数叫做光子简并度,它具有以下四种含义为:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
2、光和物质共振相互作用的三个过程是自发辐射跃迁、受激吸收跃迁、受激辐射跃迁。
其中,跃迁几率只与原子系统性质相关的是自发辐射跃迁,既与原子系统性质相关又与周围辐射场相关的是受激吸收跃迁和受激辐射跃迁。
3、激光的四性包括高的单色性、高的方向性、高的相干性、高的亮度;总结起来,即激光具有高的光子简并度。
4、光学开腔的损耗大致可分为以下四类:几何偏折损耗、衍射损耗、腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗。
其中,与光模式相关的损耗包括几何偏折损耗、衍射损耗,称为选择性损耗,而与光模式关系不大的损耗有腔镜反射不完全引起的损耗、材料非激活吸收、散射、腔内插入物引起的损耗,称为非选择性损耗。
5、三能级系统所需的阈值能量比四能级所需的要大,损耗对小。
三能级系统的影响要比对四能级的影响。
6、激光调Q的目的是获得脉宽窄、峰值功率高的激光脉冲。
7、典型的稳频方法有兰姆凹陷稳频、可饱和吸收稳频(或反兰姆凹陷稳频 )、塞曼效应稳频、无源腔稳频(F-P标准具稳频)8、激光的频率稳定特性包含频率稳定性和频率复现性。
9、常用的激光调Q方法有机械转镜调Q、电光调Q、声光调Q、可饱和吸收调Q(被动调Q)、脉冲透射式调Q(腔倒空)。
10、为了实现单横模输出,常用的模式选择方法主要有光阑法选横模、谐振腔参数g、N选择法选横模、非稳腔选横模、微调谐振腔法选横模。
11、常用的单纵模选择法有短腔法、行波腔法、F-P标准具法(选择性损耗法)。
12、2N+1个纵模锁定后的峰值功率变为未锁模时得(2N+1)2倍,相邻锁模脉冲极大值的间隔为无源腔纵模间隔的倒数,每个锁模脉冲的宽度为无源腔纵模间隔的(2N+1)倍的倒数。
二、判断(错)3、激光的四大特性并非相互独立的。
激光原理复习总结要点
![激光原理复习总结要点](https://img.taocdn.com/s3/m/1fcc8a382bf90242a8956bec0975f46527d3a789.png)
激光原理复习要点 第一章 激光的基本原理一、激光的基本性质:1.光子的能量与光波频率对应νεh =;2.光子具有运动质量22ch cm νε==;3.光子的动量与单色波的波失对应k n mc p ==0;4.光子具有两种可能的偏振态,对应光波场的两个独立偏振方向;5.光子具有自旋,且自旋量子数为整数。
二、光子的相干性:1.相干性:在不同的空间点上,在不同的时刻的光波场的某些特性(例如光波场的相位)的相关性。
2.相干体积:在空间体积为c V 内的各点光波场都具有明显的相干性。
3.相干长度:光波波列的长度。
4.光源的单色性越好,则相干时间越长。
5.关于相干性的两个结论:(1)相格空间体积以及一个光波模式或光子偏振态占有的空间都等于相干体积。
(2)属于同一状态的光子或同一个模式的光波是相干的,不同状态的光子、不同模式的光波是不相干的。
三、光子简并度:同一状态的光子数、同一模式的光子数、处于相干体积的光子数、处于同一相格的光子数。
四、自发辐射:处于高能级的一个原子自发地向低能级跃迁,并发射出一个能量为νh 的光子,这种过程叫自发跃迁,由原子自发跃迁发出的光成为自发辐射。
五、受激辐射:处于上能级的原子在频率为ν辐射场作用下,跃迁至低能级,并辐射出一个能量为νh 的光子,受激辐射跃迁发出的光成为受激辐射。
六、受激吸收:处于低能级的一个原子,在频率为ν的辐射场作用下,吸收一个能量为νh 的光子并向高能级跃迁。
七、辐射跃迁:自发辐射跃迁、受激辐射跃迁,非辐射跃迁:受激吸收八、增益系数:用来表示光通过单位长度激活物质后光强增长的百分比。
()()z I dz z dI g 1=。
九、饱和增益:增益系数g 随着z 的增加而减小,这一现象称为饱和增益。
十、引起饱和增益的原因:1.光强I 的增加是以高低能级粒子数差的减小为代价的。
2.光强越大,高低能级的粒子数差减小的就越多,所以g 也随z 的增大而减小。
十一、光谐振腔的作用:1.模式选择,保证激光器单模振荡,从而提高相干性。
中考物理激光原理及应用复习知识梳理
![中考物理激光原理及应用复习知识梳理](https://img.taocdn.com/s3/m/68abcf3da36925c52cc58bd63186bceb19e8ed05.png)
中考物理激光原理及应用复习知识梳理激光(laser)是指由同种物质组成的光波在特定条件下产生的一种特殊光。
它具有单色性、相干性、方向性和高亮度等特点,被广泛应用于工业、医疗、通信、科学研究等领域。
在中考物理中,对激光的原理及应用有一定的考查,下面将对激光的原理和应用进行复习知识梳理。
一、激光的原理1. 激光的产生原理激光的产生是在激光器中,通过受激辐射产生的一个光子引起其他光子的受激辐射而形成的。
其主要过程包括:吸收能量、受激辐射、光子的逐渐增多、光子的任一激发态上处于较长时间等。
2. 激光的主要特性激光具有单色性、相干性、方向性和高亮度等特点。
其中,单色性是指激光的频率非常纯净,波长非常稳定;相干性是指所有的光波充分地想关联在一起,可以形成干涉图样;方向性是指激光辐射的光束非常集中,可以很容易地成为平行光束;高亮度是指激光所携带的能量集中在很小的空间内。
3. 激光器的基本组成激光器由激光介质、泵浦源、镜子、光学腔等组成。
其中,激光介质是激发光子的来源,泵浦源是为激光介质提供能量的源泵,镜子是构成激光光腔的光学元件,光学腔是放置激光介质和镜子的部分。
二、激光的应用1. 激光在医学中的应用激光在医学中有广泛的应用,包括激光治疗、激光手术和激光成像等。
其中,激光治疗主要用于癌症、眼科疾病和皮肤疾病等的治疗;激光手术主要用于激光近视手术、激光角膜塑形术等;激光成像主要用于超声激光成像、人体内部结构的观测等。
2. 激光在通信中的应用激光在光纤通信中起到了重要的作用。
激光通过纤维传输数据,使得信息传播速度更快、传输距离更远。
激光还可以用于激光雷达、激光测距等领域。
3. 激光在工业中的应用激光在工业中有广泛的应用,包括激光切割、激光焊接、激光打标、激光光刻等。
这些应用可以提高加工精度、提高加工效率、降低环境污染等。
4. 激光在科学研究中的应用激光在科学研究中的应用非常广泛,例如激光光谱分析、激光漫反射光谱等。
激光原理复习知识点
![激光原理复习知识点](https://img.taocdn.com/s3/m/ad4cf8494b73f242336c5f96.png)
一 名词解释1. 损耗系数及振荡条件: 0)(m ≥-=ααS o I g I ,即α≥o g 。
α为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
2. 线型函数:引入谱线的线型函数pv p v v )(),(g 0~=,线型函数的单位是S ,括号中的0v 表示线型函数的中心频率,且有⎰+∞∞-=1),(g 0~v v ,并在0v 加减2v ∆时下降至最大值的一半。
按上式定义的v ∆称为谱线宽度。
3. 多普勒加宽:多普勒加宽是由于做热运动的发光原子所发出的辐射的多普勒频移所引起的加宽。
4. 纵模竞争效应:在均匀加宽激光器中,几个满足阈值条件的纵模在震荡过程中互相竞争,结果总是靠近中心频率0v 的一个纵模得胜,形成稳定振荡,其他纵模都被抑制而熄灭的现象。
5. 谐振腔的Q 值:无论是LC 振荡回路,还是光频谐振腔,都采用品质因数Q 值来标识腔的特性。
定义p v P w Q ξπξ2==。
ξ为储存在腔内的总能量,p 为单位时间内损耗的总能量。
v 为腔内电磁场的振荡频率。
6. 兰姆凹陷:单模输出功率P 与单模频率q v 的关系曲线,在单模频率等于0的时候有一凹陷,称作兰姆凹陷。
7. 锁模:一般非均匀加宽激光器如果不采取特殊的选模措施,总是得到多纵模输出,并且由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模,但如果使各个振荡的纵模模式的频率间隔保持一定,并具有确定的相位关系,则激光器输出的是一列时间间隔一定的超短脉冲。
这种使激光器获得更窄得脉冲技术称为锁模。
8. 光波模:在自由空间具有任意波矢K 的单色平面波都可以存在,但在一个有边界条件限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波;这种能够存在腔内的驻波成为光波模。
9. 注入锁定:用一束弱的性能优良的激光注入一自由运转的激光器中,控制一个强激光器输出光束的光谱特性及空间特性的锁定现象。
(分为连续激光器的注入锁定和脉冲激光器的注入锁定)。
激光原理重要知识点总结
![激光原理重要知识点总结](https://img.taocdn.com/s3/m/d2fd8ec9b8d528ea81c758f5f61fb7360a4c2b52.png)
激光原理重要知识点总结一、光的增益作用光的增益作用是指当激光器原子、分子或离子受到外界激励时,电子由基态跃迁到激发态的过程,然后通过受激辐射过程,释放出同频的光子,光子与原子、分子或离子碰撞后,再次受激辐射产生的光子数量比刚开始辐射的光子相同,这样逐渐增加,形成激光。
1. 受激辐射当自由的电子和可激发的原子或离子发生碰撞时,后者的电子可以从较低的激发态跃迁到高的激发态,此时发射的辐射光子就与入射的引激光的频率相同。
这种过程称为受激辐射。
2. 反转分布在激光器的工作状态下,使激光材料中原子、分子或离子的激发态的密度大于基态的密度,这种特殊的能级布局称为反转分布。
只有当反转分布具有足够的时间持续性,才能形成激光输出。
二、激光共振腔激光共振腔是由两个反射镜构成的,其中一个为半透反射镜,另一个为全反射镜。
它的主要功能是将光共振在腔内,使得只有与激光器频率一致的光才得以通过反射镜输出,而其它频率的光则在腔内循环反射,形成激光输出。
激光腔外的泵浦装置则通过激发工作物质的原子或离子的跃迁将能量传递给激光材料,使得激光器能够继续工作。
三、激光输出当光共振在激光器内部形成激光,并且通过激光腔的半透反射镜输出激光后,激光通过调制器、色散系统、光阑以及辐射器等设备,再通过光阑进行空间裁剪,在目标面形成所需要的光斑。
激光在输出过程中还需要考虑各种参数的调节和控制,以保证激光输出质量。
总的来说,激光技术以其高亮度、高品质、高能量密度、高单色性、高直线偏振度和相干度等优异的特性,已经在通信、医学、材料加工、军事、精密定位等领域得到了广泛的应用。
同时,激光技术的应用也在不断地拓展中,为各行各业带来更多的机遇和挑战。
激光原理考试重点
![激光原理考试重点](https://img.taocdn.com/s3/m/44d7a100bc64783e0912a21614791711cc7979cf.png)
激光原理考试重点激光原理考试重点第一章激光的基本原理1.光子的波动属性包括什么?动量与波矢的关系?光子的粒子属性包括什么?质量与频率的关系?答:光子的波动性包括频率,波矢,偏振等。
粒子性包括能量,动量,质量等。
动量与波矢:质量与频率:2.概念:相格、光子简并度。
答:在六维相空间中,一个光子态对应的相空间体积元为,上述相空间体积元称为相格。
处于同一光子态的光子数称为光子简并度,它具有以下几种相同含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数3.光的自发辐射、受激辐射爱因斯坦系数的关系答:自发跃迁爱因斯坦系数:.受激吸收跃迁爱因斯坦系数:)。
受激辐射跃迁爱因斯坦系数:。
关系:;;为能级的统计权重(简并度)当时有4.形成稳定激光输出的两个充分条件是起振和稳定振荡。
形成激光的两个必要条件是粒子数反转分布和减少振荡模式数5.激光器由哪几部分组成?简要说明各部分的功能。
答:激光工作物质:用来实现粒子数反转和产生光的受激发射作用的物质体系。
接收来自泵浦源的能量,对外发射光波并能够强烈发光的活跃状态,也称为激活物质。
泵浦源:提供能量,实现工作物质的粒子数反转。
光学谐振腔:a)提供轴向光波模的正反馈;b)模式选择,保证激光器单模振荡,从而提高激光器的相干性。
6.自激振荡的条件?答:条件:其中为小信号增益系数:为包括放大器损耗和谐振腔损耗在内的平均损耗系数。
7.简述激光的特点?答:单色性,相干性,方向性和高亮度。
8.激光器分类:固体液体气体半导体染料第二章开放式光腔与高斯光束1.开放式谐振腔按照光束几何偏折损耗的高低,可以分为稳定腔、非稳腔、临界腔。
2.驻波条件,纵模频率间隔答:驻波条件:应满足等式:式中,为均匀平面波在腔内往返一周时的相位滞后;为光在真空中的波长;为腔的光学长度;为正整数。
相长干涉时与的关系为:或用频率来表示:.纵模频率间隔:不同的q值相应于不同的纵模。
腔的相邻两个纵模的频率之差3.光线在自由空间中行进距离L时所引起的坐标变换矩阵式什么?球面镜的对旁轴光线的变换矩阵?答:光线在自由空间中行进距离L时所引起的坐标变换矩阵式球面镜的对旁轴光线的变换矩阵:而为焦距。
激光原理复习资料整理总结
![激光原理复习资料整理总结](https://img.taocdn.com/s3/m/2491889768dc5022aaea998fcc22bcd126ff42c3.png)
第一章1.1900年,普朗克(M.Planck)提出辐射能量量子化假说,精确的解释了黑体辐射规律。
获得1918年诺贝尔物理学奖。
能量子概念:物质吸收和发射电磁能量是一份一份的进行的。
2.1905年,爱因斯坦(A. Einstein)为解释光电效应定律提出光量子假说。
获得1921年诺贝尔物理学奖。
光量子:简称光子或者photon,即光场本身的能量就是一份一份的。
3.光量子的概念(爱因斯坦):光量子简称光子或者photon,即光场本身的能量就是一份一份的。
爱因斯坦假设:光、原子、电子一样具有粒子性,光是一种以光速c运动的光子流,光量子假说成功地解释了光电效应。
光子(电磁场量子)和其他基本粒子一样,具有能量、动量和质量等。
粒子属性:能量、动量、质量;波动属性:频率、波矢、偏振4.光子既是粒子又是波,具有波粒二象性!5.属性:①光子的能量:ε=hv,普朗克常数: h=6.626x10−36J.s②光子的运动质量m:m=εc2=ℎvc2③光子的动量P⃑:P⃑=mcn0⃑⃑⃑⃑ =ℎvc n0⃑⃑⃑⃑ =ℎ2π2πλn0⃑⃑⃑⃑④光子的偏振态:光子具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。
⑤光子的自旋:光子具有自旋,并且自旋量子数为整数,处于同一状态的光子数目是没有限制的。
6.光子相干性的重要结论:①相格空间体积以及一个光波模式或光子状态占有的空间体积都等于相干体积②属于同一状态的光子或同一模式的光波是相干的,不同状态的光子或不同模式的光波是不相干的。
7.光子简并度:处于同一光子态的光子数称为光子简并度。
具有以下几种相同的含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
好的相干光源:高的相干光强,足够大的相干面积,足够长的相干时间(或相干长度)。
8.1913年,玻尔(Niels Bohr)建立氢原子结构模型,成功解释并预测了氢原子的光谱。
获得1922年诺贝尔物理学奖9.1946年,布洛赫(Felix Bloch)提出粒子数反转概念。
(完整版)激光原理简答题整理
![(完整版)激光原理简答题整理](https://img.taocdn.com/s3/m/f3a800302379168884868762caaedd3383c4b5ca.png)
(完整版)激光原理简答题整理1?什么是光波模式?答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。
这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。
2.如何理解光的相干性?何谓相干时间、相干长度?答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。
相干时间:光沿传播方向通过相干长度所需的时间,称为相干时间。
相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。
3?何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系?答:光子简并度:处于同一光子态的光子数称为光子简并度。
光子简并度有以下几种相同含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。
联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。
4?什么是黑体辐射?写出公式,并说明它的物理意义。
答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。
物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。
5. 描述能级的光学跃迁的三大过程,并写出它们的特征和跃迁几率。
答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。
特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。
b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为v,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。
激光原理复习知识点
![激光原理复习知识点](https://img.taocdn.com/s3/m/983320ae18e8b8f67c1cfad6195f312b3169ebaa.png)
激光原理复习知识点
激光(Laser)是一种特殊的光源,具有高亮度、高单色性和高直线度等特点,广泛应用于医疗、通信、材料加工等领域。
激光的产生是基于激光原理,本文将围绕激光原理展开复习,帮助读者更好地理解激光的工作原理及常见应用。
1. 光的特性:
光是电磁波的一种,具有波粒二象性。
在光学中,我们常常将光看作是一束光线,使得光的传播更易于理解。
光的主要特性包括波长、频率、振幅和相位等。
2. 激射过程:
激光的产生是通过光子在外部受激辐射的作用下,从处于激发态的原子或分子中重新退激而产生。
这个过程需要一种激光介质,如气体、固体或液体,以及与之匹配的能量源,如泵浦光源或电子束。
3. 受激辐射:
在激光介质中,经过泵浦作用,一部分原子或分子被激发到激发态。
当这些处于激发态的粒子受到外界能量刺激时,会从高能级跃迁到较低能级,释放出额外的光子,这就是受激辐射。
这些受激辐射的光子可以与其他激发态粒子进行相互作用,进一步增强受激辐射的效果。
4. 波导结构:
为了通过受激辐射实现激光的放大和反射,激光器通常采用波导结构。
波导结构允许激光光束在其中传播,而不会发生较大的损耗。
波导结构可以是导光纤、半导体器件或光学腔等形式。
5. 消谐:
在激光器中,为了保持单一频率的输出,需要进行消谐。
消谐可以通过调整激光介质的性质或使用消谐元件来实现。
消谐的目的是确保激光器输出的光具有较窄的频谱宽度,以便于在通信和光谱分析等应用中的有效使用。
6. 光的放大:。
激光原理知识点总结
![激光原理知识点总结](https://img.taocdn.com/s3/m/fde2b25e17fc700abb68a98271fe910ef02dae64.png)
激光原理知识点总结激光,这个在现代科技中扮演着重要角色的神奇存在,其背后的原理蕴含着丰富而深奥的科学知识。
接下来,让我们一起深入探索激光原理的奥秘。
首先,我们来了解一下什么是激光。
激光,全称为“受激辐射光放大”(Light Amplification by Stimulated Emission of Radiation),它具有高亮度、高方向性、高单色性和高相干性等显著特点。
要理解激光的产生,就不得不提到原子的能级结构。
原子中的电子处于不同的能级,就好像在不同的楼层上。
在正常情况下,电子处于低能级,也就是基态。
但当原子吸收了外界的能量,比如光能、电能等,电子就会被激发到高能级,这个过程称为“受激吸收”。
然而,处于高能级的电子并不稳定,它们会自发地跃迁回低能级,同时释放出能量,这个过程叫做“自发辐射”。
自发辐射发出的光方向是随机的,频率也各不相同。
但在特定条件下,处于高能级的电子受到一个外来光子的激发,会跃迁回低能级,并释放出一个与入射光子频率、相位、偏振方向和传播方向都相同的光子,这种现象被称为“受激辐射”。
受激辐射是激光产生的关键。
为了实现光的放大,也就是产生激光,我们需要有一个“增益介质”。
增益介质可以是气体、液体或固体,比如氦氖气体、红宝石晶体等。
在增益介质中,存在着大量处于高能级的原子,当外来光子通过时,会引发受激辐射,从而产生更多的相同光子,实现光的放大。
但仅仅有增益介质还不够,还需要一个光学谐振腔。
光学谐振腔通常由两块平行的反射镜组成,一块是全反射镜,另一块是部分反射镜。
光子在谐振腔内来回反射,只有那些满足谐振条件,即频率和相位与谐振腔匹配的光子才能被不断放大,最终从部分反射镜射出,形成激光。
在激光的产生过程中,还有几个重要的概念。
比如阈值条件,只有当增益大于损耗时,才能产生激光。
增益主要取决于增益介质的性质和激励水平,而损耗则包括反射镜的透射、吸收以及介质中的散射等。
另外,激光的模式也是一个重要的知识点。
激光原理考点总结
![激光原理考点总结](https://img.taocdn.com/s3/m/f90a16348f9951e79b89680203d8ce2f006665ea.png)
激光原理考点总结激光是一种特殊的光,具有高度的单色性、方向性和相干性。
其原理涉及光的发射、吸收和放大过程,同时也与原子、分子的能级结构有关。
以下是激光原理的一些重要考点总结。
1.激光的产生机制激光的产生是通过受激辐射过程实现的。
首先需要有一个激发源,如电流激励、光激励或化学激发。
该激发源提供能量,使散乱的原子或分子处于高能级。
然后,这些激发态粒子会通过受激辐射的过程,跃迁到低能级。
在跃迁的过程中,它们会辐射出与激发源同频率、相位一致的光子,从而形成激光。
2.激光的放大过程激光放大需要使用一个激光介质,其中包含大量的激发态粒子。
当激发源激发介质时,激发态粒子在介质中传播并与其他原子或分子发生碰撞。
在这些碰撞过程中,激发态粒子会通过受激辐射的过程辐射出同相、同频的光子,从而使光波的能量得以增加。
在辐射出的光子中,一部分会被吸收,而另一部分会继续在介质中传播,进一步增强光的能量。
通过这一连续的过程,激光的能量得以放大。
3.激光的构成激光由三个基本部分组成:激发源、激光介质和光学共振腔。
激发源提供能量,使介质中的原子或分子激发到激发态。
介质通过受激辐射的过程,将激发态粒子的能量转化为光子。
光学共振腔则用于放大和反射光子,从而形成激光束。
共振腔通常由两个反射镜构成,其中一个为半透镜,允许一部分光子透过。
4.激光的性质激光具有几个重要的性质。
首先是高单色性,即激光只有一种频率。
这是由于激发态粒子跃迁到低能级时,辐射出的光子具有唯一的能量差。
其次是方向性,激光束呈现出非常狭窄的发散度,可用于远距离通信和激光切割等应用。
最后是相干性,激光光波的振动方式高度一致,相位间的关系是稳定的。
5.激光的应用激光在许多领域中得到了广泛应用。
在医学中,激光可用于激光手术、皮肤治疗和眼科手术等。
在科学研究中,激光常用于光谱分析和原子物理实验。
激光也被用于通信技术,例如光纤通信和光盘。
此外,激光还可用于制造业,如激光切割、激光焊接和激光打印等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对了课本两遍,基本覆盖所有考点,部分小四字体重在辅助理解。
有填空、名词解释、计算、简答。
计算题四个中出三个。
↖(^ω^)↗第一章1、光的基本性质:波粒二象性;波动性(电磁波),粒子性(光子流)。
2、光与物质的相互作用有:自发辐射、受激辐射、受激吸收。
普通光源中(自发辐射)占主要;激光器中(受激辐射)占主要。
3、简答:自发辐射、受激辐射、受激吸收之间关系:A21n2dt+B21n2ρv dt=B12n1ρv dt在光和大量原子系统的相互作用中,三者是同时发生的。
在单位体积中,在dt时间内,由高能级E2通过自发辐射和受激辐射而跃迁到低能级E1的原子数,应等于低能级E1吸收光子而跃迁到高能级E2的原子数。
4、光谱的(线型)和(宽度)与光的(时间相干性)直接相关。
自然增宽的线型函数:f N(v)=A/(4π2(v-v0)2+(1/2τ)2)f N(v)表示在频率v附近单位频率间隔的相对光强随频率的分布。
A为比例常数。
所得谱线的自然增宽是因为作为电偶极子看待的原子做衰减振动而造成的谱线增宽。
5、(名词解释)光的多普勒效应:随着光源和接收器的相对运动而发生光源的频率发生改变(频移)称为多普勒效应。
运动对向接受体频率增高,背向接受体频率降低。
6、(名词解释)均匀增宽与非均匀增宽:均匀增宽:自然增宽和碰撞增宽中每一个原子所发的光对谱线内任一频率都有贡献,而且这个贡献对每个原子都是等同的,这种增宽为均匀增宽。
非均匀增宽:不同粒子对谱线不同频率部分的贡献不同, 即可分辨谱线线型哪一频带是由哪些特定粒子发射的(∵热运动速度矢量相同的粒子引起的频移相同)7、(简答)实现光的放大的条件:1)需要一个激励能源,用于把介质的粒子不断地由低能级抽送到高能级上去;2)需要合适的发光介质(激光工作物质),它能在激励能源的作用下形成n2/g2>n1/g1的粒子数密度反成分布状态。
8、(简答)产生激光的条件:1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构;2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转;3)有光学谐振腔,增长激光介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。
9、计算:已知氢原子第一激发态E2与基态E1之间能量差为1.64*10-18J,火焰(T=2700K)中含有1020个氢原子。
设原子按玻尔兹曼分布,且4g1=g2,求:(1)能级E2上的原子数n2为多少;(2)设火源中每秒发射的光子数为108n2,求光的功率为多少瓦。
答:(1)1923181221121011.3]27001038.11064.1exp[4----⨯=⨯⨯⨯-⨯=⇒=⋅⋅nnegngnkThν且202110=+nn可求出312≈n(2)功率=W918810084.51064.13110--⨯=⨯⨯⨯第二章1、(名词解释)稳定腔,不稳定腔:在光学谐振腔中,任一束傍轴光线在两反射镜之间来回不断反射,光在腔内来回反射过程中始终不离开谐振腔,使激光器能稳定的发射激光。
满足这一要求的腔称为稳定腔。
反之为不稳定腔。
2、(大题)三能级系统与四能级系统(工作原理、示意图与优缺点):1)实现上下能级之间粒子数反转产生激光的物理过程:三能级系统和四能级系统2)三能级系统:如图(2-4a),下能级E1是基态能级,上能级E2是亚稳态能级,E3为抽运高能级。
其主要特征是激光的下能级为基态,发光过程中下能级的粒子数一直保存有相当的数量。
会画图(2-4) 三能级系统和四能级系统示意图3)四能级系统:如图(2-4b),下能级E 1不是基态能级,而是一个激发态能级,在常温下基本上是空的。
其激励能量要比三能级系统小得多,产生激光要比三能级系统容易得多。
辅助理解:(获得激光需要激光上下能级形成粒子数反转,也就是上能级粒子数大于下能级粒子数。
泵浦粒子数到上能级是需要消耗能量的。
三能级系统的下能级是基级,必须将一半以上的粒子数泵浦到高能级上。
而四能级系统的下能级不是基态,可以很快排空,更容易形成粒子数反转。
)3、激光器的损耗(镜面损耗),(内部损耗)。
内部损耗:增益介质内部由于成分不均匀、粒子数密度不均匀或有缺陷而使光产生折射、散射等使部分光波偏离原来的传播方向,造成光能量的损耗。
镜面损耗:当强度为I 的光波射到镜面上,其中r 1I(或r 2I)反射回腔内继续放大,其它的部分均为损耗,包括t 1I(或t 2I)、镜面的散射、吸收以及由于光的衍射使光束扩散到反射镜范围以外造成的损耗,用a 1I(或a 2I)表示。
4、(计算)稳定谐振腔的两块反射镜,其曲率半径分别为R1=40cm,R2=100cm ,求腔长L 的取值范围。
答:cm L cm L L L R L R L 1401004001)1001)(401(01)1)(1(021≤≤≤≤⇒≤--≤⇒≤--≤或第三章1、自再现模:当两个镜面完全相同时(对称开腔),这种稳态场分布应在腔内经单程渡(传播)后,即可实现再现,这个稳定的横向场分布,就是激光谐振腔的自再现模。
辅助理解:镜1上的场分布,到达镜2时,由于衍射,要经历一次能量的损耗和场分布的变化,中间能量损失小,镜边缘损失大,每单程渡越一次,都会发生类似的能量损耗和场分布变化,多次往返后,从而逐渐形成中间强、边缘弱的基本不受衍射影响的稳态场分布,该稳态场分布一个往返后可“自再现”出发时的场分布,唯一变化是镜面上各点的场振幅按同样的比例衰减,各点相位发生同样大小的滞后。
横向场振幅分布和相位分布都均匀的平面波入射,经过多次孔阑的衍射影响后,二者都变得不再均匀,成为相对场振幅和相对相位分布都不受衍射影响的稳态场分布。
2、(简答)输出功率与诸参量之间的关系1) 输出功率P 与饱和光强Is 的关系: 两者成正比2) 输出功率P 与光束截面A 的关系: A 越大,P 越大;而高阶横模的光束截面要比基横的大3) 输出功率P 与输出反射镜的透射率t1的关系: 实际中总是希望输出功率大镜面损耗小,这要求t1大,a1(反射镜镜面损耗系数)小,使t1>>a1,但① t1过大又使增益系数的阈值G 阈升高,而如果介质的双程增益系数2LG0不够大将会导致腔内光强减小,使输出功率降低。
严重时使腔内不能形成激光。
② t1过小,虽然使G 阈降低光强增强,但镜面损耗a1I-(2L)也将增大。
最佳透射率:为了使激光器有最大的输出功率,必须使部分反射镜的透射率取最佳值,实际工作中总是用实验方法确定最佳透射率,再估计镜面损耗大小。
3、(计算)He-Ne 激光器的中心频率v0=4.74*1014Hz ,荧光线宽△)2()2(101121101a LG a a a LG t -=-=v=1.5*109Hz ,腔长L=1m 。
问可能输出的纵模数为多少?为获得单纵模输出,腔长最长为多少? 答:Hz L cq 88105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν 即可能输出的纵模数为=+1n 11个,要想获得单纵模输出,则:m c L L c q 2.0105.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。
第四章1、激光器输出的选模(选频)技术分为两个部分:1)激光纵模的选取,2)激光横模的选取。
前者对激光输出频率影响较大,能够大大提高激光的相干性,常常叫做激光的选频技术;后者主要影响激光输出的光强均匀性,提高激光的亮度,一般称为选模技术。
2、纵模的竞争:通过增益的饱和效应,使某个纵模逐渐把别的纵模的振荡抑制下去,最后只剩下该纵模的振荡的现象叫做“纵模的竞争”。
3、空间竞争:在均匀增宽激光器中,当受激辐射比较强时,也可能有比较弱的其它纵模出现,这种现象称为模式的“空间竞争”。
4、(填空/简答)单纵模的选取(方法及优缺点(这个总结的不好)):短腔法、法布里一珀罗标准具法、三反射镜法1)短腔法优点:简单。
纵模频率间隔和谐振腔的腔长是成反比的,要想得到单一纵模的输出,只要缩短腔长,使q ν∆的宽度大于增益曲线阈值以上所对应的宽度即可。
对He-Ne 激光器,只要做到腔长小于10cm ,就会得到单纵模的输出。
缺点:首先,由于腔长受到限制,激活介质的工作长度也相应受到限制,激光的输出功率必然受到限制。
这对于那些需要大功率单纵模输出的应用场合是不适合的。
其二,有些激光输出谱线荧光宽度很宽,若要加大到足够的纵模间宽度,势必要使腔长缩到很短,以致难于实现粒子数反转而不能输出激光。
2)法布里一珀罗标准具法这种方法就是在外腔激光器的谐振腔内,沿几乎垂直于腔轴方向插入一个法布里-珀罗标准具。
这种标准具是用透射率很高的材料制成的,两个端面研磨得高度平行,且镀有高反射率的反射膜。
这种反射膜由于多光束干涉的结果,对于满足条件的光具有极高的透射率。
把这样的标准具插入到激光器的腔内时,就可以起到选频的作用。
缺点:由于高选模性的标准具总要带来百分之几的透射损失,因此这种方法对于低增益的激光器(如He-Ne 激光器)不大合适,但对于高增益的激光器(如CO2激光器)则是十分有效的。
(3)三反射镜法激光器一端的反射镜被三块反射镜的组合所代替,其中镜3M 与4M 为全反射镜,2M 是具有适当透射率的部分透射部分反射镜,这个组合相当于两个谐振腔的耦合,一个谐振腔是由1M 与3M 组成,其腔长为L1+L2,另一个谐振腔由3M 与4M 组成,其腔长是L2+L3。
如果L2、L3 较短,就形成了一个短谐振腔和一个长谐振腔的耦合。
短谐振腔的纵模频率间隔是232()c L L νμ∆短=+ 长谐振腔的纵模频率间隔是122()c L L νμ∆长=+只有同时满足上面两个谐振条件的光才能形成振荡,故只要选取L2+L3足够小,就可以获得单纵横输出。
5、激光单横模的选取:1)光阑法2)聚焦光阑法3)腔内望远镜法6、(名词解释)衍射损耗:通过求解激光谐振腔的自再现模积分方程得到,在激光谐振腔内振荡的基横模是高斯光束,其光振幅和光强分布在与光轴垂直的平面上呈高斯函数形式,一直延伸到离光轴无限远处。
因此,由于反射镜的有限尺寸的限制,每一次反射都会有一部分光能衍射到镜面之外,造成能量损失。
这种由于衍射效应形成的光能量损失称为衍射损耗。
7、腔内望远镜法优点: (1)能充分利用激光工作物质,获得较大功率的基模输出。
(2)可通过调节望远镜的离焦量得到热稳定性很好的激光输出。
(3)输出光斑大小适当,不致损伤光学元件。
8、频率的漂移:一个激光器通过选模获得单频振荡后,由于内部和外界条件的变化,谐振频率仍然会在整个线型宽度内移动。
这种现象叫做“频率的漂移”。