核电发展可分为四代

合集下载

第四代核电技术

第四代核电技术
第四代核电技术
第四代核电技术
1.第四代核电技术的概念 把五、六十年代建造的验证性核电站称为第一代;70、80 年代标准化、系列化、批量建设的核电站称为第二代;第 三代是指90年代开发研究成熟的先进轻水堆;第四代核电 技术是指待开发的核电技术,其主要特征是防止核扩散, 具有更好的经济性,安全性高和废物产生量少。 2.第四代核电技术的性能要求 第四代核电站14项基本要求。(1)关于经济性的有3条: 要有竞争力的发电成本,其母线发电成本为3美分/kWh; 可接受的投资风险,比投资小于1000美元/kW;建造时间 (从浇注第一罐混凝土至反应堆启动试验)少于3年 。
2. 铅合金液态金属冷却快堆系统LFR
LFR 系统具有快中子能谱。铅或铅/铋共晶液态金属 冷却反应堆拥有一个能有效增殖铀和管理锕系元素的闭 合燃料循环,该循环可以把锕系元素进行完全燃料再循 环,拥有主要或局部燃料循环设施。反应堆系统采用自 然对流循环,冷却出口温度为550, 如果采用先进的耐 热材料出口温度可以提高到800 。
Байду номын сангаас6.超高温气冷反应堆系统VHTR
VHTR 是一个一次通过铀燃料循环的石墨慢化 氦冷却反应堆系统,堆芯出口温度为1000。该系统 可以应用诸如生产氢产品石化工业热处理或其它供 热领域。该反应堆热功率为600MWt ,热处理在与 堆芯连接的中间热交换器中进行 。VHTR 系统是为 高效系统设计的,它可为高温能量密集系统提供热 处理,没有发电过程。该系统也可以与发电设备相 结合,满足热电联供的需要。该系统还可采用U/Pu 燃料循环,减少放射性废物。因此VHTR 提供了一 个广泛热处理应用空间和高效发电的选择方案同时 保留了模块化高温气冷反应堆所有安全性能 。
(2)有5条是关于核安全和辐射安全的:非常低的堆芯破 损概率;任何可信初因事故都经验证,不会发生严重堆芯 损坏;不需要场外应急;人因容错性能高;尽可能小的辐 射照射。(3)关于核废物有3条:要有完整的解决方案; 解决方案被公众接受;废物量要最小。 (4)关于防核扩 散的有3条:对武器扩散分子的吸引力小;内在的和外部 的防止核扩散能力强;对防止核扩散要经过评估。 由上看出,第四代核电站的要求突出了防止核扩散问 题,没有考虑核燃料循环和核资源问题,而这两个问题是 涉及核能可持续发展的重大问题 3.设想发展进度 当前的主要任务是研究确定第四代核电的性能要求,逐步

第四代核能技术的发展

第四代核能技术的发展

第四代核能技术的发展随着全球对可再生能源的需求不断上升,核能作为一种清洁且高效的能源形式,重新回到了人们的视野中。

对于核能技术的研究与发展,特别是第四代核能技术,正成为各国能源战略的重要组成部分。

本文将深入探讨第四代核能技术的发展历程、特点、优势以及未来展望。

一、第四代核能技术的背景核能自20世纪中期开始广泛应用以来,经历了三代技术的发展。

前三代核电技术主要集中在提高反应堆效率和安全性方面,但仍然面临一些核心挑战,包括安全隐患、放射性废物处理和资源利用效率等问题。

在这种背景下,科学家们逐渐提出了第四代核能技术的概念,希望通过新型设计和材料,解决这些老问题。

二、第四代核能技术的主要特点第四代核能技术主要以高温气冷堆(HTGR)、快堆(SFR)、熔盐堆(MSR)和超临界水堆(SCWR)等为代表,其主要特点包括:1. 更高的安全性现代第四代核反应堆在设计上强调主动与被动安全机制。

被动安全系统依赖于自然的物理现象,如重力和热传导,能够在发生突发事件时自动采取措施,保护反应堆及周边环境。

例如,熔盐堆在高温下的液态盐冷却系统,不会发生“核心熔毁”事件,大大提高了运行安全性。

2. 更低的放射性废物产出第四代核能技术通过采用混合氧化物燃料(MOX)和钍燃料循环等方式,实现了更高的燃料利用效率,从而减少了放射性废物的产生。

例如,快中子反应堆能够充分利用铀-238,降低可用燃料的消耗并减少长半衰期放射性同位素的生成。

3. 更高的燃料利用率相较于传统反应堆,第四代核能技术的设计目标是最大限度地提高燃料利用率。

快堆等反应堆通过对铀、钚等可再生资源进行有效增殖,不仅可以减少对稀缺铀矿的依赖,还能够实现“燃料循环经济”,推动资源最优配置。

4. 多样化的应用形式第四代核能技术不仅仅局限于传统发电,它还具备广泛的应用潜力,如用于海水淡化、高温气冷堆还可用于工业过程中的热源需求。

在一些缺水或能源匮乏地区,核能应用可以显著提升地区的发展水平。

第四代核电技术 参数

第四代核电技术 参数

第四代核电技术参数1.引言1.1 概述第四代核电技术是指相对于第三代核电技术而言的一种新一代的核能发电技术。

随着社会的发展和能源需求的增加,人们对于核电技术提出了更高的要求和期望。

第四代核电技术应运而生,旨在提高核能的利用效率、安全性、环保性和经济性。

与第三代核电技术相比,第四代核电技术具有许多突出特点。

首先,它采用了更先进的反应堆设计,能够更高效地转化核能为电能。

其次,第四代核电技术拥有更高的安全性能,采用了更多的被动安全系统,使其在应对突发事件时具有更强的抗灾能力。

此外,该技术还具有极强的环保性,能够大幅减少核废物的产生,并降低对环境的影响。

最后,第四代核电技术的经济性也得到了极大的改善,其建设、运营和维护成本相对较低,且具有更长的运行寿命。

第四代核电技术的出现将为解决能源短缺和环境污染问题提供新的解决方案。

它不仅能够满足日益增长的能源需求,还能够减少传统能源产生的污染物排放,从而保护环境和人类健康。

此外,由于第四代核电技术具有更高的安全性和抗灾能力,它将在一定程度上减少人类对核能的恐惧和担忧,为核能发展打开更加广阔的前景。

综上所述,第四代核电技术作为一种新兴的核能发电技术,具有较高的发展前景。

它的出现不仅能够提高核能的利用效率和安全性,还能够减少环境污染和核废物的产生,并降低能源的开采成本。

相信随着技术的不断进步和应用的推广,第四代核电技术将在未来发展中起到越来越重要的作用。

1.2 文章结构文章结构部分内容如下:本文主要分为三个部分进行讨论,即引言、正文和结论。

在引言部分,首先对第四代核电技术进行概述,介绍其在能源领域的重要性和发展现状。

接着,说明本文的结构,简要介绍各个部分所涉及的内容和目的。

最后,明确本文的目的,即通过对第四代核电技术参数的探讨,揭示其在未来的前景和应用价值。

正文部分将分为两个部分进行阐述。

首先,讨论第四代核电技术的背景,介绍其起源和发展历程。

这一部分将概述第四代核电技术的研究和应用情况,重点探讨其在提高能源利用效率、减少核废料产生和提高核安全性等方面的优势。

第四代核能技术的发展

第四代核能技术的发展

第四代核能技术的发展核能作为一种重要的清洁能源,近年来在全球范围内得到了广泛的关注和应用。

随着人类对可持续发展目标的重视,传统核能技术逐渐显露出其安全性、经济性及环境友好性的问题。

而第四代核能技术应运而生,旨在克服现有核能技术的短板,提升核能的安全性和利用效率。

本文将深入探讨第四代核能技术的发展背景、特征、核心技术及其未来前景。

发展背景自20世纪50年代以来,核能技术经历了三个主要的发展阶段:第一代核电站主要用于研究和实验,第二代核电站则开始商业发电,第三代核电站在安全性和经济性方面进行了改进。

尽管第三代技术在一定程度上提高了核电站的安全性,但 Fukushima 核事故以及其他事故的发生,再次引发了对核安全的严重担忧,促使科研人员对第四代核能技术展开研究。

与此同时,全球气候变化问题日益严重,各国对减少温室气体排放的需求愈加迫切。

作为一种低碳能源,核能被视为实现这一目标的重要途径。

因此,开发更加安全、高效、可持续的第四代核能技术成为了科研界和政府部门的重要任务。

第四代核能技术的特征第四代核能技术具有以下几个显著特征:安全性:第四代核反应堆设计充分考虑了安全因素,通过引入主动和被动安全系统,有效地提高了反应堆在极端情况下(如地震、洪水等自然灾害或人为事故)下的安全性。

例如,一些设计采用自然循环冷却系统,当发生事故时,反应堆会自动停堆,从而避免可能发生的熔毁。

高效性:相较于前几代反应堆,第四代反应堆能够更有效地利用燃料,有望达到超过90%的燃料利用率。

这一特性不仅有助于减少对铀资源的消耗,还可以显著降低放射性废物的产生。

可持续性:第四代核电站以其高效的燃料循环,可以利用各种类型的燃料,包括“钍-铀”循环等,从而提升能源转化效率。

此外,第四代反应堆还可以利用已经存在的中短期废物进行发电,实现资源再利用。

灵活性:第四代核能技术可以与其他可再生能源以及传统能源形式相结合,例如与太阳能、风能等,并能够适应不同规模的需求。

核电发展 政策梳理

核电发展 政策梳理

核电发展政策梳理一、核能政策核能政策是推动核电发展的基础,主要包括以下几个方面:1.核能定位:明确核能在国家能源战略中的定位,将其作为长期、稳定、可靠的清洁能源,以满足经济社会发展的能源需求。

2.核能发展战略:制定核能发展战略,明确核能发展的目标、重点任务和保障措施,推动核电的可持续发展。

3.核能科技研发:加强核能科技研发,提高核能技术水平和核心竞争力,推动核能产业的创新发展。

二、核电技术政策核电技术政策是推动核电发展的关键,主要包括以下几个方面:1.核电技术路线:确定适合国情的核电技术路线,包括第三代、第四代核电技术等,以提高核电的安全性和经济性。

2.核电设备国产化:推动核电设备国产化,提高自主创新能力,降低核电成本,增强核电产业的竞争力。

3.核电技术研发:加强核电技术研发,提高核电技术的水平和成熟度,推动核电技术的创新发展。

三、核电安全政策核电安全政策是推动核电发展的前提,主要包括以下几个方面:1.核安全监管:建立健全核安全监管体系,加强对核设施、核活动的监管,确保核安全。

2.核应急管理:建立完善的核应急管理体系,加强核应急能力建设,提高应对核事故的能力。

3.核安全文化建设:加强核安全文化建设,提高从业人员的安全意识和安全素质,确保核电安全稳定运行。

四、核电环保政策核电环保政策是推动核电发展的重要因素,主要包括以下几个方面:1.放射性废物处理与处置:建立完善的放射性废物处理与处置体系,确保放射性废物的安全处理和处置。

2.环境保护监测:加强对核设施周围环境的监测,确保核设施对环境的影响在可接受范围内。

3.公众参与与信息公开:加强公众参与和信息公开,提高公众对核电的认知和理解,增强公众对核电的信任和支持。

五、核电产业政策核电产业政策是推动核电发展的保障,主要包括以下几个方面:1.产业链完善:完善核电产业链,包括设备制造、技术研发、工程建设、运营管理等环节,提高产业整体竞争力。

2.产业集聚发展:推动核电产业集聚发展,形成产业集群和产业基地,提高产业集聚效应和规模效应。

探秘核电“宝贝”华龙一号:身穿盔甲 不怕撞震(图)

探秘核电“宝贝”华龙一号:身穿盔甲 不怕撞震(图)

图①ACP1000单堆效果图。

图②建设中的“华龙一号”机组。

图③ACP1000双堆效果图。

(资料照片)最近“华龙一号”可是火了!今年4月15日,李克强总理主持召开国务院常务会议,决定核准建设“华龙一号”三代核电技术示范机组。

此后,“华龙一号”这一名词经常出现在人们的视野之中。

到底这“华龙一号”是什么?与其他核电站有何不同?为何核电领域视它为宝?《经济日报》记者一一为您解答。

师出名门功力高深普通人对核能总有一种神秘感。

几千年来人类一直都在为扩大能源、提高自己驾驭自然界的能力而奋斗。

在掌握原子能以前,人类利用的几乎一切能源,如煤炭、石油等归根结底都来自太阳的辐射。

种种能源转换和传输只是分子和原子的重新组合,不涉及原子核内部结构变化。

人类到20世纪初才逐渐认识原子核。

人为地促使原子核内部结构发生变化,释放出其中蕴藏的巨大能量。

但真正得以应用,是20世纪40年代才实现的,这也是原子能工业的开端。

目前,核电与火电、水电一起构成世界3大电力支柱。

核电厂与火电厂的运行原理其实是相同的,都是用蒸汽推动汽轮机、带动发电机发电,区别在于火电厂依靠燃烧化石燃料释放的热能来产生蒸汽,核电厂则依靠核燃料的核裂变反应释放的核能来产生蒸汽。

也就是说火电厂烧的是煤,而核电厂常用的核燃料是铀-235。

铀的能量巨大,一吨铀-235的原子核裂变可以释放出相当于270万吨标准煤燃烧所放出的能量。

我们总是听报道说到第几代核电站,那么核电站又是如何划分的呢?自1954年,前苏联建成电功率为5兆瓦的实验性核电站以来,核电技术的发展可以划分为第一、二、三、四代。

第一代核电站是指各国在20世纪50年代开发建设的实验性原型核电站,证明了利用核能发电的技术是可行的。

第二代核电站是指20世纪70年代至现在正在运行的大部分商业核电站,证明了发展核电在经济上是可行的。

第三代核电站是指满足《美国用户要求文件(URD)》或《欧洲用户要求文件(EUR)》,具有更高安全性的新一代先进核电站技术。

探秘最安全核电站:能抵御17级台风、9级地震

探秘最安全核电站:能抵御17级台风、9级地震

探秘最安全核电站:能抵御17级台风、9级地震作者:来源:《新传奇》2022年第14期团队给华龙一号设计了双层安全壳,其用料和结构都是现有核电技术里的最高级别,可以抵御大型飞机的撞击。

此外,华龙一号还可以抵御17级台风、9级烈度地震的侵袭,在安全、技术和经济指标上达到或超过了国际三代核电用户需求。

3月25日,中国自主三代核电“华龙一号”示范工程第2台机组——中核集团福清核电6号机组正式具备商业运行条件。

至此,“华龙一号”示范工程全面建成投运。

消息一出,世界瞩目。

华龙一号是当前核电市场接受度最高的三代核电机型之一,其全面建成标志着我国核电技术水平和综合实力跻身世界第一方阵。

实现了由“中国制造”向“中国创造”的飞跃什么是三代核电站?自1954年蘇联建成电功率为5兆瓦的实验性核电站以来,核电技术的发展可以划分为四代:第一代核电站是指各国在20世纪50年代开发建设的实验性原型核电站,证明了利用核能发电的技术是可行的;第二代核电站是指20世纪70年代至今正在运行的大部分商业核电站,证明了发展核电在经济上是可行的;第三代核电站是指满足《美国用户要求文件(URD)》或《欧洲用户要求文件(EUR)》,具有更高安全性的新一代先进核电站技术;第四代核电技术是在反应堆和燃料循环方面有重大创新的核电站,它着眼于核能更长远的发展,但最快也要在2030年后才能开始商业应用。

设计和建造核电站是极其复杂的超级工程,涵盖上千个系统,仅设计图纸就超十万张。

每更改一个数据,就意味着需要重新进行一轮分析和计算。

正因如此,国际上大部分三代核电首堆建设都陷入了拖期泥潭。

但华龙一号却创造了建设工期的世界纪录——以68个月的最短周期打破“首堆必拖”的魔咒,成为全球首个按期投产的三代核电首堆。

华龙一号能按期推进,秘诀就藏在中国30余年不间断建设核电的积累里。

从过去建设核电站用的地板砖、水泥都要进口,到三代核电拥有“中国芯”。

目前,我国核电建设有716件国内专利、80件国外专利,覆盖设计、制造、建设、调试等全部领域,只为核心关键设备不受制于人。

核电设备名词及主要系统简介

核电设备名词及主要系统简介

核电设备名词及系统简介1、装备制造业名词:RCC-M 来源:发改委RCC-M是法国《压水堆核岛机械设备设计和建造规则》的简称,由法国核岛设备设计和建造规则协会(AFCEN)为规范法国压水堆核电站机械设备设计和建造而编制,已被法国政府采纳,是法国核电标准RCC系列的一个分支。

RCC系列(RCC-C、RCC-E、RCC-M、RCC-MR和RSE-M五部分)规范标准的原始基础是美国轻水堆核电标准,法国在20世纪70年代初期引进了美国西屋公司的90万千瓦级核电机组技术,启动了压水堆核电发展计划,按照美国ASME-III等标准陆续建成一批90万千瓦级核电机组。

为适应法国核安全管理的要求并根据工业实践经验和业主(EDF)对制造和检测的要求,法国相关部门对引进的标准增设了相关的附加规定。

此后,法国相关部门又把附加规定与设计和建造标准全部收集到一套完整的文件中。

这就是RCC系列标准的由来。

自1980年10月出版第一版以来,应法国国内及国外项目建设的需要,AFCEN不断对RCC-M进行升级或补遗,截至目前最新版本2007版,共计有7个版本。

RCC-M是针对不同核电项目建设而不断进行升级的。

在RCC-M标准的使用过程中,世界上任意一家使用方均可提出修改要求。

AFCEN定期举行小型会议(每年10~20次),由50~100个会员参加,综合考虑各种情况和问题,如法规和涉及标准的变化、国际范围内管理要求的更新以及工业发展情况等对RCC-M标准进行更新。

RCC-M主要用于安全级设备,在法国和其他国家(如中国)供买卖双方在合同签订时作为依据性文件使用。

RCC-M中所给出的规则主要借鉴了"ASME锅炉及压力容器规范"第III卷核动力装臵设备(NB、NC、ND、NG、NF)各篇的有关内容,并吸收了法国在工业实践中取得的成果。

RCC-M所给出的制造和检验规则是法国本身核工业实践经验的具体体现,这些规则是法国对外出口技术的承诺。

核电发展经历4个阶段

核电发展经历4个阶段

核电开展经历4个阶段1954年,前苏联建成了世界上第一座核电机组,人类进入了和平利用核能的时期。

从世界核电开展历程来看,大致可分为4个阶段:实验示范阶段、高速开展阶段、减缓开展阶段和开场苏醒阶段。

1.实验示范阶段(1954-1965年)1954-1965年间世界共有38个机组投入运行,属于初期原型反应堆,即“第一代〞核电站。

期间,1954年前苏联建成世界上第一座核电站—5MW实验性石墨滚水堆;1956年英国建成45MW原型天然铀石墨气冷堆核电站;1957年美国建成60MW原型压水堆核电站;1962年法国建成60MW天然铀石墨气冷堆;1962年加拿大建成25MW天然铀重水堆核电站。

2.高速开展阶段(1966-1980年)1966-1980 年间,世界共有242个机组投入运行,属于“第二代〞核电站。

由于石油危机的影响和被看好的核电经济性,核电得以高速开展。

期间,美国成批建造了500-1100MW的压水堆、滚水堆,并出口其他国家;前苏联建造了1000MW石墨堆和440MW、1000MWVVER型压水堆;日本、法国引进、消化了美国的压水堆、滚水堆技术;法国核电发电量增加了20.4倍,比例从3.7%增加到40%以上;日本核电发电量增加了21.8倍,比例从1.3%增加到20%。

3.减缓开展阶段(1981-2000年)1981-2000年间,由于1979年美国三哩岛和1986年前苏联切尔诺贝利核事故的发生,直接致使了世界核电的停滞,人们开场从头评估核电的平安性和经济性。

为保证核电厂的平安,世界各国采取了增加更多平安设施、更严格审批制度等办法,以确保核电站的平安靠得住。

4.开场苏醒阶段(21世纪以来)21 世纪以来,随着世界经济的苏醒,和愈来愈严重的能源、环境危机,促使核电作为清洁能源的优势又从头显现,同时通过连年的技术开展,核电的平安靠得住性进一步提高,世界核电的开展开场进入苏醒期,世界各国都制定了踊跃的核电开展计划。

四代核电技术

四代核电技术

四代核电技术核电技术起步于上世纪中期,迄今已发展至第三代,第四代核电技术尚处于开发阶段。

总体而言,60年来,核电技术一代比一代安全。

第一代核电技术:即早期原型反应堆,主要目的是为通过试验示范形式来验证核电在工程实施上的可行性。

上世纪50年代中期至60年代初,苏联建成5兆瓦石墨沸水堆核电站,美国建成60兆瓦原型压水堆核电站,法国建成60兆瓦天然铀石墨气冷堆核电站,加拿大建成25兆瓦天然铀重水堆核电站,这些核电站均属于第一代核电站,最终发现轻水堆(包括压水堆和沸水堆)实用优势明显,轻水堆也因此成为核电发展的主线。

第一代核电站现已退出历史舞台,不再使用。

第二代核电技术:上世纪60年代中期以后投入运行的大部分核电站是基于第二代核电技术,它实现了商业化、标准化等,包括压水堆、沸水堆和重水堆等,单机组的功率水平在第一代核电技术基础上大幅提高,达到千兆瓦级。

在第二代核电技术高速发展期,平均17天就有一座核电站投入运行,主要原因是在当时石油危机的背景下,人们普遍看好核电。

美、苏、日和西欧各国均制定了庞大的核电规划。

美国成批建造了500至1100兆瓦的压水堆、沸水堆,并出口其他国家;苏联建造了1000兆瓦石墨堆和440兆瓦、1000兆瓦VVER型压水堆;日本和法国引进、消化了美国的压水堆、沸水堆技术,其核电发电量均增加了20多倍。

1979年美国三里岛核电站事故和1986年苏联切尔诺贝利核电站事故催生了第二代改进型核电站,其主要特点是增设了氢气控制系统、安全壳泄压装置等,安全性能得到显著提升。

此前建设的所有核电站均为一代改进堆或二代堆,如日本福岛第一核电站的部分机组反应堆。

我国目前运行的核电站大多为第二代改进型。

第三代核电技术:指满足《美国用户要求文件(URD)》或《欧洲用户要求文件(EUR)》,具有更高安全性、更高功率的新一代先进核电站。

比如,URD对新建核电站的主要要求包括:功率更大(1000至1500兆瓦);寿命更长(由40年延长至60年);建设周期更短(48至52个月);经济性更好(造价大幅度降低);安全性更高。

核电的发展历程

核电的发展历程

核电的发展历程
核电的发展历程可以追溯到20世纪中期。

1951年,Soviet Union建成世界上第一座商业核电站,它被称为“俄国第一号”(Obninsk)。

此后,核能技术得到了全球范围内的迅速发展和应用。

1954年,美国建成了世界上第一个以商业用途为目的的核电站“艾奥那(Shippingport)”,标志着核能技术的商业化浪潮正式开始。

1960年代至1970年代,核电站的建设热潮在世界范围内迅速展开。

这一时期,核电厂的建设速度相当快,预计核能将成为全球未来主要的能源供应方式之一。

然而,在20世纪70年代末至80年代初,核电产业发展遭遇了“三座核电站”事件的打击。

这三座核电站分别是美国的Three Mile Island核电站事故、苏联的切尔诺贝利核电站事故以及日本的福岛核电站事故。

这些事故导致人们对核能的安全性产生了质疑,核电产业陷入了停滞期。

然而,随着时间的推移和技术的改善,核电产业逐渐恢复。

目前,世界各国继续建设和运营核电站,核能仍然被认为是一种重要的清洁能源选择。

除了传统的压水堆(Pressurized Water Reactor,PWR)和沸水堆(Boiling Water Reactor,BWR)之外,第三代和第四代核电技术也在不断发展,以提高核能的安全性和效能。

可以预见,随着技术的不断创新和进步,核电的发展历程将继续演进,为可持续能源提供长期可持续的解决方案。

核能的发展趋势

核能的发展趋势

核能的发展趋势
核能的发展趋势主要包括以下几个方面:
1. 高温气冷堆技术的应用:传统核电站主要使用水冷堆技术,但其在燃料利用率、安全性等方面仍面临一些挑战。

高温气冷堆技术可以提高燃料利用率、增强安全性,并具备灵活性和可持续性,因此具有较大的发展潜力。

2. 第四代核能技术的研发:第四代核能技术包括钍基堆、气冷快堆、盐冷快堆等,具有更高的经济性、安全性和可持续性。

目前,相关技术正在不断研发和改进中,并有望在未来取得重要突破。

3. 小型模块化反应堆(SMR)的发展:SMR是指具有更小型、更灵活的反应堆单位,可以更好地适应多样化和分散化的能源需求。

SMR较传统核电站成本更低、建设周期更短,还具有更高的灵活性和安全性,并且可与可再生能源相结合,因此在未来可能得到更广泛的应用。

4. 核废料处理技术的改进:核能发展的一个重要问题是处理和处置核废料。

目前,人们正在研究和开发新的核废料处理技术,如核废料转化和再处理技术,以减少核废料的数量和危害,并寻找更安全的处置方法。

5. 核能与可再生能源的融合发展:核能作为一种低碳能源,具有稳定、可靠的特点,可以与可再生能源相互补充。

未来,人们将更加注重将核能与可再生能源
相结合,实现能源的多元化和可持续发展。

总的来说,核能的发展趋势是朝着高效、安全、可持续的方向发展,同时与可再生能源相结合,以满足未来能源需求和应对气候变化的挑战。

四代核电如何划分

四代核电如何划分

四代核电如何划分
【相关行业招聘信息尽在—北*极*星*电*力*招*聘*网—】
第一代:1954年,前苏联建成电功率为5000千瓦的实验性核电站,切尔诺贝利核电厂的石墨水冷堆核电机组即为第一代核电机组。

第二代:上世纪60年代后期,在实验性和原型核电机组基础上,陆续建成电功率在30万千瓦以上的压水堆、沸水堆、重水堆等核电机组。

目前世界上商业运行的400多座核电机组大部分是第二代核电机组。

第三代:上世纪90年代,美国和欧洲先后出台文件明确了防范与缓解严重事故、提高安全可靠性等方面的要求。

国际上通常把满足这两份文件之一的核电机组称为第三代核电机组。

AP1000即为第三代核电。

第四代:安全性和经济性将更加优越,废物量极少,无需厂外应急,并具备固有的防止核扩散的能力。

电新丨核电,清洁能源的重要选项

电新丨核电,清洁能源的重要选项

电新丨核电,清洁能源的重要选项—核电作为清洁的基荷电源,有望在能源转型与“双碳”建设过程中,实现稳健发展。

目前我国核电建设三代技术大规模推广、四代技术储备领先,未来核电产业链(上游原料、中游设备、下游运营商)发展值得长期关注。

核电技术发展回溯:三代正当时,四代渐峥嵘。

核电是利用核反应堆中核裂变所释放出的热能进行发电的方式,从第一座核电站建成至今,核电技术发展已经历四代主要技术变迁。

目前处在第三代技术广泛商业化应用,第四代技术加速储备与示范应用阶段。

我国装机容量20万千瓦的石岛湾高温气冷堆示范工程,是全球首座将四代核电技术成功商业化的示范项目,已于2021年12月20日成功并网发电。

全球核电发展螺旋上升,中国核电稳步发展。

从世界范围内看,核电发展主要经历了起步发展、迅速发展、缓慢发展和逐渐复苏四个阶段,核心拐点源自技术演进、能源需求与重大事件影响。

不同国家能源体系下核电的作用地位差别较大,在我国核电经历了技术突破、技术合作与自主可控等阶段发展,技术不断发展,在四代技术等领域逐渐达到国际领先水平;同时,核电在运、在建规模不断增长,截至2021年12月31日,我国运行核电机组共52台(不含台湾地区),同比增长6.12%,在运核电机组装机规模约为5326万千瓦(不含台湾地区),同比增长6.78%。

多因素助推核电发展,增量空间前景广阔。

随着“双碳”发展与地区冲突加剧,近期能源价格飙升,导致多国调整核电政策以应对能源安全。

同时,核能也是部分国家构建未来零排放电力系统,实现能源转型的关键;核电作为基础负荷调节电力系统,使得其在新型电力系统构建过程中发展潜力巨大。

我们看好安全稳健地推进核能综合利用,使其与其它能源品种耦合发展。

根据《“十四五”规划和2035年愿景目标纲要》及《中国核能发展报告(2021)》,预计到2025年,我国在运核电装机达到7000 万千瓦左右;到2030年,核电在运装机容量达到1.2亿千瓦,核电发电量约占全国发电量的8%。

【核科普】一代至四代核电技术简介

【核科普】一代至四代核电技术简介

【核科普】一代至四代核电技术简介2014-02-20核电观察第一代核电技术1954年前苏联建成电功率为5MW的实验性核电厂,1957年美国建成电功率为90MW的希平港原型核电厂,这些证明了核能用于发电是可行的,国际上把上述实验性和原型核电机组称为第一代核电机组。

早期原型堆代表:德累斯顿费米一号(美)Magnox希平港(美)第二代核电技术20世界60年代后期,在实验性和原型核电机组基础上,陆续建成电功率在300MW 以上的压水堆、沸水堆、重水堆等核电机组,它们在进一步证明核能发电技术可行的同时,使核电的经济性也得以证明,可与火电、水电相竞争。

目前世界上商运的400多台核电机组绝大部分是在这段时间建成的,它们称为第二代核电机组。

第二代核电堆型代表:PWR (压水堆)VVER (压水堆)BWR (沸水堆)CANDU (重水堆)第三代核电技术20世纪90年代,美国电力研究院出台了“先进轻水堆用户要求”文件,即URD (Utility Requirements Document),用一系列定量指标来规范核电厂的安全性和经济性。

随后,欧洲出台的“欧洲用户对轻水堆核电厂的要求”,即EUR (European Utility Requirements),也表达了类似的看法。

国际上通常把URD 或EUR文件的核电机组称为第三代核电机组。

URD和EUR的主要关注点为:1)进一步降低堆芯融化和放射性向环境释放的风险,使发生严重事故的概率减少到极致,以消除社会公众的顾虑。

2)进一步减少核废物(特别是强放射性和长寿命核废物)的排放量,寻求更加的核废物处理方案,减少对人员和环境的放射性影响。

3)降低核电厂每单位千瓦的造价,缩短建设周期,提高机组热效率和可利用率,延长寿期,以进一步改善其经济性。

第三代核电堆型代表:AP1000—非能动先进压水堆EPR—欧洲压水堆APR1400—韩国先进压水堆APWR—先进压水堆(日本三菱)ABWR—先进沸水堆(GE)ESBWR—经济简化型沸水堆(GE)第四代核电技术第四代核电技术是指安全性和经济性都更加优越,废物量极少,无需厂外应急,并具有防核扩散能力的核能利用系统。

四代核电技术的应用价值及发展前景分析

四代核电技术的应用价值及发展前景分析

四代核电技术的应用价值及发展前景分析核能作为一种清洁、可持续的能源形式,在全球范围内得到了广泛应用。

随着科学技术的不断发展,四代核电技术应运而生。

四代核电技术被誉为是核电发展的新方向和新阶段,其应用价值和发展前景备受关注。

一、四代核电技术概述四代核电技术是指第四代核反应堆技术,相较于三代、二代和一代核反应堆技术,四代核电技术有着更为安全、高效的特点。

根据分类标准,四代核电反应堆被分为几种类型: 削减原料(Fast Reactor,FR)、熔盐反应堆(Molten Salt Reactor,MSR)、高温气冷反应堆(High Temperature Gas-cooled Reactor,HTGR)、固体氧化物燃料电池反应堆(Solid Oxide Fuel Cell,SOFC)等。

这些反应堆技术都各具特色,但都能满足未来能源需求和核材料处理的需要。

二、四代核电技术的应用价值1.安全性安全性是四代核电技术的一个重要优点。

相较于传统的核反应堆技术,四代核电技术在设计上注重先进技术和新材料的应用,所以更为安全,减少了可能的辐射泄漏和危险事件,能够更好地保护工作人员和公众的利益。

2.高效性四代核电技术的高效性是其另一个重要优点。

四代核电技术利用更少的燃料、更短的寿命、更少的核废料和更高的能量效率,提高了反应堆的整体效率,使得核能转化率最大化。

3.易于维护和运营四代核电技术在设计上明确了对人员和环境的影响,并采取了更合理的系统设计,因此它更易维护,更易于长期稳定运行。

三、四代核电技术的发展前景1.越来越多的国家在倡导清洁能源的发展由于二氧化碳等温室气体的排放加剧,越来越多的国家开始倡导清洁能源的发展,以减少化石燃料的使用。

四代核电技术作为清洁、低碳排放的选项,将在这样的模式下迎来更广泛的应用前景。

2.四代核电技术克服了传统核反应堆技术的缺陷传统核反应堆技术存在燃料资源消耗、核废料处理、反应堆设备安全性等诸多缺陷。

核电科普知识宣讲资料

核电科普知识宣讲资料

1.什么是核能世界上一切物质都是由原子构成的,原子又是由原子核和它周围的电子构成的。

轻原子核的融合和重原子核的分裂都能放出能量,分别称为核聚变能和核裂变能,简称核能。

本书内提到的核能是指核裂变能。

前面提到核电厂的燃料是铀。

铀是一种重金属元素,天然铀由三种同位素组成:铀-235 含量0.71%铀-238 含量99.28%铀-234 含量0.0058%铀-235是自然界存在的易于发生裂变的唯一核素。

当一个中子轰击铀-235原子核时,这个原子核能分裂成两个较轻的原子核,同时产生2到3个中子和射线,并放出能量。

如果新产生的中子又打中另一个铀-235原子核,能引起新的裂变。

在链式反应中,能量会源源不断地释放出来。

铀-235裂变放出多少能量呢?请记住一个数字,即1千克铀-235全部裂变放出的能量相当于2700吨标准煤燃烧放出的能量。

2.核反应堆原理反应堆是核电站的关键设计,链式裂变反应就在其中进行。

反应堆种类很多,核电站中使用最多的是压水堆。

压水堆中首先要有核燃料。

核燃料是把小指头大的烧结二氧化铀芯块,装到锆合金管中,将三百多根装有芯块的锆合金管组装在一起,成为燃料组件。

大多数组件中都有一束控制棒,控制着链式反应的强度和反应的开始与终止。

压水堆以水作为冷却剂在主泵的推动下流过燃料组件,吸收了核裂变产生的热能以后流出反应堆,进入蒸汽发生器,在那里把热量传给二次侧的水,使它们变成蒸汽送去发电,而主冷却剂本身的温度就降低了。

从蒸汽发生器出来的主冷却剂再由主泵送回反应堆去加热。

冷却剂的这一循环通道称为一回路,一回路高压由稳压器来维持和调节。

3.什么是核电站火力发电站利用煤和石油发电,水力发电站利用水力发电,而核电站是利用原子核内部蕴藏的能量产生电能的新型发电站核电站大体可分为两部分:一部分是利用核能生产蒸汽的核岛、包括反应堆装置和一回路系统;另一部分是利用蒸汽发电的常规岛,包括汽轮发电机系统。

核电站用的燃料是铀。

铀是一种很重的金属。

核安全文化的基本要求

核安全文化的基本要求

核安全文化的基本要求目录一、我国核电发展现状二、安全文化的定义和特性三、安全文化的总体特性四、对营运单位的要求举例前言安全文化存在于人们社会生活的各个方面,渗透在我们的一切生活和生产活动中,如:交通安全、工业安全、生产安全等;几乎所有国内外成功企业,都不凡有令人鼓舞的企业文化;企业文化是信仰、价值和行为规范的总和。

2002年美国最畅销的书《执行-如何完成任务的学问》(Larry Bossidy and Ram Charan)介绍成功企业的一种《执行型文化》对执行型领导有七条基本要求:——了解你的企业和员工;——坚持以实事为基础;——确立明确的目标和实现目标的优先顺序;——跟进;——对执行者进行奖励;——提高员工的能力和素质;——了解你自己。

核安全文化的提出:1979年美国三哩岛核电厂事故后,特别是1986年原苏联切尔诺贝利核事故发生后,提出“核安全文化”的理念。

提高核电的管理水平,确保核设施的安全,起到十分重要作用。

所有从事与核有关的单位或个人,应具有良好“核安全文化”素养。

——就有正确的判断力,——能够采取正确的行动,——能够保证核设施的安全,——就能够促进核事业的发展。

三里岛事故及其教训:——操纵人员对汽腔小破口失水事故的物理图象一无所知,人员培训不足;——系统缺乏准确显示堆内状态的仪表;——主控室报警灯又多又乱,无法指引操纵员判别首发故障,安全重要显示被淹没在众多闪烁不定的信号中;——检修人员未严格执行规程,检修后辅助给水系统的阀门未打开;——事故导向规程无法引导操纵员正确处理复杂工况。

切尔诺贝利事故暴露的安全文化问题:——缺乏强有力的管制机构,管制执行力差,明显不满足国家设计安全要求的设计却能获得批准。

——操纵员获取机组信息的手段不可靠, ORM概念含混,操纵员不易获得ORM的数量概念,ORM也没有整合到保护系统中去。

——设计留给运行的陷阱,燃料通道的损坏会引起局部闪蒸,引入局部正反应性,并会在堆芯快速扩展;——缺乏经验反馈与信息交流,1983年立陶宛Ignalina机组上观察到正刹车效应现象,1975年在列宁格勒核电站发生的事件,都未采取设计修改,程序修改也没落实等。

世界核电发展史

世界核电发展史

世界核电发展史一、世界核电站可划分为四代第一代核电站:自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe左右的核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。

第一代核电厂属于原型堆核电厂,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。

第二代核电站:第二代核电厂主要是实现商业化、标准化、系列化、批量化,以提高经济性。

自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准化和系列化核电站,以美国西屋公司为代表的Model 212(600MWe,两环路压水堆,堆芯有121合组件,采用12英尺燃料组件)、Model 312(1000MWe,3环路压水堆,堆芯有157盒组件,采用12英尺燃料组件,),Model 314 (1040MWe,3环路压水堆,堆芯有157盒组件,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,堆芯有193盒组件,采用12英尺燃料组件,)、Model 414(1300MWe,4环路压水堆,堆芯有193盒组件,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第二代核电站范畴。

法国的CPY,P4,P4′´也属于Model 312,Model 414一类标准核电站。

日本、韩国也建造了一批Model 412、BWR、System80等标准核电站。

第二代核电站是目前世界正在运行的439座核电站(2007年9月统计数)主力机组,总装机容量为3.72亿千瓦。

还共有34台在建核电机组,总装机容量为0.278亿千瓦。

在三里岛核电站和切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

世界核电站可划分为四代
录入时间:2008-3-25 作者:snpec
第一代核电站:
自50年至60年代初苏联、美国等建造的第一批单机容量在300MWe左右的核电站,如美国的希平港核电站和英第安角1号核电站,法国的舒兹(Chooz)核电站,德国的奥珀利海母(Obrigheim)核电站,日本的美浜1号核电站等。

第一代核电厂属于原型堆核电厂,主要目的是为了通过试验示范形式来验证其核电在工程实施上的可行性。

第二代核电站:
第二代核电厂主要是实现商业化、标准化、系列化、批量化,以提高经济性。

自60年代末至70年代世界上建造了大批单机容量在600-1400MWe的标准化和系列化核电站,以美国西屋公司为代表的Model 212(600MWe,两环路压水堆,堆芯有121合组件,采用12英尺燃料组件)、Model 312(1000MWe,3环路压水堆,堆芯有157盒组件,采用12英尺燃料组件,),Model 314 (1040MWe,3环路压水堆,堆芯有157盒组件,采用14英尺燃料组件),Model 412(1200MWe,4环路压水堆,堆芯有193盒组件,采用12英尺燃料组件,)、Model 414(1300MWe,4环路压水堆,堆芯有193盒组件,采用14英尺燃料组件)、System80(1050MWe,2环路压水堆)以及一大批沸水堆(BWR)均可划入第二代核电站范畴。

法国的CPY,P4,P4′´也属于Model 312,Model 414一类标准核电站。

日本、韩国也建造了一批Model 412、BWR、System80等标准核电站。

第二代核电站是目前世界正在运行的439座核电站(2007年9月统计数)主力机组,总装机容量为3.72亿千瓦。

还共有34台在建核电机组,总装机容量为0.278亿千瓦。

在三里岛核电站和切尔诺贝利核电站发生事故之后,各国对正在运行的核电站进行了不同程度的改进,在安全性和经济性都有了不同程度的提高。

第三代核电站:
对于第三代核电站类型有各种不同看法。

美国核电用户要求文件(URD)和欧洲核电用户要求文件(EUR)提出了下一代核电站的安全和设计技术要求,它包括了改革型的能动(安全系统)核电站和先进型的非能动(安全系统)核电站,并完成了全部工程论证和试验工作以及核电站的初步设计,它们将成为下一代(第三代)核电站的主力堆型,这类典型的核电站见下表:
第三代核电站美国欧洲
EPR
能动核电站:System 80+, APR1400,APWR1600,ABWR,
ESBWR
非能动核电站:AP1000 EP1000
第三代核电站的安全性和经济性都将明显优于第二代核电站。

由于安全是核电发展的前提,世界各国除了对正在运行的第二代机组进行延寿与补充性建一些二代加的机组外,接下来新一批的核电建设重点是采用更安全、更经济的先进第三代核电机组。

我国国家引进的美国非能动AP1000核电站以及广东核电集团公司引进的法国EPR核电站都属于第三代核电站。

第四代核能系统:
第四代核能系统概念(有别于核电技术或先进反应堆),最先由美国能源部的核能、科学与技术办公室提出,始见于1999年6月美国核学会夏季年会,同年11月的该学会冬季年会上,发展第四代核能系统的设想得到进一步明确;2000年1月,美国能源部发起并约请阿根廷、巴西、加拿大、法国、日本、韩国、南非和英国等9个国家的政府代表开会,讨论开发新一代核能技术的国际合作问题,取得了广泛共识,并发表了“九国联合声明” 。

随后,由美国、法国、日本、英国等核电发达国家组建了“第四代核能系统国际论坛(GIF)”,拟于2-3年内定出相关目标和计划;这项计划总的目标是在2030年左右,向市场推出能够解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核能系统(Gen-IV)。

第四代核能系统将满足安全、经济、可持续发展、极少的废物生成、燃料增殖的风险低、防止核扩散等基本要求。

目前,世界各国都在不同程度上开展第四代核电能系统的基础技术和学课的研发工作。

第四代核电能系统包括三种快中子反应堆系统和三种热中子反应堆系统:
第四代核能系统代号中子能谱燃料循环
钠冷快堆系统(Sodium Cooled Fast Reactor
SFR 快闭式System)
铅合金冷却快堆系统(Lead Alloy-Cooled
LFR 快闭式Fast Reactor System)
气冷快堆系统(Gas-Cooled Fast Reactor
GFR 快闭式System)
超高温堆系统(Very High Temperature
VHTR 热一次Reactor System)
超临界水冷堆系统(Supercritical Water
SCWR 热和快一次/闭式Cooled Reactor System)
熔盐堆系统(Molten Salt Reactor System) MSR 热闭式。

相关文档
最新文档