高考数学复习专题 指对数比较大小

合集下载

幂、指、对数的大小比较-高考数学复习

幂、指、对数的大小比较-高考数学复习

B.a<c<b
C.b<a<c
D.c<b<a
lg5
lg7
lg5lg9-lg2 7
解析 因为 log75-log97=lg7 − lg9 = lg7lg9 ,lg 7lg 9>0,
lg5+lg9 2 lg45 2 lg49 2
又因为 lg 5lg 9<( 2 ) =( 2 ) <( 2 ) =lg27,所以 log75-log97<0,即
1
3
例 5(1)(2024·山西晋中模拟)设 a=2 ,b= ,c=3 ,则( A )
A.a<c<b
B.a<b<c
C.b<a<c
D.c<b<a
1
1
1
解析 依题意 ln a=2ln 2,ln b=eln e,ln c=3ln 3,
1
1
1
因此只需比较 ln 2, ln e, ln 3 的大小.
2
e
3ln==源自32 ∈(5,6),n=b所以 n>m>p,故选 C.
5 2 25
5
=( ) = =6.25,p=logab=log2
2
4
2
a
∈(1,2),
(2)(2024·云南昆明模拟)已知实数a,b,c满足ln(ln b)=a=ln c,则a,b,c的大小关
系为( C )
A.a>b>c
B.c>b>a
C.b>c>a
为( C )
A.a<b<c
B.a<c<b
C.c<b<a
D.b<c<a

高考数学复习----《指、对、幂形数的大小比较问题》方法技巧与总结和真题练习

高考数学复习----《指、对、幂形数的大小比较问题》方法技巧与总结和真题练习

高考数学复习----《指、对、幂形数的大小比较问题》方法技巧与总结和真题练习方法技巧与总结(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小.(2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性;②指数相同,底数不同,如1a x 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小; ④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图像交点的横坐标(4)特殊值法(5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法 真题练习1.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( ) A .a c b >>B .b c a >>C .a b c >>D .c a b >> 【答案】C 【解析】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>. 故答案为:C. 2.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==−=−,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>【答案】A【解析】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg9lg10>,即lg11m >,所以lg11101110110m a =−>−=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =−<−=.综上,0a b >>.[方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =−−> ,则1()1m f x mx −'=−,令()0f x '=,解得110m x m −= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =−= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =−−>,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022·全国·统考高考真题)设0.110.1e ,ln 0.99a b c ===−,,则( ) A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C 【解析】方法一:构造法设()ln(1)(1)f x x x x =+−>−,因为1()111x f x x x'=−=−++, 当(1,0)x ∈−时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+−在(0,)+∞单调递减,在(1,0)−上单调递增, 所以1()(0)09f f <=,所以101ln 099−<,故110ln ln 0.999>=−,即b c >, 所以1()(0)010f f −<=,所以91ln +01010<,故1109e 10−<,所以11011e 109<, 故a b <,设()e ln(1)(01)x g x x x x =+−<<,则()()21e 11()+1e 11x xx g x x x x −+'=+=−−, 令2()e (1)+1x h x x =−,2()e (21)x h x x x '=+−,当01x <时,()0h x '<,函数2()e (1)+1x h x x =−单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =−单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+−单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>−,所以a c >故选:C.方法二:比较法0.10.1a e = , 0.110.1b =− , ln(10.1)c =−− , ①ln ln 0.1ln(10.1)a b −=+− , 令 ()ln(1),(0,0.1],f x x x x =+−∈则 1()1011x f x x x −'=−=<−− , 故 ()f x 在(0,0.1] 上单调递减, 可得 (0.1)(0)0f f <=,即 ln ln 0a b −< ,所以 a b < ; ② 0.10.1ln(10.1)a c e −=+− ,令 ()ln(1),(0,0.1],x g x xe x x =+−∈则 ()()()1111'11x x xx x e g x xe e x x +−−=+−=−− , 令 ()(1)(1)1x k x x x e =+−− ,所以 2()(12)0x k x x x e '=−−> ,所以 ()k x 在(0,0.1] 上单调递增,可得 ()(0)0k x k >> ,即 ()0g x '> , 所以 ()g x 在(0,0.1] 上单调递增,可得 (0.1)(0)0g g >= ,即 0a c −> ,所以 .a c >故 .c a b <<4.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .c<a<bC .b<c<aD .a c b <<【答案】D【解析】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=−=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<,a cb ∴<<.故选:D.5.(2022·全国·统考高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1c b >,所以c b >; 设21()cos 1,(0,)2f x x x x =+−∈+∞, ()sin 0f x x x '=−+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432−>, 所以b a >,所以c b a >>,故选A[方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭, 取18x =得:2211131cos 12sin 1248832⎛⎫=−>−= ⎪⎝⎭,故b a > 1114sin cos 444ϕ⎛⎫++ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=−此时1sin cos 4ϕ=1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c < 所以b a >,所以c b a >>,故选A[方法三]:泰勒展开设0.25x =,则2310.251322a ==−,2410.250.25cos 1424!b =≈−+, 241sin 10.250.2544sin 1143!5!4c ==≈−+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+−∈+∞,()sin 0f x x x '=−+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432−>,所以b a >,所以c b a >>, 故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得2211131cos 12sin 1248832⎛⎫=−>−= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.。

高考数学重难点第4讲 指对幂比较大小6大题型(原卷及答案)(全国通用)(学生专用)

高考数学重难点第4讲 指对幂比较大小6大题型(原卷及答案)(全国通用)(学生专用)

重难点第四讲指对幂比较大小6大题型——每天30分钟7天掌握指对幂比较大小6大题型问题【命题趋势】函数“比大小”是非常经典的题型,难度不以,方法无常,很受命题者的青睐。

高考命题中,常常在选择题或填空题中出现这类型的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序。

这类问题的解法往往可以从代数和几何来那个方面加以探寻,即利用函数的性质与图象解答。

第1天认真研究满分技巧及思考热点题型【满分技巧】比较大小的常见方法1、单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较;2、作差法、作商法:(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法;3、中间值法或1/0比较法:比较多个数的大小时,先利用“0”“1”作为分界点,然后再各部分内再利用函数的性质比较大小;4、估值法:(1)估算要比较大小的两个值所在的大致区间;(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值;5、构造函数,运用函数的单调性比较:构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数规律(1)对于抽象函数,可以借助中心对称、轴对称、周期等性质来“去除f( )外衣”比较大小;(2)有解析式函数,可以通过函数性质或者求导等,寻找函数的单调性、对称性,比较大小。

6、放缩法:(1)对数,利用单调性,放缩底数,或者放缩真数;(2)指数和幂函数结合来放缩;(3)利用均值不等式的不等关系进行放缩;(4)“数值逼近”是指一些无从下手的数据,如果分析会发现非常接近某些整数(主要是整数多一些),那么可以用该“整数”为变量,构造四舍五入函数关系。

【热点题型】第2天 掌握利用单调性及作差作商法比较大小问题模型【题型1 利用单调性比较大小】【例1】(2022秋·福建宁德·高三统考期中)设00.30.0..355,,0.30.30.50.5,a b c d ====,则,,,a b c d 的大小关系为( )A .b d a c >>>B .b a d c >>>C .c a d b >>>D .c d a b >>>【变式1-1】(2022秋·四川眉山·高三校考阶段练习)若0.5.43200.4,0.5,log 4a b c ===,则a b c ,,的大小关系是( )A . a b c <<B . b<c<aC . c b a <<D . c<a<b【变式1-2】(2022·陕西宝鸡·统考一模)已知实数,,a b c 满足235e e e 2235a b c===,则( )A .a b c >>B .a b c <<C .b a c >>D .c a b >>【变式1-3】(2023·全国·高三专题练习)已知0.50.60.3,0.3a b ==,122()5c =,则a 、b 、c 的大小关系为( )A .a <b <cB .c <a <bC .b <a <cD .c <b <a【变式1-4】(2023·江苏苏州·苏州中学校考模拟预测)已知()2cos f x x x =--,若34e a f -⎛⎫= ⎪⎝⎭,4ln 5b f ⎛⎫= ⎪⎝⎭,14c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .c b a <<B .c a b <<C .b c a <<D .a c b <<【变式1-5】(2022·全国·高三专题练习)(多选)下列大小关系中正确的是( )A . 1.52.793> B .43773477⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .13211log log 32<D .0.2 2.11.70.9>【题型2 作差作商法比较大小】【例2】(2022·云南昆明·昆明一中校考模拟预测)已知13e a =,ln 2b =,3log 2c =,则,,a b c 的大小关系为( )A .a c b >>B .a b c >>C .b c a >>D .c b a >>【变式2-1】(2022秋·陕西咸阳·高三校考阶段练习)若sin 4a =,5log 3b =,lg 6c =,0.01e d =,则( ).A .a b c d <<<B .a c b d <<<C .b c d a <<<D .a d b c <<<【变式2-2】(2022·全国·高三专题练习)已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为( )A .p m n >>B .m n p >>C .m p n >>D .p n m >>【变式2-3】(2022·贵州贵阳·校联考模拟预测)已知4log 5a =,54b =,5log 6c =,则a 、b 、c 这三个数的大小关系为( )A .c b a <<B .a c b <<C .c<a<bD .b<c<a【变式2-4】(2022秋·四川内江·高三校考阶段练习)已知0.2653,log 7,log 6a b c ===,则( )A .a b c >>B .b c a >>C .a c b >>D .c a b >>第3天 掌握估值法及含变量比较大小问题模型【题型3 中间值/估值法比较大小】【例3】(2023·全国·模拟预测)已知40.5=a ,5log 0.4b =,0.5log 0.4c =,则a ,b ,c 的大小关系是( )A .b a c >>B .a c b >>C .c a b >>D .a b c >>【变式3-1】(2022秋·天津南开·高三南开中学校考阶段练习)已知log a =0.42b =,1313c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .b a c << B .a c b << C .a b c << D .b<c<a【变式3-2】(2023秋·福建泉州·高三校考阶段练习)已知a =()34log ln b π=,1.713c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .<<c a b D .<<b c a【变式3-3】(2022秋·河南郑州·高三安阳一中校联考阶段练习)设0.22a =,0.50.5b =,0.5log 0.2c =,则( )A .a b c <<B .b c a <<C .c a b <<D .b a c <<【变式3-4】(2022秋·江西·高三校联考阶段练习)已知a =eb =, 2.52c =,则a ,b ,c 的大小关系是( )(参考数据:ln20.693≈)A .a b c >>B .b a c >>C .c b a >>D .c a b >>【变式3-5】(2022·全国·高三专题练习)已知0.25ln 4a =,ln 0.254b =,0.250.25c =,则( )A .a c b >>B .b c a >>C .c a b >>D .b a c >>【变式3-6】(2023·全国·高三专题练习)(多选)已知2log a x =,2x b =,3x c =,其中()1,2x ∈,则下列结论正确的是( )A .log b a c >B .b c a b >C .b c a b <D .log log a b b c <【题型4 含变量比较大小】【例4】(2022秋·河南·高三上蔡第一高级中学阶段练习)已知()()sin cos tan 1,,,2,2422x x x x a b c ππ--⎛⎫⎛⎫∈=== ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c >>B .c b a >>C .a c b >>D .c a b >>【变式4-1】(2022·全国·高三专题练习)设π02θ<<,sin 2a θ=,sin 2b θ=,2log sin c θ=,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .a c b <<D .c<a<b【变式4-2】(哈尔滨三中校考阶段)已知())20222022lnx xf x x -=--,当π02x <<,cos a x =,lncos b x =,cos e x c =,试比较()f a ,f b ,()f c 的大小关系( )A .()()()f a f c f b <<B .()()()f b f c f a <<C .()()()f c f a f b <<D .()()()f b f a f c <<【变式4-3】(2023·全国·高三专题练习)已知,42x ππ⎛⎫∈ ⎪⎝⎭且222sin 2sin 1ex x a +=,cos cos 1e x x b +=,sin sin 1e xx c +=,则a ,b ,c 的大小关系为( ) A .a b c << B .b<c<a C .a c b << D .c<a<b第4天 掌握构造函数比较大小问题模型【题型5 构造函数比较大小】【例5】(2023·广西桂林·统考一模)已知a 、b 、()1,c ∈+∞,2e ln 39a a =,3e ln 28b b =,22e c c -=,则( )A .a b c >>B .a c b >>C .b c a >>D .c a b >>【变式5-1】(2022秋·广东广州·高三校考期中)函数()f x 是定义在R 上的偶函数,当0x <时()()0f x xf x '+>(其中()f x '是()f x 的导函数),若0.30.33(3)a f =⋅,log 3(log 3)b f ππ=⋅,11ln (ln )99c f =⋅,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<【变式5-2】(2022秋·四川成都·高三校考阶段练习)已知2220a =,2121b =,2022c =,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >>【变式5-3】(2022·全国·高三专题练习)已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c的大小关系是( )A .a c b >>B .b a c >>C .b c a >>D .c a b >>【变式5-4】(2022秋·广东河源·高三河源市河源中学阶段练习)设621121010a =+⨯,0.01e 1b =-,ln1.02c =,则,,a b c 的大小关系为( ) A .c a b << B .b c a << C .a b c << D .b a c <<【变式5-5】(2022·全国·高三专题)设11111111,e 1,ln 101010a b c ==-=,则a ,b ,c 大小关系是_______.第5天 掌握数形结合法比较大小问题模型【题型6 数形结合法比较大小】【例6】(2022·全国·高三专题练习)已知()()2022()y x m x n m n =--+<,且,()αβαβ<是方程0y =的两根,则,,,m n αβ的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<<【变式6-1】(2023秋·陕西西安·高三统考期末)已知3log 2a =,4log 3b =,5log 4c =,则a ,b ,c 的大小关系为( )A .c<<b aB .a b c <<C .b a c <<D .c b a <<【变式6-2】(2022秋·江苏扬州·高三期末)已知正实数a ,b ,c 满足2e e e e c a a c --+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【变式6-3】(2023·全国·高三专题)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<第6天 融会贯通及限时检测(1)1.(2022·全国·高三专题练习)2log 3,8log 12,lg15的大小关系为( ) A .28log 3log 12lg15<< B .82log 12lg15log 3<< C .28log 3log 12lg15>> D .82log 12log 3lg15<<2.(2022·四川资阳·统考二模)设 1.02a =,0025.e b =,0.92sin0.06c =+,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .b<c<aD .c<a<b3.(2022·全国·高三专题练习)已知35log 2,log 2,3a a b c ===,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c a b <<D .c b a << 4.(2022·全国·高三专题练习)设2log 3a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( )A .b >c >aB .b >a >cC .a >c >bD .a >b >c 5.(2022·全国·高三专题练习)已知0.60.5a =,0.50.6b =,6log 5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b<c<a 6.(2022·全国·高三)已知定义在R 上的函数()(5712,log ,ln ,log 22xf x x a f b f c f⎛⎫⎛⎫=⋅===- ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为( ) A .a b c >> B .b c a >> C .b a c >> D .c b a >> 7.(2022秋·山东潍坊·高三统考阶段练习)已知1210a =,1111b =,1012c =,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>8.(2022秋·山东·高三校联考阶段练习)若0.1e ,ln 0.9a b c ===-,则,,a b c 的大小关系为( ).A .a b c >>B .a c b >>C .b a c >>D .c b a >> 9.(2022·四川南充·统考一模)设定义R 在上的函数()y f x =,满足任意x ∈R ,都有()()4f x f x +=,且(]0,4x ∈时,()()'>xf x f x ,则()2021f ,()22022f ,()32023f 的大小关系是( )A .()()()20222202320231f f f <<B .()()()20222023202123f f f << C .()()()20232032222021f f f << D .()()()20232022202132f f f << 10.(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)若2322ln(ln1.01),ln ln ,ln 2π3a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .a c b <<B .a b c <<C .c b a <<D .b<c<a第7天 融会贯通及限时检测(2)1.(2022秋·江苏徐州·高三学业考试)设30.20.2,3,2a b c ===,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .c <c <bD .b <a <c2.(2022秋·江苏常州·高三统考阶段练习)已知0.90.50.9log 2log 0.50.5x y z ===,,,则x y z ,,的大小关系是( )A .z y x >>B .x z y >>C .y x z >>D .y z x >> 3.(2022秋·广东·高三校联考阶段练习)已知实数2log 3a =,cos 4b π=,3log 2c =,则这三个数的大小关系正确的是( )A .a b c >>B .b a c >>C .b c a >>D .a c b >>4.(2022秋·天津东丽·高三校考阶段练习)设 1.1 1.13log 8,2,0.8a b c ===,则,,a b c 的大小关系是( )A .b a c <<B .c b a <<C .c a b <<D .a c b <<5.(2022·陕西渭南·统考一模)已知a =ln πb =,sin136c =,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<6.(2022秋·江西·高三校联考阶段练习)已知12223,log 3a b c ===,则a ,b ,c 的大小关系为( )A .a c b >>B .c b a >>C .b a c >>D .a b c >> 7.(2022·云南昆明·高三昆明一中校考阶段练习)已知 1.21.1a =, 1.11.2b =,1.2log 1.1c =,则a 、b 、c 的大小关系为( )A .a b c >>B .b a c >>C .b c a >>D .c b a >>8.(2022秋·四川成都·高三校考期中)已知函数()e e 2x xf x --=,且11ln a f ππ⎛⎫=- ⎪⎝⎭,1e b f ⎛⎫= ⎪⎝⎭,ec f ππ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a << C .a c b << D .b a c <<9.(2022·四川宜宾·统考模拟预测)已知252.5a =,5775b ⎛⎫= ⎪⎝⎭,133c = ,则a 、b 、c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .b<c<a10.(2022秋·天津河东·高三天津市第七中学校考期中)若2ln 64a =,ln2ln3b =,()2ln 24πc =,则a ,b ,c 的大小关系是( )A .a b c >>B .c b a >>C .c a b >>D .b a c >>答案第2天 掌握利用单调性及作差作商法比较大小问题模型【题型1 利用单调性比较大小】【例1】(2022秋·福建宁德·高三统考期中)设00.30.0..355,,0.30.30.50.5,a b c d ====,则,,,a b c d 的大小关系为( )A .b d a c >>>B .b a d c >>>C .c a d b >>>D .c d a b >>> 【答案】D【解析】因为0.3x y =以及0.5x y =是R 上的单调减函数,故可得0.30.50.30.3>,0.30.50.50.5>,即a b >,c d >;又因为0.30.10.50.10.30.027,0.50.3125a d ====,而0.1y x =是()0,+∞上的单调增函数,则0.10.10.031250.027>,即d a >.故c d a b >>>.故选:D.【变式1-1】(2022秋·四川眉山·高三校考阶段练习)若0.5.43200.4,0.5,log 4a b c ===,则a b c ,,的大小关系是( )A . a b c <<B . b<c<aC . c b a <<D . c<a<b 【答案】D【解析】322log 40.45===c ,因为0.4x y =在R 上为减函数,所以10.50.40.40.40.4=<=<c a ,因为0.4y x =在()0,x ∈+∞上为增函数,所以0.40.40.50.4>=b ,所以a b <,所以c<a<b ,故选:D.【变式1-2】(2022·陕西宝鸡·统考一模)已知实数,,a b c 满足235e e e 2235a b c===,则( )A .a b c >>B .a b c <<C .b a c >>D .c a b >> 【答案】A【解析】因为235e e e 2235a b c===,所以235e 4,e 6,e 10a b c ===,即得2ln4,3ln6,5ln10a b c ===得ln2,a b c ===ln y x =是()0,∞+上的增函数,比较,,a b c ,的大小关系 ,15次幂, 因为幂函数15y x =在()0,∞+上是单调递增的,比较15532,6,10即可,因为15532524288,67776,101000=== 所以15352106>>,即2>>a b c >>.故选:A .【变式1-3】(2023·全国·高三专题练习)已知0.50.60.3,0.3a b ==,122()5c =,则a 、b 、c 的大小关系为( )A .a <b <cB .c <a <bC .b <a <cD .c <b <a 【答案】C【解析】函数0.3x y =是定义域R 上的单调减函数,且0.50.6,则0.50.60.30.3>,即a b >,又函数0.5y x = 在(0,)+∞上单调递增,且20.35<,于是得10.5220.3()5<,即c a >,所以a 、b 、c 的大小关系为b a c <<.故选:C【变式1-4】(2023·江苏苏州·苏州中学校考模拟预测)已知()2cos f x x x =--,若34e a f -⎛⎫= ⎪⎝⎭,4ln 5b f ⎛⎫= ⎪⎝⎭,14c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .c b a <<B .c a b <<C .b c a <<D .a c b << 【答案】D【解析】因为2()cos ,R f x x x x =--∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=----=--=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-+,设()2sin g x x x =-+,则()2cos g x x '=-+,1cos 1x -≤≤,()0g x '∴<,所以()g x 即()f x '在[0,)+∞上单调递减,所以()(0)0f x f ''≤=,所以()f x 在[0,)+∞上单调递减,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递增,又因为41ln0,054<-<,445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415e ln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a c b <<.故选:D.【变式1-5】(2022·全国·高三专题练习)(多选)下列大小关系中正确的是( )A . 1.52.793> B .43773477⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .13211log log 32<D .0.2 2.11.70.9> 【答案】ABD【解析】对于A ,因为31.593=,而3x y =是增函数,所以23.733>,即 1.5 2.793>,故A正确;对于B ,根据指数函数37xy ⎛⎫= ⎪⎝⎭为单调递减可知,43773377⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,又由幂函数37y x =为单调递增可知,37373477⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以433777334777⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 正确;对于C ,由换底公式可知1221log log 33=,根据对数函数单调性可知1221log log 303=>,331log log 102<=,所以13211log log 32>,故C 错误;对于D ,由指数函数单调性可知0.20.1021.7 1.71,0.90.91>=<=,所以0.2 2.11.70.9>,故D 正确;故选:ABD.【题型2 作差作商法比较大小】【例2】(2022·云南昆明·昆明一中校考模拟预测)已知13e a =,ln 2b =,3log 2c =,则,,a b c 的大小关系为( )A .a c b >>B .a b c >>C .b c a >>D .c b a >> 【答案】B【解析】103e e 1=>=a ,ln 2ln e 1b =<=,33log 2log 31c =<=∴a 最大,3lg 2lg 211ln 2log 2lg 20lg e lg3lg e lg3⎛⎫-=-=-=⋅-> ⎪⎝⎭b c ,∴b c >,∴a b c >>,故选:B【变式2-1】(2022秋·陕西咸阳·高三校考阶段练习)若sin 4a =,5log 3b =,lg 6c =,0.01e d =,则( ). A .a b c d <<< B .a c b d <<< C .b c d a <<< D .a d b c <<< 【答案】A【解析】由题意,0.01sin 40,e 1a d =<=>,50log 31,0lg 61b c <=<<=<,只需比较,b c 的大小,而()()5lg31lg 2lg 2lg3lg3lg3lg5lg 6log 3lg 6lg 6lg5lg5lg5--+-⋅-=-==()lg 21lg 60,lg5b c⋅-+=<∴<,综上a b c d <<<.故选:A【变式2-2】(2022·全国·高三专题练习)已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为( )A .p m n >>B .m n p >>C .m p n >>D .p n m >> 【答案】A【解析】由54m =,得125542m ==<89n =,得118493n ==,因此,122112020855202011520442222561324333m n ⨯⨯⎛⎫⎛⎫⎛⎫ ⎪====> ⎪⎪ ⎪⎝⎭⎝⎭⎪⎝⎭m n >>,由0.90.8p =,得0.90.9log 0.8log 0.812p =>=,于是得p m n >>,所以正数m ,n ,p 的大小关系为p m n >>.故选:A【变式2-3】(2022·贵州贵阳·校联考模拟预测)已知4log 5a =,54b =,5log 6c =,则a 、b 、c 这三个数的大小关系为( )A .c b a <<B .a c b <<C .c<a<bD .b<c<a 【答案】C【解析】因为422244log 52log 5log 25log 325a ===<=,所以54a <,即ab <,因为245ln5ln 6(ln5)ln 4ln 6log 5log 6ln 4ln5ln 4ln5a c -⨯-=-=-=⨯22ln 4ln 6(ln 5)20ln 4ln 5+⎛⎫- ⎪⎝⎭>=>⨯, 所以a c >,综上:c<a<b .故选:C.【变式2-4】(2022秋·四川内江·高三校考阶段练习)已知0.2653,log 7,log 6a b c ===,则( )A .a b c >>B .b c a >>C .a c b >>D .c a b >> 【答案】C【解析】对,b c ,256lg6lg7lg 6lg5lg7log 6log 7lg5lg6lg5lg6-⋅-=-=⋅,因为222lg5lg71lg5lg7lg35lg lg 622+⎛⎫⎛⎫⋅<==< ⎪ ⎪⎝⎭⎝⎭,即2lg 6lg5lg70-⋅>,所以56log 6log 70->,即c b >;对,a c ,又0.20.23e >,令()e 1x g x x =--,则()e 1x g x '=-,所以当0x >时,()0g x '>,当0x <时,()0g x '<,所以()min ()00g x g ==,即e 1x x ≥+,当且仅当0x =时取等号,所以0.20.223.e 102 1.>>+=,令()5log 5xf x x =-,则()11ln555ln55ln5x f x x x -=-=⋅',所以当5ln5x >时()0f x '>,所以()f x 在5,ln5∞⎛⎫+ ⎪⎝⎭上单调递增,显然55ln5>,又()50f =,即()()566log 6505f f =->=,即56log 65>,所以0.20.2563e log 65>>>,即a c b >>.故选:C第3天 掌握估值法及含变量比较大小问题模型【题型3 中间值/估值法比较大小】【例3】(2023·全国·模拟预测)已知40.5=a ,5log 0.4b =,0.5log 0.4c =,则a ,b ,c 的大小关系是( )A .b a c >>B .a c b >>C .c a b >>D .a b c >> 【答案】C【解析】根据指数函数单调性和值域,0.5x y =在R 上递减,结合指数函数的值,可知, ()()400,0.50,10.5a ∈==;根据对数函数的单调性,5log y x =在(0,)+∞上递增,则55log 0.4log 10b =<=,0.5log y x =在(0,)+∞上递减,故0.50.5log 0.4log 0.51c =>=, 即10c a b >>>>,C 选项正确.故选:C【变式3-1】(2022秋·天津南开·高三南开中学校考阶段练习)已知log a =0.42b =,1313c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .b a c <<B .a c b <<C .a b c <<D .b<c<a 【答案】C【解析】由题知,220log 1log log 1=<,即:01a <<,又0.40221b =>=,所以b a >;()15150.462264b ===,1515315511324333c --⎡⎤⎛⎫⎛⎫⎢⎥==== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴1515b c <,∴b c <,所以:a b c <<.故选:C.【变式3-2】(2023秋·福建泉州·高三校考阶段练习)已知a =()34log ln b π=,1.713c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .<<c a b D .<<b c a 【答案】D【解析】根据指数函数的单调性可得0e 1a =>=, 1.7103113c <⎛⎫⎛⎫<= ⎪⎪⎝⎭⎝=⎭, 根据对数函数的单调性可得()3344log ln log 10b π=<=,所以<<b c a ,故选:D.【变式3-3】(2022秋·河南郑州·高三安阳一中校联考阶段练习)设0.22a =,0.50.5b =,0.5log 0.2c =,则( )A .a b c <<B .b c a <<C .c a b <<D .b a c << 【答案】D【解析】对a :2x y =在R 上单调递增,则0.210.20222,221<=>=,即12a <<;对b :0.50.5y =[)0,∞+上单调递增,则0.50.50==>,即01b <<;对c :0.5log y x =在()0,∞+上单调递减,则0.50.5log 0.2log 0.252>=,即2>c ; 综上所述:b a c <<.故选:D.【变式3-4】(2022秋·江西·高三校联考阶段练习)已知a =eb =, 2.52c =,则a ,b ,c 的大小关系是( )(参考数据:ln20.693≈) A .a b c >> B .b a c >> C .c b a >> D .c a b >> 【答案】C【解析】∵2x y =在R 2 2.5<<,∴2 2.522<<,则4,e 2.7a c c b ≈<=,又∵2ln ln 80.901a =≈<=,且e xy =在R 上单调递增,∴ln 1e e a <,即a b <,故c b a >>.故选:C.【变式3-5】(2022·全国·高三专题练习)已知0.25ln 4a =,ln 0.254b =,0.250.25c =,则( )A .a c b >>B .b c a >>C .c a b >>D .b a c >> 【答案】C【解析】由0.25ln 2ln 42a ==,ln 0.254ln 22ln 21114244b ===<,0.250.25c ==所以1142b ac <<<<.故选:C【变式3-6】(2023·全国·高三专题练习)(多选)已知2log a x =,2x b =,3x c =,其中()1,2x ∈,则下列结论正确的是( )A .log b a c >B .b c a b >C .b c a b <D .log log a b b c < 【答案】CD【解析】因为()1,2x ∈,所以()0,1a ∈,()2,4b ∈,()3,9c ∈,且b c <,所以log 1b c a >>,故A 错误;因为()0,1ba ∈,1cb >,即bc a b <,故B 错误,C 正确;因为log 0a b <,log 0b c >,即log log a b b c <,故D 正确.故选:CD.【题型4 含变量比较大小】【例4】(2022秋·河南·高三上蔡第一高级中学阶段练习)已知()()sin cos tan 1,,,2,2422x x x x a b c ππ--⎛⎫⎛⎫∈=== ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c >>B .c b a >>C .a c b >>D .c a b >> 【答案】D【解析】由题意得()()sin 1i si n n s 1222xx x a ---=⎛⎫= ⎪⎝⎭=,cos()cos 22x x b -==,因为当,42x ππ⎛⎫∈ ⎪⎝⎭时,tan sin cos x x x >>,且2x y =是增函数,所以c a b >>.故选:D.【变式4-1】(2022·全国·高三专题练习)设π02θ<<,sin 2a θ=,sin 2b θ=,2log sin c θ=,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .a c b <<D .c<a<b 【答案】D【解析】因为π02θ<<,所以0<sin 1θ<,且0sin21θ<, 所以(]0,1a ∈,sin 21b θ=>,2log sin 0c θ=<,所以c<a<b .故选:D.【变式4-2】(2022秋·黑龙江哈尔滨·高三哈尔滨三中校考阶段练习)已知())20222022lnx x f x x -=--,当π02x <<,cos a x =,lncos b x =,cos e x c =,试比较()f a ,f b ,()f c 的大小关系( ) A .()()()f a f c f b << B .()()()f b f c f a << C .()()()f c f a f b << D .()()()f b f a f c << 【答案】D【解析】())20222022ln20222022)x xx x f x x x --=--=-+,()f x ∴在R 上是增函数,由()0,1x ∈时,ln x x x e <<知,b a c <<,()()()f b f a f c ∴<<,故选:D【变式4-3】(2023·全国·高三专题练习)已知,42x ππ⎛⎫∈ ⎪⎝⎭且222sin 2sin 1ex x a +=,cos cos 1e xx b +=,sin sin 1e x x c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .b<c<aC .a c b <<D .c<a<b 【答案】C【解析】构造函数()()10e x x f x x +=>,则()2222sin 2sin 12sin ex x a f x +==,()cos cos 1cos e x x b f x +==,()sin sin 1sin e x x c f x +==.因为()()()2e 1e 0e e x x x x x x f x -+'==-<在 ()0,∞+上恒成立,所以函数()f x 在()0,∞+上单调递减.又因为,42x ππ⎛⎫∈⎪⎝⎭,所以 ()22sin sin sin 2sin 10x x x x -=->,且sin cos x x >,故a c b <<.故选:C .第4天 掌握构造函数比较大小问题模型【题型5 构造函数比较大小】【例5】(2023·广西桂林·统考一模)已知a 、b 、()1,c ∈+∞,2e ln 39a a =,3e ln 28b b =,22e c c -=,则( )A .a b c >>B .a c b >>C .b c a >>D .c a b >> 【答案】A【解析】因为a 、b 、()1,c ∈+∞,由2e ln 39a a =可得ln 9e 9a a =,由3e ln 28b b =可得ln 8e 8b b =,由22e c c -=可得22e ec c =,构造函数()ln x f x x =,其中0x >,则()21ln x f x x -'=,当0e x <<时,0f x;当e x >时,()0f x '<.所以,函数()f x 的增区间为()0,e ,减区间为()e,+∞,因为2e e 89<<<,所以,()()()2e 89f f f >>,即e e e c b ac b a >>,即()()()e e e c b a f f f >>,因为a 、b 、()1,c ∈+∞,则e a 、e b 、()e e,c ∈+∞,所以,e e e a b c >>, 因此,a b c >>.故选:A.【变式5-1】(2022秋·广东广州·高三校考期中)函数()f x 是定义在R 上的偶函数,当0x <时()()0f x xf x '+>(其中()f x '是()f x 的导函数),若0.30.33(3)a f =⋅,log 3(log 3)b f ππ=⋅,11ln (ln )99c f =⋅,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c << 【答案】B【解析】令()()F x xf x =,又()f x 为定义在R 上的偶函数,则()()()()F x xf x xf x F x -=--=-=-,故()F x 为定义在R 上的奇函数;又()F x '=()()f x xf x '+,由题可知,当0x <时,()F x '0>,即()F x 在(),0-∞单调递增,结合()F x 是R 上的奇函数可知,()F x 为R 上的单调增函数;又0.301331log log 3log 10ln1ln 9ln9ππππ>==>>==>-=,又0.30.33(3)a f =⋅,log 3(log 3)b f ππ=⋅,11ln (ln )99c f =⋅,故a b c >>.故选:B.【变式5-2】(2022秋·四川成都·高三校考阶段练习)已知2220a =,2121b =,2022c =,则( )A .c b a >>B .b a c >>C .a b c >>D .a c b >> 【答案】C【解析】由2220a =,2121b =,可得ln 22ln20,ln 21ln21a b ==,则ln 20ln 22ln 2021ln 21ln 21ln 2122a b ==,令2ln ()(e )1x f x x x =>+,则221ln ()(e )(1)x x x f x x x x +-'=>+,令2()1ln (e )g x x x x x =+->,则()ln 0g x x '=-<,所以()g x 在2(e ,)+∞上单调递减,又2222(e )e 12e e 10g =+-=-+<,所以当2(e ,)x ∈+∞时,()0g x <,所以()0f x '<,所以()f x 在2(e ,)+∞上单调递减,从而2220()(e )e 1f x f <<=+,所以(20)(21)f f >,即ln ln a b >,从而可知a b >. 由2121b =,2022a =,可得ln 21ln21,ln 20ln22b c ==,则ln 21ln 21ln 2120ln 22ln 20ln 2221b c ==,令2ln(1)()(e 1)x h x x x+=>-,则22(1)ln(1)()(e 1)(1)x x x h x x x x -++'=>-+,令2()(1)ln(1)(e 1)m x x x x x =-++>-,则()ln(1)0m x x '=-+<,所以()m x 在2(e 1,)-+∞上单调递减,又22(e 1)e 10m -=--<,所以当2(e 1,)x ∈-+∞时,()0m x <, 所以()0h x '<,所以()h x 在2(e 1,)-+∞上单调递减,从而2220()(e 1)e 1h x h <<-=-, 所以(20)(21)h h >,即ln ln b c >,从而可知b c >.综上可得a b c >>.故选:C【变式5-3】(2022·全国·高三专题练习)已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是( )A .a c b >>B .b a c >>C .b c a >>D .c a b >> 【答案】A【解析】构造()1=ln ef x x x -,0x >,则()11=ef x x'-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e <⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=e x g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【变式5-4】(2022秋·广东河源·高三河源市河源中学阶段练习)设621121010a =+⨯,0.01e 1b =-,ln1.02c =,则,,a b c 的大小关系为( ) A .c a b << B .b c a << C .a b c << D .b a c << 【答案】C 【解析】6242621111101010102101022a ----=+=⨯+<⨯+⨯,20.0110e 1e 1b -=-=-, 令()21e 12x x f x x ⎛⎫--+ ⎝=⎪⎭,则()e 1x x f x =--',令()e 1x x g x =--,则()e 1xg x '=-,当0x >时,()0g x '>,所以函数()g x 在()0,+∞上递增,所以()()00g x g >=,即()()00f x f ''>=,所以函数()f x 在()0,+∞上递增,所以()()21000f f ->=,即210421e 110102---->⨯+,所以a b <,令()()e 1ln 21x h x x =--+,则()()21e 22e 2121xxx h x x x +-'=-=++,令()()21e 2x m x x =+-,则()()23e xm x x '=+,当0x >时,()0m x '>,所以函数()m x 在()0,+∞上递增,()0.10.130.1 1.2e 22e 15m ⎛⎫=-=- ⎪⎝⎭,因为1010770.133327e 381e e 155********⎛⎫⎛⎫⎛⎫⎛⎫=⨯=⨯<⨯< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以0.13e 15<,所以()0.10.130.1 1.2e 22e 105m ⎛⎫=-=-< ⎪⎝⎭,所以当00.1x <<时,()0m x <,即()0h x '<,所以函数()h x 在()0,0.1上递减,所以()()0.0100h h <=,即0.01e 1ln1.020--<, 所以b c <,综上所述a b c <<.故选:C.【变式5-5】(2022·全国·高三专题)设11111111,e 1,ln 101010a b c ==-=,则a ,b ,c大小关系是_______. 【答案】b a c <<【解析】令()()()1ln 1f x x x x =++-,1x >-,则()()()ln 111ln 1f x x x '=++-=+, 令()0f x '>,得0x >,即()f x 在()0,∞+上单调递增,1010>,∴1()(0)10f f >,即11111ln 101010>,即c a >,令1011()e 1x g x x =--,则101110()e 111x g x '=-,令()0g x '<得1111ln 1010x <,即()g x 在1111ln 1010⎛⎫∞ ⎪⎝⎭-,单调递减,因为111110ln 101010<<,所以1()(0)10g g <,即10111101e 1010⨯--<,所以1111e 110-<,即b a <.所以b a c <<.第5天 掌握数形结合法比较大小问题模型【题型6 数形结合法比较大小】【例6】(2022·全国·高三专题练习)已知()()2022()y x m x n m n =--+<,且,()αβαβ<是方程0y =的两根,则,,,m n αβ的大小关系是( )A .m n αβ<<<B .m n αβ<<<C .m n αβ<<<D .m n αβ<<< 【答案】C【解析】()()()2022()f x x m x n m n =--+<为二次函数,开口向上,因为,()αβαβ<是方程0y =的两根,故,()αβαβ<为图象与x 轴的两个交点横坐标,其中()()2022f m f n ==,画出图象如下:显然m n αβ<<<,故选:C【变式6-1】(2023秋·陕西西安·高三统考期末)已知3log 2a =,4log 3b =,5log 4c =,则a ,b ,c 的大小关系为( )A .c<<b aB .a b c <<C .b a c <<D .c b a << 【答案】B【解析】方法一:设函数为()()log 1x f x x =-,而()()()lg 1log 1lg x x f x x x-=-=.如图,()lg 1y x =-的图象在lg y x =的下方,而且随着x 的增大,()lg 1y x =-的图象与lg y x =的图象越来越接近,即当2x >时,()()()lg 1log 1lg x x f x x x-=-=的值越来越大,所以有,a b c <<.方法二:构造函数()()log 1x f x x =-,1x >;则()3a f =,()4b f =,()5c f =()()()ln 1log 1ln x x f x x x-=-=,()()()2ln ln 10ln x x f x x --=>'在()1,+∞上恒成立,所以,函数()()log 1x f x x =-在()1,+∞上单调递增,所以,()()()345f f f <<,即a b c <<.故选:B.【变式6-2】(2022秋·江苏扬州·高三期末)已知正实数a ,b ,c 满足2e e e e c a a c --+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a << 【答案】B【解析】22e e e e e e e e c a a c c c a a ----⇒+=+-=-,故令()e e x x f x -=-,则()e e c cf c -=-,()e e a a f a -=-.易知1e ex x y -=-=-和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数.∵2e e a a --<,故由题可知,2e e e e e e c c a a a a ----=->-,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+=,2log 2c c =-,作出函数2log y x =与函数2y x =-的图象,如图所示,。

高中数学—指对数比较大小方法

高中数学—指对数比较大小方法

高中数学—指对数比较大小方法标题:高中数学——指对数比较大小方法在数学的海洋中,我们经常需要比较数字的大小。

然而,当我们面对指对数时,比较大小的方法就变得相对复杂了。

指对数是一类特殊的函数,其特点是函数的值与实数之间存在一一对应的关系。

因此,比较指对数的大小实际上就是比较它们所对应的实数的大小。

一、理解指对数我们需要理解什么是指对数。

简单来说,指对数是一种特殊的函数,它可以将一个正实数映射到一个特定的实数。

对于任何一个正实数x,都有一个唯一的实数y与之对应,这个关系可以表示为log(x) = y。

其中,log是常用对数的简写形式,它通常用来表示以10为底的对数。

二、比较指对数大小的方法1、利用函数的单调性:对于任何一个底数大于1的指对数函数,它在定义域内都是单调递增的。

因此,如果log(a) > log(b),那么a 一定大于b。

同样地,如果log(a) < log(b),那么a一定小于b。

2、利用图象:我们可以通过画出指对数函数的图象来比较大小。

如果两个数的指对数值相等,那么它们对应的点应该在同一条直线上。

反之,如果两个数的指对数值不相等,那么它们对应的点一定不在同一条直线上。

3、利用中间值:当两个数的指对数值难以确定时,我们可以利用中间值来比较它们的大小。

假设log(a) > log(m) > log(b),那么我们可以推断出a > m > b。

三、注意事项在比较指对数大小的时候,一定要注意底数的范围。

如果底数小于1,那么函数在定义域内是单调递减的。

这时,比较大小的方法就需要根据具体情况来调整了。

总结来说,比较指对数大小的方法需要我们理解指对数的概念和性质,并利用函数的单调性、图象和中间值等方法来进行比较。

我们也要注意底数的范围对比较大小的影响。

通过不断地实践和练习,我们就能熟练掌握指对数比较大小的方法了。

在数学学习中,比较大小是非常基础且重要的一项技能。

第20讲 指对数比较大小8种常考题型总结

第20讲 指对数比较大小8种常考题型总结

第20讲指对数比较大小8种常考题型总结【知识点梳理】指数和对数的比大小问题成为了高考和模拟题的一些拉档题,这里我们重点介绍几种比大小方法,让大家充分了解掌握一些指数对数大小比较的常用方法.(1)利用指数对数单调性比较大小;当底数一样或者可以化成一样,直接利用单调性比较即可(2)利用指数对数函数图象关系比较大小(2)比较与0,1的大小关系,此类题目一般会放在单选第5题左右位置,比如12.02.0003.0=<<,12.0log3.0log 1log 02.02.02.0=<<=(3)取中间值,比如遇到两个数都在0到1之间,我们可以比较它们与21的大小等(4)去常数再比大小当底数和真数出现了倍数关系时候,需要将对数进行分离常数再比较.例如:log log 1log log n a a a a ma m ma m n =+=+;.(5)当真数一样我们考虑用换底公式,换为底数一样,再比较分母,如2ln =a 和2log 3=b ,ea 2log 12ln ==,3log 12log 23==b ,因为e 22log 3log >,所以b a >(6)乘倍数比较数的范围比较大小,比如3log 2=a 和4log 3=b ,则()5,427log 3log 3322∈==a ,()4,364log 4log 3333∈==b ,所以b a 33>,所以ba >(7【题型目录】题型一:直接利用单调性比较大小题型二:比较与1,0的大小关系题型三:取中间值比较大小题型四:利用换底公式比较大小题型五:分离常数再比较大小题型六:利用均值不等式比较大小题型七:乘倍数比较数的范围比较大小题型八:构造函数比大小【典型例题】题型一:直接利用单调性比较大小【例1】已知222log 0.6,log 0.8,log 1.2a b c ===,则()A .c b a>>B .c a b>>C .b c a >>D .a b c>>【例2】已知2log 3a =,4log 6b =,8log 9c =,则a 、b 、c 的大小顺序为()A .a b c <<B .a c b<<C .c b a<<D .b c a<<【题型专练】1.下列选项正确的是()A .22log 5.3log 4.7<B .0.20.2log 7log 9<C .3πlog πlog 3>D .log 3.1log 5.2(0a a a <>且1)a ≠2.已知2log 3a =,ln 2b =,2log πc =,则a ,b ,c 的大小关系为()A .a b c >>B .c a b>>C .a c b>>D .c b a>>3.已知1ln 3a=,33log 5log 2b =-,c =a ,b ,c 的大小关系为()A .a c b >>B .b c a >>C .c a b>>D .c b a>>4.已知0.919x =,2log 0.1y =,2log 0.2z =,则()A .x y z>>B .x z y>>C .z x y >>D .z y x>>题型二:比较与1,0的大小关系【例1】若1223a ⎛⎫= ⎪⎝⎭,1ln 2b =,0.20.6c -=,则a ,b ,c 的大小关系为()A .c b a>>B .c a b >>C .b a c >>D .a c b>>【例2】已知0.3123log 2,log 3,2a b c -===,则a ,b ,c 的大小关系是()A .a b c>>B .b a c>>C .c a b>>D .b c a>>【例3】已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则()A .a c b >>B .b c a >>C .a b c >>D .c a b>>【题型专练】1.若0.110a =,lg 0.8b =,5log 3.5c =,则()A .a b c>>B .b a c>>C .c a b>>D .a c b >>2.已知5lg 0.2,log 6,ln 2a b c ===,则a ,b ,c 的大小关系为()A .a b c<<B .c a b<<C .a c b<<D .c b a <<3.已知0.60.622e log 0.6a b c -===,,,则a ,b ,c 的大小关系为()A .b a c >>B .b c a >>C .a b c>>D .a c b>>题型三:取中间值比较大小【例1】已知32log 3a =,2log 3b =,139c =,则()A .c a b>>B .b a c >>C .b c a>>D .c b a >>【例2】已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A .c b a<<B .b a c<<C .a c b<<D .a b c<<【例3】已知6log 2a =,0.5log 0.2b =,0.30.6c =,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b<<【题型专练】1.已知3log 4a =,4log 5b =,32c =,则有()A .a b c>>B .c b a>>C .a c b >>D .c a b>>2.设0.61a =,0.6lg9b =,32log 8c =,则()A .b a c<<B .c b a<<C .a c b<<D .b c a<<3.已知52log 4a =,31log 72b =,4log 52c =,则a ,b ,c 的大小关系是()A .b c a<<B .b a c <<C .c a b<<D .a b c<<题型四:利用换底公式比较大小【例1】设x ,y ,z 为正数,且345x y z ==,则()A .x y z<<B .y x z<<C .y z x<<D .z y x<<【例2】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【例3】设a =log 32,b =ln2,c 125=,则a 、b 、c 三个数的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .c >b >a【题型专练】1.设0.1log 4a =,50log 4b =,则()A .()22ab a b ab<+<B .24ab a b ab<+<C .2ab a b ab <+<D .2ab a b ab<+<2.设2log a π=,6log b π=,则()A .0a b ab-<<B .0ab a b<<-C .0ab a b <<-D .0a b ab<-<3.设0.20.3a =,20.3b =,则()A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+4.已知正数x ,y ,z 满足346x y z ==,则下列说法中正确的是()A .1112x y z+=B .346x y z >>C .22xy z>D .2x y z⎛+> ⎝题型五:分离常数再比较大小【例1】已知6log 3a =,8log 4b =,10log 5c =,则().A .b a c <<B .c b a<<C .a c b<<D .a b c<<【题型专练】1.设6log 3=a ,10log 5=b ,14log 7=c ,则()A.ab c >> B.b c a>> C.a c b>> D.a b c>>题型六:利用均值不等式比较大小【例1】73a =,4log 20b =,33log 2log 6c =+,则a ,b ,c 的大小关系是()A .a b c>>B .a c b >>C .c b a >>D .c a b>>【例2】若lg 2lg5a =⋅,ln 22b =,ln 33c =,则a ,b ,c 的大小关系为()A .a b c <<B .b c a <<C .b a c <<D .a c b<<【题型专练】1.已知910,1011,89m m m a b ==-=-,则()A .0a b>>B .0a b >>C .0b a >>D .0b a>>2.已知2log a =0.62b =,0.2log 6c =-,则实数a ,b ,c 的大小关系为()A .a c b>>B .a b c>>C .b a c>>D .b c a>>题型七:乘倍数比较小【例1】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A .a <b <c B .b <a <cC .b <c <aD .c <a <b【题型专练】1.已知3log 2=a ,4log 3=b ,5log 4=c ,则实数a ,b ,c 的大小关系为()A .a <b <cB .a b c>>C .b a c>>D .b c a>>题型八:构造函数比大小【例1】设0a >,0b >,则下列叙述正确的是()A .若ln 2ln 2a b b a ->-,则a b >B .若ln 2ln 2a b b a ->-,则a b <C .若ln 2ln 2a a b b ->-,则a b >D .若ln 2ln 2a a b b ->-,则a b<【例2】若2e 2e x x y y ---<-,则()A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【题型专练】1.若1a b >>,且x y x y a a b b --->-,则()A .()ln 10x y -+>B .()ln 10x y -+<C .ln 0x y ->D .ln 0x y -<2.已知正实数x ,y 满足21211log log 22xyx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则()A .11x y<B .33x y <C .()ln 10y x -+>D .122x y-<。

高考数学复习点拨:对数比较大小的创新解法

高考数学复习点拨:对数比较大小的创新解法

学必求其心得,业必贵于专精对数比较大小的创新解法广西 成冬元关于两个相关甚微且真数与底数均不相同的对数的大小比较,有多种不同的解法,但环节过多,比较难用其自然.下面提出一种简便、实用的新方法,它的一般操作程序为:析出整数、变换底数、放缩真数、得到结论.例1.比较log 74与log 1812的大小.解:因为0<lg 447<log 4712,所以log 74=1+ lg 447>1+ log 4712>1+ log121812=log1812.所以log 74>log 1812.例2.log 321与log 831的大小.解:因为0<log 2143<log 3143,所以log 4321>log 4331,从而log 321=-2+ log 4321>-2+ log 9831= log 831.注意:上述两例中,析出整数后余下的对数的绝对值小于1.例3.设x >1,试比较log)1(+x x和log)2(1++x x 的大小.解:因为0<log x xx 1+<log)1(1++x xx ,所以log xx x 1+>logxx x 11++.所以log)1(+x x=1+logxx x 1+>1+ logxx x 11++>1+ log121+++x x x = log)2(1++x x .故log)1(+x x>log )2(1++x x .例4.设n >m >1,t >1,求证:logntmt<log n m.证明:因为logmt mn >log m mn >0,所以logmn mt <log mn m ,所以lognt mt=1+ logmn mt<1+ log mn m = log n m.故lognt mt<log n m.。

高考数学复习考点题型解题技巧专题讲解04 比较大小

高考数学复习考点题型解题技巧专题讲解04 比较大小

高考数学复习考点题型解题技巧专题讲解第4讲比较大小专项突破高考定位比较大小题型每年必考,而且以多种形式出现,可以囊括高中各部分知识,综合性极强,该题型很好的考察了学生的综合素养。

考点解析(1)特殊值法(2)单调性法(3)基本不等式法(4)放缩法(5)图像法(6)作差法(7)作商法(8)构造法(9)反证法题型解析类型一、特殊值法例1-1.已知111,,,a b aM a N a P ba b<<===,则,,M N P的大小关系正确的为()A.N M P<<B.P M N<<C.M P N<<D.P N M<<【答案】B【分析】根据指数函数与幂函数的单调性即可求解.【详解】 解:111a b <<,01b a ∴<<<,∴指数函数x y a =在R 上单调递减,b a a a ∴>,即N M >,又幂函数a y x =在()0,∞+上单调递增,a a ab ∴>,即M P >,N M P ∴>>,故选:B.例1-2.设02x π<<,记l n s i n a x =,sin b x =,sin x c e =,则比较a ,b ,c 的大小关系为()A .a b c <<B .b a c <<C .c b a <<D .b c a <<【答案】A【分析】根据02x π<<,得到()sin 0,1b x =∈,再利用对数函数和指数函数的性质判断.【详解】因为02x π<<,所以()sin 0,1b x =∈,lnsin 0a x =<,sin 1x c e =>,所以a b c <<,故选:A例1-3.已知()()2221,2,2,2,2x x x x a b c ∈===,则,,a b c 的大小关系为( ) A .a b c >>B .b c a >>C .b a c >>D .c a b >>【答案】B【分析】根据指数函数的单调性,将问题转化为比较当()1,2x ∈时2,2,2x x x 的大小,利用特值法即可求得结果.【详解】因为()2222x x b ==,函数2x y =是单调增函数,所以比较a ,b ,c 的大小,只需比较当()1,2x ∈时2,2,2x x x 的大小即可.用特殊值法,取 1.5x =,容易知3222.25,23,22xx x ===, 再对其均平方得()()()2222232.25 5.0625,29,228x x x =====, 显然()()()22232229228 2.25 5.0625x x x =>==>==, 所以222x x x >>,所以b c a >>【点睛】本题考查利用指数函数的单调性比较指数式的大小关系,属基础题.本题解题的关键在于将问题转化为比较当()1,2x ∈时2,2,2x x x 的大小,再通过特殊值法即可得答案.例1-4.设0x y >>,1x y +=,若1y a x ⎛⎫= ⎪⎝⎭,1log xy b xy ⎛⎫ ⎪⎝⎭=,1log y c x =,则实数a ,b ,c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a <<【答案】C【分析】利用0x y >>,1x y +=可知01y x <<<,结合不等式性质知11x >,01xy <<,1111xy y x >>>,再利用指数函数、对数函数的性质直接求解.【详解】0x y >>,1x y +=,01y x ∴<<< 利用不等式性质可知11x >,01xy <<,1111xy y x>>>, ∴011()()1y a x x =>=,1()log 10xy b xy ==-<,111log 1log log 1y y yc x y =>>=-, ∴实数a ,b ,c 的大小关系为b c a <<.【点睛】方法点睛:本题考查指数对数的大小判断,判断方法:解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1,考查学生的转化能力,属于基础题.类型二、单调性法例2-1.设233344443,,332a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a c b >>B .a b c >>C .c b a >>D .b c a >>【答案】C【分析】 根据指数函数43⎛⎫= ⎪⎝⎭x y 与幂函数34y x =的单调性判断,,a b c 的大小关系. 【详解】 因为函数43⎛⎫= ⎪⎝⎭xy 在R 上是增函数,所以23344433<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,即a b <,又因为函数34y x =在(0,)+∞上是增函数,所以33444332⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以b c <,故a b c <<.练.已知 4.10.90.1445,,554a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则这三个数的大小关系为( ) A .a c b >>B .b c a >>C .c a b >>D .c b a >>【答案】B【分析】利用指数函数的单调性即可比较大小.【详解】0.90.94554b -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 因为54xy ⎛⎫= ⎪⎝⎭在R 上单调递增﹐则1b c >>, 又 4.1044155a ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭.故b c a >>.故选:B.练.设3log πa =,32log 2b =,1ln e 4c =,则a ,b ,c 大小关系为()A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】B根据指数函数、对数函数的性质判断可得;【详解】 解:因为1ln ln10e <=,所以1ln 0e 0441<<=,即01c <<,又2333332log 2log 2log 4log log 31π==>>=,即1b a >>,所以b a c >>;故选:B类型三、简单同构法(同底、同指、同真、同分母、同分子等)例3-1.已知43a =,3log 4b =,0.13c -=,则a 、b 、c 的大小关系为() A .a b c >>B .c b a >>C .b a c >>D .a c b >>【答案】A【分析】 首先根据题意得到4333log 3log 4>,从而得到a b >,又根据3log 41b =>,100.313c -<==,从而得到b c >,即可得到答案.【详解】因为4334log 33a ==, 344333=3=81464⎛⎫>= ⎪⎝⎭, 所以4333log 3log 4>,即a b >.又因为33log 4log 31b =>=,100.313c -<==,即b c >,所以a b c >>.故选:A练.已知2516log 3,log 9,0.3a a b c -===,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a【答案】D【分析】利用对数运算、指数运算化简,b c ,结合对数函数的性质比较三者的大小关系.【详解】22444log 3log 3log 41b ==<=,所以01a b <<<, 5555325log log log 5253log 32231010100.30.3110333a c --⎛⎫⎛⎫⎛⎫====>=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以cb a >>.故选:D例3-2.已知ln 22a =,ln 33b =,ln 55c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .a c b <<C .b a c <<D .c a b <<【答案】D【分析】运用比差法分别比较,a b 与,a c ,进而可得结果.【详解】 因为ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <; 又ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >, 所以c ab <<.故选:D.练.已知12019ln20202020a =+,12020ln 20212021b =+,12021ln 20222022c =+,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】A【分析】根据三个数的形式,构造函数,利用导数判断函数的单调性,最后根据单调性进行比较大小即可.【详解】构造函数()ln 1f x x x =+-,()111x f x x x -'=-=,当01x <<时,()0f x '>, ()f x 单调递增,所以111202*********f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b c >>. 故选:A练.已知ln 22a =,1b e =,ln 33c =,则a 、b 、c 的大小关系为( ) A .b c a <<B .c a b <<C .a c b <<D .c b a <<【答案】C【分析】结合导数求()ln x f x x =的单调性,可判断,b a b c >>,令a c -,结合对数的运算性质可判断出c a >,从而可选出正确答案.【详解】解:设()ln x f x x =,则()21ln x f x x -'=,当0x e <<时,()0f x '>; 当x e >时,()0f x '<,则()f x 在()0,e 上单调递增,在(),e +∞上单调递减,则当x e =时,()max ln 1e f x e e ==,即,b a b c >>;ln 2ln 33ln 22ln 3ln8ln 902366a c ---=-==<,则c a >,所以bc a >>, 故选:C .【点睛】思路点睛:比较几个数的大小关系时,常用的思路是:1、求出函数的单调性,结合增减性进行判断;2、利用作差法,判断两数与零的关系;3、利用作商法,判断两数与1的关系.练.已知7log 22a =,7log 33b =,7log 66c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .b a c >>C .a c b >>D .b c a >>【答案】B【分析】先把a 、b 、c 化为“同构”形式,利用函数的单调性判断大小.【详解】∵log log m a a m b b =, ∴777log lo 6g 23g 2826lo a ===, 777log 3lo 6g 2g 3936lo b ===7log 66c = 因为7log y x =为增函数,所以777log 6log 8log 9<<,所以b a c >>.故选:B【点睛】指、对数比较大小:(1)结构相同的,构造函数,利用函数的单调性比较大小;(2)结构不同的,寻找“中间桥梁”,通常与0、1比较.练.已知e a =,33log e b =,5ln 5c =,则a ,b ,c 的大小关系为( ) A .c a b <<B .a c b <<C .b c a <<D .a b c <<【答案】D【分析】 设()ln x f x x =,e x ≥,利用导数判断函数的单调性,利用函数的单调性比较函数值的大小; 【详解】 解:设()ln x f x x=,e x ≥,则()2ln 10(ln )x f x x -'=≥恒成立,∴函数()f x 在[e )+∞,上单调递增,又(e)a f =,333log e (3)ln 3b f ===,5(5)ln 5c f ==,∵e 35<<,()()()e 35f f f ∴<<,∴a b c <<,例3-3.已知0a b c d <<<<,若c a a c =,则d b 与b d 的大小关系为( )A .d b b d <B .db b d =C .d b b d >D .不确定 【答案】C【分析】由c a a c =得ln ln a c a c =,构造新函数ln x y x =,利用导数讨论ln x y x =的单调性,从而判断出ln ln ln b c d b c d >>,即可 得到d b b d >.【详解】因为c a a c =,所以ln ln c a a c =,即ln ln a c a c =, 设ln x y x =,则21ln x y x -'=,令21ln x y x-'==0,得x e =, 当(0,)x e ∈时,0y '>,ln x y x=单调递增, 当(,)x e ∈+∞时,0y '<,ln x y x=单调递减; 因为ln ln a c a c =,0a b c d <<<<,所以a e c <<, 所以ln ln ln b c d b c d >>,即d b b d >.故选:C.指、对数比较大小:(1)结构相同的,构造函数,利用函数的单调性比较大小;(2)结构不同的,寻找“中间桥梁”,通常与0、1比较.练.若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( )A .b a c <<B .a b c <<C .c a b <<D .b c a <<【答案】A【分析】首先利用指数函数和幂函数的单调性得到b c <和a b >,再构造函数,利用导数得到函数的单调性得到a c <,即可得到答案.【详解】因为3x y =在R 上为增函数,所以33e π<,即b c <.因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()x f x x =, 21ln ()x f x x -'=,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数,(,)x e ∈+∞,()0f x '<,()f x 为减函数.则()(3)f f π<,即ln ln 33ππ<,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <.所以b a c <<.故选:A【点睛】本题主要考查指数和幂的比较大小,利用导数得到函数的单调性来比较大小为解决本题的关键,属于中档题.练.已知5ln 4a π=,4ln 5b π=,45ln c π=,则a ,b ,c 的大小关系是A .c b a <<B .c a b <<C .b a c <<D .a b c <<【答案】C【分析】 令ln ()()x f x x e x =≥,利用导数研究函数的单调性即可得出a ,b ,c 的大小关系. 【详解】 解:令ln ()()x f x x e x =≥,21ln ()x f x x -'=, 可得函数()f x 在(),e +∞上单调递减,ln 4ln 5,5ln 44ln 5,45a b ππππ∴>∴>∴>,同理可得:44ln ln 4,4ln ln 4,4,5ln 5ln 4,4c a ππππππππ>∴>∴>∴>∴>,∴b a c <<.故选:C.本题考查了利用导数研究函数的单调性、对数函数的单调性,考查了推理能力与计算能力,属于中档题.类型四、中间量d=,则a,b,c,d的大小关系是()例4-1.若0.8b=,0.30.2a=,0.20.81.1c=,lg0.2A.c b a d>>>>>>B.c a b dC.b c a d>>>>>>D.a c b d【答案】A【分析】由指数函数、幂函数以及对数函数的单调性比较大小即可.【详解】由指数函数的单调性知:0.20.8>=1.1 1.11>,0.300.20.2由幂函数的单调性知:0.20.2>,0.80.2所以0.20.20.8c b a>>=>>=>,10.80.20.20d=<=又由对数函数的单调性可知:lg0.2lg10综上有:c b a d>>>.例4-2.已知1253a -⎛⎫= ⎪⎝⎭,2log 5b =,3log 7c =,则a ,b ,c 的大小顺序是( ) A .a b c >>B .c a b >>C .c b a >>D .b c a >>【答案】D【分析】 由11225335-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,22log 5log 4>,333log 3log 7log 9<<判断.【详解】 因为112253135a -⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭,22log 5log 42b =>=, 3331log 3log 7log 92c =<=<=,所以b c a >>故选:D练.已知a =b =2log 3c =,则a ,b ,c 的大小关系为( )A .b a c >>B .a c b >>C .a b c >>D .b c a >>【答案】C【分析】根据指数运算与对数的性质,求得2a >,2b <,12c <<,再结合22log log 3b c ==,利用对数函数的单调性,即可求解.【详解】根据指数运算与对数运算的性质,可得122a =>=,2b =,2log 3(1,2)c =∈,设22log log 3b c ===,因为函数2log y x =为增函数,由于8523>,所以b c >,所以a b c >>.故选:C.练.已知0.352,ln 2,2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c b a >>C .b c a >>D .c a b >>【答案】B【分析】根据指数式与对数式互化公式,结合指数函数和对数函数的性质进行判断即可.【详解】由551log 2log log 522a a a =⇒==<,由112b >>,0.312c =>,所以c b a >>,故选:B类型五、放缩法例5-1.若1(,1)x e -∈,ln a x =,ln 1()2x b =,ln 2x c =,则a ,b ,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .b c a >>【答案】D【分析】先利用ln y x =的单调性求出a 值范围;再利用2x y =的单调性比较b 和c 的大小而得解.【详解】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22x x -=,则ln 11()22x <<,ln 1212x <<,即1122c b <<<<, 综上得:b c a >>故选:D练.设02x π<<,记lnsin a x =,sin b x =,sin x c e =,则比较a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .b c a <<【答案】A【分析】 根据02x π<<,得到()sin 0,1b x =∈,再利用对数函数和指数函数的性质判断.【详解】 因为02x π<<,所以()sin 0,1b x =∈,lnsin 0a x =<,sin 1x c e =>, 所以a b c <<,故选:A练.已知sin3a =,3log sin 3b =,sin33c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【答案】C【分析】利用指数函数、对数函数以及三角函数值即可得出选项.【详解】 因为32ππ<<,所以()sin30,1a =∈,33log sin3log 10b =<=,sin30331c =>=,所以c a b >>.故选:C练.已知0.32=a , 1.12.3b =,3log 6c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<【答案】C【分析】根据指数函数,对数函数的单调性来判断数值大小.【详解】由对数及指数的单调性知:0.30.522 1.414a =<=, 1.12.3 2.3b =>,332log 6log 1.5c >=>,所以a ,b ,c 的大小关系为a c b <<.故选:C.类型六、比较法例6-1作差法.设2l og 3a =,32log 2b =,32log 2c =-,则a ,b ,c 的大小顺序为( )A .b c a <<B .c b a <<C .a b c <<D .b a c <<【答案】A【分析】 先通过变形3339log 9log 2log 2c =-=,而332log 2log 4b ==,故可判断,b c 大小,再作差利用基本不等式有23log 3log 2220a c -=+->=即可得解.【详解】 由33333392log 2log 9log 2log log 42log 22c b =-=-=>==,23log 3log 222220a c -=+->>-=,所以a c >,所以a c b >>,故选:A.【点睛】本题考查了对数函数的比较大小,对数函数的比较大小是高考中重点考查对象,考查了利用中间量以及作差法比较大小,考查了变形转化以及对数的运算能力,比较大小有以下几种方法:(1)利用函数单调性比较大小;(2)中间量法比较大小;(3)作差法、作商法比较大小.例6-2作商法.已知0.75a =,52log 2=b ,21log 32=c ,则a 、b 、c 的大小关系是()A .a c b <<B .a b c <<C .b a c <<D .c b a <<【答案】A【分析】根据对数的运算法则及性质比较,b c 与a 的大小,利用作商法比较,b c 的大小.【详解】 由30.754a ==, 因为3444(5)1254256=<=,故3454<, 所以3455log 5log 4a b =<=, 因为3444(2)89=<=,故342< 所以3422log 2log a c =<=因为58165>,故85165>,因为5832<,故8532<, 所以8555558225222log 24log 2log 16log 511log 3log 3log 3log 22b c ===>=, 所以b c >,故a c b <<,故选:A【点睛】关键点点睛:根据对数的运算性质将a 写成对数345log 5,342log 2,利用函数的单调性比较真数大小即可,利用作商及放缩的方法可得,b c 的大小,属于较难题目.练.已知1ln 23a =,24log 25b =,25log 26c =,则a ,b ,c 的大小关系为A .a b c >>B .a c b >>C .c b a >>D .b c a >>【答案】D【分析】 先由题,易知1ln 231a =<,而2425log 251,?log 261b c =>=>,再将b ,c 作商,利用对数的运算以及基本不等式,求得比值与1作比较即可得出答案.【详解】因为1ln 02<,故1ln 231a =< 2425log 251,?log 261b c =>=> 2225252525252524log 26log 26log 241log 26log 24()[log (251)(251)]1log 2524c b +==⋅<=+⋅-< 所以c b < ,即b c a >>故选D【点睛】本题考查了对数的运算以及基本不等式的综合,解题的关键是在于运算的技巧以及性质,属于中档偏上题型.类型七、图像法例7-1.若()122211log ,0,222a b c a b b c -⎛⎫⎛⎫==>= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .c a b <<B .c b a <<C .a c b <<D .b c a <<【答案】B【分析】 分别画出函数1221(),log ,2x y y x y x ===的图象,由图象交点坐标,即可判断得出,,a b c 的大小关系.【详解】 分别画出函数1221(),log ,2x y y x y x ===的图象,如图所示,由图象,可得c b a <<.故选:B.练.若44log x x -=,144log y y =,44log 0zz -+=,则实数x ,y ,z的大小关系为()A .x y z <<B .z y x <<C .z x y <<D .y z x <<【答案】D【分析】利用指数与对数函数的单调性,确定各方程根的范围,进而比较它们的大小.【详解】对于44log x x -=,由()4x f x -=与4()log g x x =有交点,()f x 过一、二象限,()g x 过一、四象限,∴()f x 与()g x 的交点必在第一象限且()f x 单调递减、()g x 单调递增,而1(1)(1)04f g =>=,11(2)(2)162f g =<=,可得()1,2x ∈, 对于144log y y =,由()4y m y =与14()log n y y =有交点,()m y 过一、二象限,()n y 过一、四象限,∴()m y 与()n y 的交点必在第一象限且()m y 单调递增、()n y 单调递减,而(0)1m =,0lim ()y n y +→→+∞,111()2()222m n =>=,可得10,2y ⎛⎫∈ ⎪⎝⎭, 对于44log 0z z -+=,显然有12z =, ∴x ,y ,z 的大小关系为y z x <<,故选:D.例7-2.已知,,(0,)a b c ∈+∞,且ln 1a a =-,ln 1b b =,e 1c c =,则a ,b ,c 的大小关系是( )A .c b a <<B .a b c <<C .c a b <<D .b a c <<【答案】C【分析】由题意可得ln 1a a =-,1ln b b =,1e c c =.依次作出e x y =,ln y x =,1y x =-,1y x =在(0,)+∞上的图像,然后根据函数图像可求得答案【详解】ln 1a a =-,1ln b b =,1e c c =.依次作出e x y =,ln y x =,1y x =-,1y x =在(0,)+∞上的图像,如图所示.由图像可知01c <<,1a =,1b >,所以c a b <<.故选:C.练.正实数a ,b ,c 满足22a a -+=,33b b +=,4log 4c c +=,则实数a ,b ,c 之间的大小关系为( )A .b a c <<B .a b c <<C .a c b <<D .b c a <<【答案】A【分析】将22a a -+=,33b b +=,4log 4c c +=,转化为函数13x y =+,122xy =+,4log y x =与4y x =-的图象交点的横坐标,利用数形结合法求解.【详解】4log 4c c +=4log 4c c ⇒=-, 即c 为函数4log y x =与4y x =-的图象交点的横坐标,33b b +=134b b ⇒+=-,即b 为函数13x y =+与4y x =-的图象交点的横坐标,22a a -+=1242a a ⇒+=-, 即a 为函数122x y =+与4y x =-的图象交点的横坐标, 在同一坐标系中画出图象,如图所示:由图象可知:b a c <<.故选:A.练.已知5630x y ==,log x z y =,则x ,y ,z 的大小关系为( )A .x y z <<B .z y x <<C .y x z <<D .z x y <<【答案】B【分析】首先对5630x y ==取对数,可比较x ,y 的大小关系,利用对数的运算判断,x y 与1的大小关系,即可利用单调性判断z 的范围,进而可得出x ,y ,z 的大小关系.【详解】对5630x y ==两边同时取常用对数可得lg5lg6lg30x y ==, 所以lg30lg5x =,lg30lg 6y =, 因为lg y x =在()0,∞+单调递增,所以0lg5lg6<<, 所以lg30lg30lg5lg 6>,即x y >, 又因为5lg30lg5lg 61log 61lg5lg5x +===+>, 6lg30lg5lg 61log 51lg 6lg 6y +===+>, 所以0log log 1x x z y x <=<=,所以z y x <<.故选:B.【点睛】关键点点睛:本题解题的关键点是取对数判断x ,y 的大小关系,判断x 与1的关系利用单调性得出z 的范围.类型八、方程中隐含条件例8-1.已知正数x ,y ,z 满足ln z x y ye zx ==,则x ,y ,z 的大小关系为()A .x y z >>B .y x z >>C .x z y >>D .以上均不对【答案】A【分析】将z 看成常数,然后根据题意表示出,x y ,再作差比较出大小即可【详解】解:由ln z x y ye zx ==,得ln x y zx =,则ln z y =,得z y e =,所以z z e e zx ⋅=,所以2ze x z =,令()(0)z f z e z z =->,则()10z f z e -'=>,所以函数()f z 在(0,)+∞上单调递增,所以0()(0)01f z f e >=-=,所以z e z >,即y z >所以22()0z z z z z z e e ze e e z x y e z z z---=-==>, 所以x y >,综上x y z >>,故选:A练.设正实数a ,b ,c ,满足2ln 2a c e b b ce ===,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .b a c <<【答案】B【分析】通过构造函数()(0)x f x xe x =>,利用导数判断函数的单调性,并判断c 的范围,通过变形得c b e =,得,b c 的大小关系,再直接解方程求a 的范围,最后三个数比较大小.【详解】设()(0)x f x xe x =>,0x >时,()()10x f x x e '=+>恒成立,()f x 在(0,)+∞单调递增,1,12x ⎛⎫∈ ⎪⎝⎭时,()f x e ⎫∈⎪⎝⎭,2<,所以1,12c ⎛⎫∈ ⎪⎝⎭,ln ln ln b c b b b e ce =⋅=,故ln b c =,即c b e =∈,而ln 2122a =<,所以a cb <<. 故选:B【点睛】关键点点睛:本题的关键是构造函数()(0)x f x xe x =>,并且根据指对互化ln ln ln b b b b e =⋅,这样根据单调性可得ln b c =.练.设x ,y ,z 为正实数,且235log log log 1x y z ==>,则2x ,3y ,5z 的大小关系是( ) A .532zy x <<B .235x y z << C .325yxz <<D .235x y z == 【答案】B【分析】,,x y z 为正实数,且235log log log 1x y z k ===>,可得:22,33,55k k k x y z =>=>=>,然后变形,构造函数,利用幂函数的单调性即可得出.【详解】,,x y z 为正实数,且235log log log 1x y z k ===>,可得22,33,55k k k x y z =>=>=>. ∴11121,31,51235k k k xy z ---=>=>=>,令()1k f x x -=,又()f x 在()0+∞,上单调递增, ∴()()()532f f f >>,即532zy x >>, 故选:B .关键点睛:本题的关键是指数式与对数式的互化、构造幂函数并运用其的单调性. 例8-2.已知a 、b 、c 均为不等于1的正实数,且ln ln a c b =,ln ln c b a =,则a 、b 、c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .a c b >>【答案】A【分析】分析可知,ln a 、ln b 、ln c 同号,分a 、b 、()0,1c ∈和a 、b 、()1,c ∈+∞两种情况讨论,结合对数函数的单调性可得出a 、b 、c 的大小关系.【详解】ln ln a c b =,ln ln c b a =,且a 、b 、c 均为不等于1的正实数,则ln a 与ln b 同号,ln c 与ln a 同号,从而ln a 、ln b 、ln c 同号.①若a 、b 、()0,1c ∈,则ln a 、ln b 、ln c 均为负数,ln ln ln a c b b =>,可得a b >,ln ln ln c b a a =>,可得c a >,此时c a b >>;②若a 、b 、()1,c ∈+∞,则ln a 、ln b 、ln c 均为正数,ln ln ln a c b b =>,可得a b >,ln ln ln c b a a =>,可得c a >,此时c a b >>.综上所述,c a b >>.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个:(1)判断各个数值所在的区间;(2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.练.已知大于1的三个实数,,a b c 满足2(lg )2lg lg lg lg 0a a b b c -+=,则,,a b c 的大小关系不可能是( )A .a b c ==B .a b c >>C .b c a >>D .b a c >>【答案】D【分析】令()22lg lg lg f x x x b b c =-+,则lg a 为()f x 的零点,根据判别式可得b c ≥,就b c =和b c >分类讨论后可得,,a b c 的大小关系.【详解】令()22lg lg lg f x x x b b c =-+,则lg a 为()f x 的零点且该函数图象的对称轴为lg x b =, 故24lg 4lg lg 0b b c ∆=-≥,因为1,1b c >>,故lg 0,lg 0b c >>,所以lg lg b c ≥即b c ≥.又()()()()22lg lg lg lg lg lg lg ,lg lg lg lg lg lg lg f b b c b b c b f c c b c c c b =-=-=-=-,若b c =,则()()lg lg 0f b f c ==,故lg lg lg a b c ==即b c =.若b c >,则()()lg 0,lg 0f b f c <<,所以lg lg a c <或者lg lg b a <,即a c b <<或a b c >>.故选:D.【点睛】本题考查二次函数的零点,注意先根据方程的形式构建二次函数,再利用零点存在定理来讨论,注意合理分类,本题为中档题.例8-3.已知22,32a b a b +=+=,则lg b a 与lg a b 的大小关系是( )A .lg lg b a a b <B .lg lg b a a b =C .lg lg b a a b >D .不确定【答案】C【分析】令()()2,3x x f x x g x x =+=+,结合题意可知01b a <<<,进而有b b a a b b >>,再利用对数函数的单调性和运算性质即可求解【详解】令()()2,3x x f x x g x x =+=+,则当0x >时,()()g x f x >,当0x <时,()()g x f x <;由22,32a b a b +=+=,得()()2,2f a g b ==考虑到()()2f a g b ==得01b a <<<,b b a a b b ∴>>由b a a b >,得()()lg lg b a a b >,即lg lg b a a b >故选:C练.设实数a ,b 满足51118a b a +=,7915a b b +=,则a ,b 的大小关系为( )A .a b <B .a b =C .a b >D .无法比较【答案】A【分析】从选项A 或C 出发,分析其对立面,推理导出矛盾结果或成立的结果即可得解.【详解】假设a b ≥,则1111a b ≥,77a b ≥,由51118a b a +=得51151118()()11818a a a a a +≥⇒+≥, 因函数511()()()1818x x f x =+在R 上单调递减,又51116(1)1181818f =+=<,则()1(1)f a f ≥>,所以1a <;由7915a b a +=得797915()()11515b b b b b +≤⇒+≤, 因函数79()()()1515x x g x =+在R 上单调递减,又7916(1)1151515g =+=>,则()1(1)g b g ≤<,所以1b >; 即有1a b <<与假设a b ≥矛盾,所以a b <,故选:A【点睛】思路点睛:应用反证法解决问题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.巩固训练(精选以一敌百)1.(多选)(2021·全国·高三期中)已知a ,b 为正数,且1a b -=,则( )A .221a b +<B .331a b ->C .222log log 2-<a bD .211b b a+> 【答案】BD【详解】由于1a b -=,取1,2b a ==,代入四个选项对于A :221a b +<,左边2251a b +=>故A 错误;对于C ,222log log 2a b -=,故C 错误2.(多选)(2021·江苏·南京市第一中学高三期中)已知实数,,x y z 满足ln 1y z x z e ⋅=⋅=.则下列关系式中可能成立的是( )A .x y z >>B .x z y >>C .z x y >>D .z y x >>【答案】ABC 设1ln y x e k z ===,0k >,则k x e =,ln y k =,1z k =,画出函数图象,如图所示:当1k x =时,z x y >>;当2k x =时,x z y >>;当3k x =时,x y z >>;故选:ABC。

一网打尽指对幂等函数值比较大小问题 (9大核心考点)课件-2024年高考数学二轮复习(新教材新高考)

一网打尽指对幂等函数值比较大小问题 (9大核心考点)课件-2024年高考数学二轮复习(新教材新高考)

(4)特殊值法
(5)估算法
(6)放缩法、基本不等式法、作差法、作商法、平方法
(7)常见函数的麦克劳林展开式:

=++

!
+ ⋯+
② = −

!

+ !
③ = −

!

!
+

!
+
− ⋯+



!

+

(+)!
+

(−) (+)! +
B. < <
C. < <
D.b < c < a
【答案】D
【解析】因为 =
9
8
3
4
1
2
=
9
16
1
4
> 0, =
2
3
3
4
=
8
27
1
1
4
又因为 = 在 0, +∞ 上单调递增,所以
1
1
>
1 4
16
=
1,即
2
1
4
2
>
1
1
> > 2,
9
16
1
4
>
1
上单调递增,所以ln 3 < lne2,即 = ln1.5 < 2,
1
1
1
1
B.e > 1+ ( < 0)
A.ln 1 + >
( > 0)

指、对、幂的大小比较-高考数学复习

指、对、幂的大小比较-高考数学复习

6. 已知 a >1, x 1, x 2, x 3为函数 f ( x )= ax - x 2的零点, x 1< x 2< x 3.若
x 1+ x 3=2 x 2,则(
C )
易知 x 1<0< x 2< x 3, x 1, x 2, x 3为函数 f ( x )= ax - x 2的零点,
1 =12 ,
4
ln4+ln6 2
2
(ln5) −
ln5
ln6
(ln5)2 −ln4×ln6
2
因为 a - c =log45-log56=
ln4
(ln 25)2 −(ln 24)2
>0,
ln4×ln5
所以 a > c ,综上, c < a < b .

ln5

ln4×ln5

ln4×ln5

考点四
(1)(多选)若2 a +log2 a =4 b +2log4 b ,则下列结论错误的是
当 b =2时, f ( a )- f ( b 2)=-1<0,
此时 f ( a )< f ( b 2),有 a < b 2,
所以A,C,D均错误.
2
b 2)=22 b +log
2
2

b -( 2 +log
2)
b
2
(2)(2024·山东潍坊模拟)已知 a =2 0222 024, b =2 0232 023, c =2 0242 022,
的大小关系是( D
)
A. a < b < c
B. b < a < c
C. a < c < b
D. b < c < a
根据指数函数 y =3 x 在R上递增可得, a =30.5>30=1;

指数、对数、幂比较大小(原卷版)高考数学 专题03 十大方法

指数、对数、幂比较大小(原卷版)高考数学 专题03 十大方法

专题03“十大方法”,玩转指对幂比较大小方法一:单调性法【典例分析】典例1-1.设0.93a =,0.59b =,1213c -⎛⎫= ⎪⎝⎭,则().A .a b c >>B .c b a >>C .b a c>>D .b c a>>典例1-2.0.302a =.,0.40.2b =,0.2log 0.1c =,则()A .a b c >>B .b c a >>C .a c b>>D .c a b>>【变式训练】1.设0.4log 2a =,21log 0.3b =,0.40.3c =,则a ,b ,c 的大小关系为().A .a b c<<B .b a c <<C .a c b<<D .c b a<<2.设a = 1.12b =,2log 3c =,则a ,b ,c 的大小关系为()A .b a c >>B .c b a >>C .b c a>>D .a b c>>方法二:“媒介数”法【典例分析】典例2-1.已知0.33a =,2log 6b =,0.3log 2c =,则三数大小关系为()A .a b c<<B .b<c<aC .c b a<<D .c<a<b典例2-2.若5log 0.2a =,50.2b =,0.25c =,则a ,b ,c 三者的大小关系为()A .b c a >>B .b a c>>C .c a b>>D .c b a>>【变式训练】1.已知0.412log 1.41,2,ln 2a b c ===,则()A .a c b<<B .c a b<<C .b a c<<D .a b c<<2.已知23log 2a =,5log 6b =,sin 2c =,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .b c a>>D .c b a>>方法三:作差法【典例分析】典例3-1.设6log 2a =,12log 3b =,40log 5c =,则()A .a b c<<B .b a c<<C .c<a<bD .a c b<<典例3-2.已知3log 2a =,4log 3b =,4log c =)A .b a c >>B .c b a >>C .a b c >>D .b c a>>【变式训练】1.已知3log 2a =,4log 3b =,πsin 6c =,比较a ,b ,c 的大小为()A .a >b >cB .a >c >bC .b >c >aD .b >a >c2.设1,22a b c ===,则,,a b c 的大小顺序是()A .a b c >>B .c a b >>C .a c b>>D .b c a>>方法四:作商法【典例分析】典例4-1.)已知0.40.8a -=,5log 3b =,8log 5c =,则()A .a b c<<B .b<c<aC .c b a<<D .a c b<<典例4-2.已知0.30.4a =,0.30.3b =,0.40.3c =,则()A .a c b >>B .a b c>>C .c a b>>D .b c a>>【变式训练】1.已知41291log ,log ,0.90.8204p m n ===,则正数,,m n p 的大小关系为()A .p m n >>B .m n p >>C .m p n>>D .p n m>>2.已知54m =,89n =,0.90.8p =,则正数m ,n ,p 的大小关系为()A .p m n>>B .m n p>>C .m p n>>D .p n m>>方法五:构造函数【典例分析】典例5-1.已知()2log 22a a a =≠,()3log 33b b b =≠,()4log 44c c c =≠,则()A .a b c <<B .c<a<bC .c b a <<D .a c b<<典例5-2.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是()A .a b c <<B .a c b <<C .b<c<aD .b a c <<【变式训练】1.设2022ln 2020a =,2021ln 2021b =,2020ln 2022c =,则下列选项正确的是()A .a c b >>B .c b a >>C .b a c>>D .a b c>>2.已知0.1sin 0.1,ln1.1,e 1.005a b c ===-,则,,a b c 的大小关系为()A .a b c>>B .a c b>>C .c b a>>D .c a b>>方法六:乘方法【典例分析】典例6.已知3log 5a =,5log 7b =,43c =,则()A .a b c >>B .b a c >>C .c b a>>D .a c b>>【变式训练】1.已知5log 3a =,13log 8b =,1-2e c =,则下列判断正确的是()A .a b c<<B .a c b<<C .<<c a bD .<<b c a方法七:对数法【典例分析】典例7.已知1011910911a b c ===,,,则,,a b c 的大小关系为()A .c<a<bB .b a c <<C .a b c <<D .c b a<<【变式训练】1.已知20232022a =,20222023b =,2022log 2023c =,则,,a b c 的大小关系是()A .a b c<<B .b a c<<C .c a b<<D .c b a<<方法八:零点法【典例分析】典例8.已知函数1222111()log ,(),()222xxxf x xg x xh x x ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在区间(0,)+∞内的零点分别是a ,b ,c ,则a ,b ,c 的大小关系为()A .a b c >>B .b c a >>C .c a b>>D .b a c>>【变式训练】1.已知函数()()()3e ,ln ,xf x xg x x xh x x x =+=+=+的零点分别为,,a b c ,则,,a b c 的大小顺序为()A .a b c>>B .c a b>>C .b c a>>D .b a c>>方法九:特殊值法【典例分析】典例9.已知31,2α⎛⎫∈ ⎪⎝⎭,记sin cos log ,log sin ,log tan x y z αααααα===,则x ,y ,z 的大小关系正确的是()A .x y z <<B .y x z <<C .z x y <<D .x z y<<【变式训练】1.若1αβγ>>>且2αγβ<,设log a αγ=,log b βα=,log c γβ=,则()A .a b c <<B .b a c <<C .b<c<aD .c<a<b方法十:放缩法【典例分析】典例10-1.若4log 3a =,5log 4b =,0.032c -=,则,,a b c 的大小关系为()A .c b a<<B .a c b<<C .b a c<<D .a b c<<典例10-2.已知1sin 3a =,0.913b ⎛⎫= ⎪⎝⎭,271log 92c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【变式训练】1.设0.302a =.,3log 4b =,4log 5c =,则()A .a b c <<B .b a c <<C .c a b<<D .a c b<<2.已知ln1.1a =,12ln 11b =,111c =,则下列判断正确的是()A .a b c<<B .b a c <<C .c b a<<D .b c a<<针对性巩固练习1.已知0.20.54,2,ln 0.5a b c -===则a ,b ,c 的大小关系为()A .b >a >cB .a >c >bC .c >a >bD .a b c>>2.已知155a =,1925b =,154.5=c ,则a ,b ,c 的大小关系是()A .c<a<bB .c b a<<C .a c b<<D .a b c <<3.设151627log 3,e ,log 9log 8a b c -===⋅,则,,a b c 的大小关系为()A .c a b <<B .b a c <<C .c b a<<D .b c a<<4.已知 1.5241,log 3,sin 12a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b c a <<C .c a b<<D .a c b<<5.已知83log 3a =,131log 162b =-,4log 3c =,则a ,b ,c 的大小关系为()A .a b c >>B .c a b >>C .b c a>>D .b a c>>6.已知实数2log 3a =,3log 4b =,54c =,那么实数a ,b ,c 的大小关系是()A .a b c >>B .a c b >>C .b c a>>D .c b a>>7.设x 、y 、z 为正实数,且111234xyz⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .234x y z <<B .423z x y<<C .324y x z<=D .423z x y =<8.若实数m ,n ,p 满足354m e =,235n e =,218p e =,则()A .p m n <<B .p n m<<C .m p n<<D .n p m<<9.设2ln 2a =,3ln 3b =,e c =(e 2.718≈ ),则a ,b ,c 的大小关系为()A .c b a <<B .a b c <<C .b<c<aD .c<a<b10.设 1.02a =,0025.e b =,0.92sin 0.06c =+,则a ,b ,c 大小关系是()A .c b a<<B .a b c<<C .b<c<aD .c<a<b11.已知5log 6a =,3log 5b =,2log 3c =,32d =,则a 、b 、c 、d 的大小关系是()A .b a d c <<<B .a b c d <<<C .b a c d<<<D .a b d c<<<12.已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a>>B .b a c>>C .a c b>>D .a b c>>13.已知三个函数112()21,()e 1,()log (1)1x x f x x g x h x x x --=+-=-=-+-的零点依次为,,a b c ,则,,a b c 的大小关系()A .a b c >>B .a c b >>C .c a b>>D .c b a>>14.已知1e a b <<<(e 为自然对数的底数),则()A .b aa b >B .ee aba b >C .ee ba a a >D .ee bb a a <15.已知2log a =3log 2b =,52log 2c =,则()A .a b c <<B .b a c<<C .c a b<<D .b<c<a16.设a =1101,b =ln1.01,c =0.01e 1-,则()A .a <b <cB .b <c <aC .b <a <cD .c <a <b。

2022届新高考数学高频考点专题07 指对幂比较大小必刷100题(解析版)

2022届新高考数学高频考点专题07 指对幂比较大小必刷100题(解析版)
故选:B
23.设 ,则 的大小关系是()
A. B. C. D.
【答案】C
【分析】
根据指数函数 与幂函数 的单调性判断 的大小关系.
【详解】
因为函数 在 上是增函数,所以 ,即 ,又因为函数 在 上是增函数,所以 ,所以 ,故 .
故选:C
24.已知 , , ,则 , , 的大小关系是()
A. B.
C. D.
【答案】D
【分析】
根据指数函数和对数函数的性质求出 的范围即可求解.
【详解】
, ,
, ,
, ,
.
故选:D.
21.若 , , , ,则a,b,c的大小关系为()
A. B.
C. D.
【答案】D
【分析】
先利用 的单调性求出a值范围;再利用 的单调性比较b和c的大小而得解.
【详解】
因 ,且函数 是增函数,于是 ;
C. D.
【答案】B
【分析】
根据指数式与对数式互化公式,结合指数函数和对数函数的性质进行判断即可.
【详解】
由 ,
由 , ,所以 ,
故选:B
9.已知 ,则这三个数的大小关系为()
A. B. C. D.
【答案】B
【分析】
利用指数函数的单调性即可比较大小.
【详解】

因为 在 上单调递增﹐则 ,
又 .
故 .
4.设 , , ,则 , , 的大小顺序是
A. B. C. D.
【答案】B
【分析】
判断 的大致范围再排序即可.
【详解】
,且 ,又 .
故 .
故选:B
【点睛】
本题主要考查了利于指数对数函数的单调性对函数值大小进行比较,属于基础题型.

专题09 比较指数式、对数式大小的方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

专题09 比较指数式、对数式大小的方法-备战高考数学之学会解题必备方法技巧规律(全国通用)

09 判断比较指数式、对数式大小的方法典型例题精选与变式典型例题例1【2021陕西省宝鸡市千阳中学适应模拟】设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<cB.a<c<bC.b<a<cD.b<c<a解:∵y=0.6x为减函数,∴0.60.6>0.61.5,且0.60.6<1.又c=1.50.6>1,∴1.50.6>0.60.6>0.61.5,即c>a>B.【方法】底数相同,指数(真数)不同例2设a=log 3π,b=log,c=log,则( ) A.a>b>c B.a>c>b C.b>a>c D.b>c>a解:∵a=log 3π>log 33=1,b=loglog 22=1, ∴a>B.又23132122log b c log ==(log 23)2>1,b>0, ∴b>c ,故a>b>C.【方法】底数不同,指数(真数)相同例3【2021广西五市联合模拟】若31311log ,,log cos 35a b e c πππ===,则( )A. b c a >>B. b a c >>C. a b c >>D. c a b >> 解:31110log log 31,1,0cos 135a b e ππππ><==<=<<, 31log cos 05c π=<,b ac ∴>>,【方法】底数与指数(真数)都不相同最新模拟精选与提高 精选练习自主解析 体会应用1.已知10a =3log 6b =,2log c =,则a ,b ,c ,则( )A. b a c <<B. a c b <<C. a b c <<D. b c a <<【答案】B 【解析】【分析】根据指数函数的单调性判断a 的大小,再由对数函数的单调性和对数的运算可得出b 、c 的大小.【详解】因为001101a <==,又因为指数函数的值大于0,所以01a <<;因为3log x 在R 上单调递增,3333log 6log log 2>==,所以32b >,因为2log x 在R 上单调递增,2223log log log 2<<=,所以312c <<,所以a c b <<. 故选:B.【方法】底数与指数(真数)都不相同2. 已知0.31.2a =,0.3log 1.2b =, 1.20.3c =,则( ) A. b c a >> B. c a b >> C. a c b >> D. a b c >>【答案】C 【解析】【分析】根据指数函数和对数函数的单调性求出,,a b c 的范围即可求解. 【详解】0.301.211.2>=,1a ∴>,0.30.3log 1.2log 10<=,0b ∴<,1.2000.30.31<<=,01c ∴<<, a c b ∴>>.故选:C.【方法】底数与指数(真数)都不相同3. 设0.980.89x =,0.890.98y =,0.98log 0.89z =,则( ) A. z x y >> B. x z y >> C. z y x >> D. x y z >>【答案】C 【解析】【分析】首先根据指数函数以及幂函数的单调性比较,x y 的大小,再通过对数函数的单调性求得z 的范围,即可得解.【详解】由0.89x y =是减函数,0.89y x =在()0,∞+上是增函数,可得0.980.890.8900.890.890.981<<<<,由0.98log y x =是减函数,可得0.980.98log 0.89log 0.981>=,可得z y x >>, 故选:C.【方法】底数与指数(真数)都不相同 4. 设2log 0.3a =,0.32b =,sin 5c π=,则a ,b ,c 的大小关系是( )A. c b a <<B. b a c <<C. a c b <<D. a b c <<【答案】C 【解析】【分析】利用指数、对数三角函数的性质判定a ,b ,c 与0,1的大小关系,即可得到a ,b ,c 的大小关系.【详解】22log 0.3log 10a =<=,0.30221b =>=,sin (0,1)5c π=∈,所以a c b <<, 故选:C.【方法】底数与指数(真数)都不相同 5. 若3222log 33log 3log 2215,,5a b c ⎛⎫==⎪⎝⎭=,则( ) A. c a b >> B. b a c >>C. a c b >>D. a b c >>【答案】D 【解析】【分析】根据指对数运算法则化简成相同真数,底数不同的对数式,然后根据指数函数的单调性求得数的大小关系.【详解】由指数、对数运算性质知,332423133log log log log 3222255,55b c -====, 则由234333log log log 222>>知 234333log log log 222555>>,即a b c >>【方法】底数相同,指数(真数)不同 6. 若133a -=,b =log 25,c =ln3,则( ) A. b >a >c B. b >c >a C. c >a >b D. c >b >a【答案】B 【解析】【分析】根据指数函数、对数函数的性质判断可得;【详解】解:103331-<=,2223log 8log 5log 42=>>=,21ln ln 3ln 2e e =<<= 所以()0,1a ∈,()2,3b ∈,()1,2c ∈,所以b c a >> 故选:B【方法】底数与指数(真数)都不相同7. 已知0.5log 3a =,30.5b -=,0.53c -=试比较a ,b ,c 的大小为( ) A. a b c << B. a c b << C. c b a << D. c a b <<【答案】B 【解析】【分析】根据对数函数和指数函数的单调性将a 、b 、c 与0、1相比较,即可得到结论. 【详解】解:∵0.52log 3log 30a ==-<,3300.5221b -==>=, 1020.51103133c -⎛⎫⎛⎫<==<= ⎪ ⎪⎝⎭⎝⎭, ∵a c b <<, 故选:B .【方法】底数与指数(真数)都不相同8. 已知2sin 5a π=,2tan 7b π=,4logc =,则( )A. a b c >>B. b a c >>C. b c a >>D. a c b >>【解析】【分析】引入中间值根据2247352πππππ<<<<,即可判定大小 【详解】因为2247352πππππ<<<<,2sin 15π<<,2tan17π>.又4log =, 所以b a c >>. 故选:B【方法】底数与指数(真数)都不相同 9. 下列说法中正确的是( ) A. 20202019log 2021log 220210202020<<B. 20192020log 2020log 220210212020<<C.20202019log 2021lo 2021202002g 20<< D.20192020log 2020lo 2021202012g 20<< 【答案】A 【解析】【分析】构造函数()1lnxf x x =+,利用导数求出函数的单调性,再根据对数的运算及对数函数的性质计算可得;【详解】解:对于2(1)lg(1)lg(2)lg (1)lg lg(2)log (1)log (2)lg lg(1)lg lg(1)x x x x x x x x x x x x x ++++-++-+=-=++, 222lg(2)lg lg(2)()lg (1)2x x x x x +⋅+≤<+,所以当1x >时,(1)log (1)log (2)0x x x x ++-+>,故20192020log 2020log 2021>.根据函数ln ()1x f x x =+,(0)x >,则211ln ()(1)x x f x x +-'=+,()11ln g x x x =+-在定义域上单调递减,()111ln 0g e e e e =+-=>,()2222111ln 10g e e e e=+-=-<,所以存在()20,x e e ∈,使得()00g x =,所以()0,x x ∈+∞时()0f x '<,所以函数在()0,x +∞单调递减,所以ln2019ln202020202021>,所以2019ln 2020log 20202020ln 02019221>=, 所以20202019log 2021log 220210202020<< 故选:A【方法】底数与指数(真数)都不相同10. 已知sin3a =,3log sin 3b =,sin33c =,则a ,b ,c 的大小关系是( ) A. a b c >> B. b a c >> C. c a b >> D. c b a >>【答案】C 【解析】【分析】利用指数函数、对数函数以及三角函数值即可得出选项. 【详解】因为32ππ<<,所以()sin30,1a =∈,33log sin 3log 10b =<=, sin30331c =>=, 所以c a b >>. 故选:C【方法】底数与指数(真数)都不相同。

高考数学热点问题专题练习——指对数比较大小知识归纳及典型例题分析

高考数学热点问题专题练习——指对数比较大小知识归纳及典型例题分析

指对数比较大小一、技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较 4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN += log log log a a aM M N N-=(3)()log log 0,1,0n a a N n N a a N =>≠> (4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a = (令c b =) log log m n a a nN N m=典型例题例1:设323log ,log log a b c π===则,,a b c 的大小关系是______________ 思路:可先进行0,1分堆,可判断出1,0b 1,0c 1a ><<<<,从而a 肯定最大,只需比较,b c 即可,观察到,b c 有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:223311log log 3,log log 222b c ====,从而可比较出32log 21log 3<<,所以c b < 答案:c b a <<例2:设123log 2,ln 2,5a b c -===,则,,a b c 的大小关系是___________ 思路:观察发现,,a b c 均在()0,1内,,a b 的真数相同,进而可通过比较底数得到大小关系:a b <,在比较和c 的大小,由于c 是指数,很难直接与对数找到联系,考虑估计,,a b c值得大小:12152c -==<=,可考虑以12为中间量,则331log 2log 2a =>=,进而12a c >>,所以大小顺序为b ac >> 答案:b a c >>例3:设ln2ln3ln5,,,235a b c === 则,,a b c 的大小关系为( ) A. a b c >> B. a c b >> C. b a c >> D.思路:观察到,,a b c 都是以e 为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。

幂、指、对数的大小比较-高考数学总复习

幂、指、对数的大小比较-高考数学总复习

由 a-2=ln a2=ln a-ln 2,可得 a-ln a=2-ln 2,即 f(a)=f(2),同理可得 f(b)=f(3), f(c)=f(4). 因为函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,且a≠2,b≠3,c≠4,则 a,b,c∈(0,1),由f(2)<f(3)<f(4),可得f(a)<f(b)<f(c),故c<b<a. 【答案】A
A.c<a<b C.a<c<b
B.c<b<a D.a<b<c
(A )
1
1
1
1
1
【解析】因为 a=55=2510<259=b,c=4.55<55=a,所以 c<a<b.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9 10 11
配套精练
2
4.已知 a=23,b=log32,c=cos 3,则 a,b,c 的大小关系为
配套精练
配套精练
一、 单项选择题
1.(2023·安阳三模)已知 a=212,b=45-12,c=log76,则 a,b,c 的大小关系为
A.c<a<b C.a<b<c
B.c<b<a D.b<a<c
(B )
【解析】a=212,b=45-12=5412,因为 1=540<5412<212,所以 a>b>1.因为 c=log76< log77=1,所以 c<b<a.
当 x≥e 时,f′(x)≤0,故 f(x)在[e,+∞)上单调递减,则 f(e)>f(4)>f(5),所以 a>b>
c.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9 10 11

指、对、幂的大小比较 学生版--2025年高考数学一轮复习重难点

指、对、幂的大小比较 学生版--2025年高考数学一轮复习重难点

指、对、幂的大小比较【考试提醒】指数与对数是高中一个重要的知识点,也是高考必考考点,其中指数、对数及幂的大小比较是近几年的高考热点和难点,主要考查指数、对数的互化、运算性质,以及指数函数、对数函数和幂函数的性质,一般以选择题或填空题的形式出现在压轴题的位置.【核心题型】题型一 直接法比较大小利用特殊值作“中间量”在指数、对数中通常可优先选择“-1,0,12,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如log 23,可知1=log 22<log 23<log 24=2,进而可估计log 23是一个1~2之间的小数,从而便于比较.命题点1 利用函数的性质1(2024·全国·模拟预测)已知a =30.6,b =log 25,c =log 323,则实数a ,b ,c 的大小关系是()A.b >a >cB.a >b >cC.b >c >aD.a >c >b【变式训练】1(2024·四川德阳·二模)已知a =4ln3π,b =3π,c =4lnπ3,则a ,b ,c 的大小关系是()A.c <b <aB.b <c <aC.b <a <cD.a <b <c2(2023·甘肃平凉·模拟预测)已知幂函数f x =mx n 的图象过点2,22 ,设a =f m ,b =f n ,c =f ln2 ,则a 、b 、c 的大小用小于号连接为.3(2023·黑龙江哈尔滨·三模)若a =log 23+log 32,b =log 2e +ln2,c =136,则实数a ,b ,c 由小到大排列为<<.命题点2 找中间值1(2024·陕西西安·模拟预测)已知a =ln5,b =log 35,c =5-0.3,则()A.b <c <aB.c <a <bC.c <b <aD.b <a <c【变式训练】1(2024·黑龙江双鸭山·模拟预测)已知a =log 53,b =log 43,c =0.4-0.3,则()A.a <b <cB.a <c <bC.b <c <aD.c <a <b2(2024·四川成都·三模)2-3,213,sin 32,log 213四个数中最大的数是()A.2-3 B.213C.sin32D.log 2133(2024·北京石景山·一模)设a =20.3,b =sin π12,c =ln2,则()A.c <b <aB.b <c <aC.a <b <cD.b <a <c命题点3 特殊值法1(2024·全国·模拟预测)若log a b>1,则下列不等式一定成立的是()A.a>bB.ab<a+b-1C.a+1b >b+1aD.a-1b<b-1a【变式训练】1(多选)(2024·福建龙岩·一模)下列命题正确的是()A.若a<b<0,则a2>ab>b2B.若a<b<0,则ac2<bc2C.若0<a<b<c,则ca >cbD.若0<a<b,则2a+b2>2ab2(多选)(2023·全国·模拟预测)下列说法正确的有()A.若0<a<1,则ln a+1ln a≤-2 B.若lg a<lg b,则a2<b2C.若a<b<c,a+b+c=0,则c-ab2>0 D.若2a<2b a,b∈N*,则a-b≤-1 3(2024·上海静安·二模)在下列关于实数a、b的四个不等式中,恒成立的是.(请填入全部正确的序号)①a+b≥2ab;②a+b22≥ab;③|a|-|b|≤|a-b|;④a2+b2≥2b-1.题型二 利用指数、对数及幂的运算性质化简比较大小求同存异法比较大小如果两个指数或对数的底数相同,则可通过真数的大小与指数、对数函数的单调性判断出指数或对数的大小关系,要熟练运用指数、对数公式、性质,尽量将比较的对象转化为某一部分相同的情况.1(2024·天津·一模)已知a=30.3,b=log43,c=12-0.3,则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<a<bD.a<c<b 【变式训练】1(2024·陕西西安·模拟预测)已知a=π-0.2,b=log3π,c=sin π5,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a2(2024·广东肇庆·模拟预测)已知a=1.013.2,b=0.523.2,c=log0.523.2,则() A.a>b>c B.c>b>a C.c>a>b D.b>a>c3(2024·四川攀枝花·二模)若a=323,b=log3e,c=1e-13,则()A.a>c>bB.a>b>cC.c>a>bD.c>b>a题型三 构造函数比较大小某些数或式子的大小关系问题,看似与函数的单调性无关,细心挖掘问题的内在联系,抓住其本质,将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小.1(2024高三·全国·专题练习)若a=1.1,b=ln 1110e,c=e0.1,则a,b,c的大小关系为()A.b<a<cB.a<b<cC.b<c<aD.a<c<b【变式训练】1(2024·辽宁·二模)若a=1.01+sin0.01,b=1+ln1.01,c=e0.01,则()A.b>c>aB.a>c>bC.c>b>aD.c>a>b2(2023·辽宁·模拟预测)已知a=1e1e,b=ln22 ln22,c=ln33 ln33,试比较a,b,c的大小关系()A.a<b<cB.b<a<cC.a<c<bD.c<b<a3(2023·湖南·模拟预测)设a=52-ln5e2,b=1e,c=ln44,则a,b,c的大小顺序为()A.a<c<bB.c<a<bC.a<b<cD.b<a<c【课后强化】基础保分练一、单选题1(2024·天津·二模)若a=log131.9,b=log215.8,c=22.01,则a,b,c的大小关系为()A.c>a>bB.c>b>aC.a>b>cD.b>a>c2(2024·北京顺义·二模)已知a=log42,b=12e,c=π12,则()A.a>b>cB.b>a>cC.c>b>aD.c>a>b3(2024·全国·模拟预测)若a=2π2,b=π22,c=logπ2cosπ5,则()A.a>b>cB.b>a>cC.a>c>bD.b>c>a4(2024·全国·模拟预测)若a=log83,b=0.132,c=ln cos22023,则下列大小关系正确的是()A.b<a<cB.c<a<bC.a<b<cD.c<b<a二、多选题5(2024·贵州遵义·一模)已知正实数a,b满足sin a+ln a=b+ln b,则()A.2a>bB.a-12>b-12C.log1e a<log1eb D.e1a>e1b6(2024·全国·模拟预测)已知a>0,b>0,且a+b=2,则()A.a2+b2≥2B.14<2a-b<4 C.log2a+log2b≥0 D.a2-b>0三、填空题7(2023·吉林长春·模拟预测)已知a=log3322,b=22-33,c=ln1e,则a,b,c的大小关系为.8(2023·全国·模拟预测)已知a=ln3,b=log113,现有如下说法:①a<2b;②a+b>3ab;③b-a<-ab.则正确的说法有.(横线上填写正确命题的序号)四、解答题9(22-23高三·全国·对口高考)(1)比较a a b b与b a a b(a>0,b>0)的大小;(2)已知a>2,比较log(a-1)a与log a(a+1)大小10(2020高三·上海·专题练习)设a>5-12,且a≠1,记x=log a2,y=log a+12,z=log a+22,试比较x,y,z的大小.综合提升练一、单选题1(2024·天津河东·一模)设a=23,b=log23,c=log33,则a,b,c的大小关系为()A.b<c<aB.b<a<cC.c<b<aD.a<b<c2(2024·河南·模拟预测)设a=log32,b=log333,c=log222,d=20.49,则()A.a<b=c<dB.d<c=b<aC.a<d<b=cD.c<a<d<b3(2024·陕西安康·模拟预测)若a=11232,b=ln20232024,c=log2738,则()A.b<c<aB.a<c<bC.b<a<cD.c<b<a4(2024·四川·模拟预测)已知a=ln 32,b=13,c=e-2,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.b>a>cD.b>c>a5(2023·天津河北·一模)若a=37-38,b=log1737,c=log1838,则a,b,c的大小关系为()A.b<a<cB.c<b<aC.c<a<bD.b<c<a6(2024·全国·模拟预测)已知a>b>1,则下列各式一定成立的是()A.log a b>1B.ln a-b>0 C.2ab+1<2a+b D.b⋅a b<a⋅b a 7(2024·宁夏银川·二模)定义域为R的函数f(x)满足f(x+2)为偶函数,且当x1<x2<2时,[f(x2)-f(x1)](x2-x1)>0恒成立,若a=f(1),b=f(ln10),c=f354,则a,b,c的大小关系为() A.a<b<c B.c<b<a C.b<a<c D.c<a<b8(2024·全国·模拟预测)已知a=e π10,b=1+sin9π10,c=1.16,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.c>a>bD.c>b>a二、多选题9(2023·广东广州·模拟预测)下列是a>b>c(a,b,c≠0)的必要条件的是()A.ac>bcB.ac2>bc2 C.2a-c>2a-b D.7a+b>7b+c10(2024·全国·模拟预测)已知实数a,b,c,其中a,c c>a>0是函数f x =e xx-m m>e的两个零点.实数b满足b=log73a+22cb>1,则下列不等式一定成立的有()A.a+c<b+1B.c-a>b-1C.ca>b D.ac<b 11(2024·重庆·一模)已知3a=5b=15,则下列结论正确的是()A.lg a>lg bB.a+b=abC.12a>12 b D.a+b>4三、填空题12(23-24高三上·北京昌平·阶段练习)①在△ABC中,b=2,c=3,B=30°,则a=;②已知a=90.1,b=30.4,c=log40.3,则a、b、c的大小关系是13(22-23高三上·陕西咸阳·阶段练习)已知a=log372,b=1413,c=log135,则a,b,c的大小关系为.14(2023高三上·全国·专题练习)若n∈N*,n>1,则log n n+1与log n+1n+2的大小关系为.(用“<”连接)四、解答题15(22-23高三上·甘肃兰州·阶段练习)比较下列两组数的大小(写出详细理由).(1)a=0.40.3,b=0.30.3,c=0.30.4(2)a=log26,b=log312,c=log51516(2020高三·全国·专题练习)比较大小:①5.25-1,5.26-1,5.26-2;②0.53,30.5,log30.5;③log0.7 6,0.76,60.7.17(2022高三·全国·专题练习)已知a,b均为正实数,且a≠1.(1)比较ab2+ba2与1a+1b的大小;(2)比较log a b3+1和log a b2+1的大小.18(22-23高三下·全国·开学考试)已知函数f x =e x-ax-1a∈R的最小值为0.(1)求实数a的值;(2)设m1=1.1+ln0.1,m2=0.1e0.1,m3=19,判断m1,m2,m3的大小.19(2024·全国·模拟预测)已知函数f(x)=ax ln(x-1)-x2+x.(1)当a=2时,讨论g(x)=f(x)-x的单调性.(2)若f(x)有两个零点x1,x2,且x1<x2,证明:ln x1-1x2-1>4 a.拓展冲刺练一、单选题1(2024·北京东城·一模)已知a,b∈R,ab≠0,且a<b,则()A.1a >1bB.ab<b2C.a3<b3D.lg a <lg b2(2024·天津·一模)已知函数f x =x -1e x,若a=f12-0.6,b=f log1229,c=f413 ,则a,b,c的大小关系为()A.a<b<cB.c<b<aC.a<c<bD.b<c<a3(2024·安徽阜阳·一模)设a=log23,b=log812,c=lg15,则a,b,c的大小关系为() A.a<b<c B.a<c<b C.b<a<c D.c<b<a4(2023·山西·模拟预测)已知实数a,b,c满足ln a=15,b=3log72,6c=7,则()A.c>a>bB.b>a>cC.a>c>bD.a>b>c5(2024·河南郑州·模拟预测)已知a=110+111,b=ln65,c=log67-1ln5,则()A.a>b>cB.b>c>aC.a>c>bD.c>a>b二、多选题6(2023·山东青岛·三模)已知实数a,b,满足a>b>0,ln a ln b=1,则()A.ab>e2B.log a2<log b2C.12ab+1<12 a+b D.a a b b>a b b a 7(2023·云南大理·模拟预测)若12a=3,12b=4,则()A.ba >1 B.ab>14C.a2+b2>12D.2a-b>12三、填空题8(22-23高三·全国·对口高考)将0.32,log20.5,log0.51.5由小到大排列的顺序是:.9(23-24高三上·新疆喀什·期中)已知a=log20.2,b=0.20.2,c=0.20.3,则a,b,c的大小关系是(用“<”表示)10(2023高三上·全国·竞赛)已知a=eπ,b=πe,c=(2)eπ,则这三个数的大小关系为.(用“<”连接)四、解答题11(2024·辽宁抚顺·三模)设函数f x =x2+3x+2e x+1,g x =x-ln x+1.(1)讨论f x 的单调性.(2)证明:g x ≥0.(3)当x>e-1时,证明:f x <ln x+2.。

专题2-1 比大小(幂指对及三角函数值)(解析版)2023年高考数学二轮专题全套热点题型

专题2-1 比大小(幂指对及三角函数值)(解析版)2023年高考数学二轮专题全套热点题型

例题 2.(2022·江西·高三阶段练习(理))设 a
2 ,b 33
0.80.3,c
log 0.90.8
,则(

A. c a b
B. a ห้องสมุดไป่ตู้c b
C. a b c
D. c b a
【答案】A
【详解】因为 3 3 1且 3 3 3 8 2 ,所以1 a 2,b 0.80.3 1, c log0.9 0.8 log0.9 0.81 2 , 所以 c a b .
b
b
b
【变式演练】
1.(2022·全国·高一课时练习)若 a lg3 0.7 , b lg 0.72 , c lg 0.7 ,则( )
c 的大小关系为(

A. a b c
B. b a c
C. c b a
D. a c b
【答案】A
ln 3
【详解】依题意,
a b
log2 log4
3 5
ln ln
2 5
ln 3 2 ln 2 ln 2 ln 5
2 ln 3 ln 9 1, a ln 5 ln 5
b ,
ln 4
b log4 5 log4 4 1, c 20.1 20 1,
综上, b<c<a .
故选:D.
2.(2022·湖南·长沙市雅礼洋湖实验中学高二开学考试)已知 a log3 2 , b 70.01 , c log9 5 log5 3 ,则( )
A. c b a
B. c<a<b
C. b<c<a
D. a c b
【答案】B
【详解】因为
b
70.01
1,
c

高中数学指数式、对数式比较大小的问题专题训练精讲精练

高中数学指数式、对数式比较大小的问题专题训练精讲精练

高中数学指数式、对数式比较大小的问题--------太原市交通学校 郝志隆指数式、对数式这类比较大小的问题,在高考数学中常常可以和函数的单调性、奇偶性、周期性等性质甚至是和函数图像结合在一起来考察,知识点放到一起变成一道综合题时,难度就加大了很多,所以考察方式非常灵活,要顺利完成这样的題目,我们需要会应用函数的单调性,指数式对数式的化简变形,特殊值的变形应用,函数图象的运用,不等式性质的应用等等知识。

一般来说,常见的式子的比较大小有如下几种类型:一、同底数或者同指数的式子,直接应用指数函数、对数函数或是幂函数的单调性来解决。

比如:例1:已知,则三个数a ,b ,c 的大小关系是______A .c <a <bB .c <b <aC .a <b <cD .b <a <c【解答】解:因为底数3015<<,所以指数函数y=在R 单调递减,而﹣<0<3,故a >b >c ,故选:B .二、利用特殊值0、1灵活变形进行比较,把数字初步分为小于0,0到1和大于1三大类例2:比较1201020192020120192020log log log2020a b c d ====、的大小【解答】解:102019202020201a =>=;即a>112201920191log (2020)log 20202b ==,所以22019201911log 2019log 201922b << 故得:112b <<;12202020202020111log 2019log 2019log 2020222c ==<=又2020log 10c >=所以,102c <<;1120192019log2020log10d =<= 所以d<0. ,因此a>1>b>1/2>c>0>d ,故a>b>c>d 。

高考数学复习考点题型专题讲解1 幂指对三角函数值比较大小

高考数学复习考点题型专题讲解1 幂指对三角函数值比较大小

高考数学复习考点题型专题讲解 第1讲 幂指对三角函数值比较大小【题型一】临界值比较:0、1临界 【典例分析】 设0.2515log 4,log 4,0.5a b c -===,则,,a b c 的大小关系是()A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】B 【分析】根据对数函数的单调性和对数的运算可得到01a <<,10b -<<;根据指数函数的单调性得到1c >,从而可得出答案. 【详解】因为5550log 1log 4log 51=<<=,所以01a <<;因为11555log 4log 4log 4b -===-,所以10b -<<; 又0.200.50.51c -=>=,所以b a c <<.故选:B. 【变式演练】 1.已知120212022202212022,log 2021,log 2021a b c ===,则a ,b ,c 的大小关系为() A .a >b >c B .b >a >c C .c >a >b D .a >c >b【答案】A【分析】利用指数函数及对数函数的性质即得.【详解】∵102021202221022a >==,2022202220220log 1log 2021log 20221b =<=<=,202220221log log 102021c =<=, ∴a b c >>.故选:A.2.若0.3220.32,log 0.3,0.3,log 2a b c d ====,则a ,b ,c ,d 的大小关系为() A .a <b <c <d B .d <b <c <a C .b <d <c <a D .d <c <b <a【答案】C 【分析】根据指数函数、对数函数的性质计算可得; 解:0.30221>=,2000.30.31<<=,即1a >,01c <<;因为2221142log log 0.3log <<,所以12222log log 0.3g 2lo 2--<<,即221log 0.3<<--,即21b -<<-,又.2031log 2log 0.3=,所以0.311log 22-<<-,即112d -<<-,即a c d b >>>,故选:C3.9.01.17.01.1,9.0log ,8.0log ===c b a 的大小关系是()A. c a b >>B. a b c >>C. b c a >>D.c b a >> 【答案】A试题分析:0.70.70.70log 1log 0.8log 0.71=<<=,而1.11.1l o g 0.9l o g 10<=,对于0.901.1 1.11>=所以c a b >>,故选A【题型二】临界值比较:选取适当的常数临界值(难点) 【典例分析】已知3422,log e a b c ===,则a ,b ,c 的大小关系为() A .a c b >> B .a b c >> C .b a c >> D .b c a >>【答案】B 【分析】首先求出4a 、4b ,即可判断a b >,再利用作差法判断4432b ⎛>⎫⎪⎝⎭,即可得到32b >,再判断32c <,即可得解; 【详解】解:由342a b ==,所以449,8==a b ,可知a b >,又由44381478021616⎛⎫-=-=> ⎪⎝⎭b ,有32b >,又由28e <,有322e <=,可得23log 2<e ,即32c <,故有a b c >>.故选:B【变式演练】1.已知6ln a π=,3ln 2b π=,4ln1.5c π=,则a b c 、、大小关系为() A .c b a << B .c a b << C .b a c << D .b c a <<【答案】A 【分析】根据幂函数()0y x αα=>在()0,∞+上是增函数,对数函数ln y x =在()0,∞+上是增函数可得答案. 【详解】66ln ln a ππ==,33ln 2ln 2b ππ==,44ln1.5ln1.5c ππ==,因为3428 1.5 5.0625ππππ=>=,所以3ln 24ln1.5b c ππ=>=,即b c >,因为6666π=>=,66683.26635222222ππ⎛⎫⎛⎫⎛⎫=<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,66>,所以632ππ>,所以6ln 3ln 2a b ππ=>=,即a b >,所以c b a <<.故选:A. 2.已知0.350.11log 2,,0.7log 0.7a b c ===,则a ,b ,c 的大小关系为()A .a c b <<B .a b c <<C .b c a <<D .c a b <<【答案】A 【分析】利用10,,0.712,等中间值区分各个数值的大小. 【详解】∵55l o g 1l o g2g 5<<,∴ 102a <<,∵ 0.70.11=l o g 0.1l o g 0.7b =,0.70.7log 0.1log 0.7>, ∴ 1b >,10.300.70.70.7<<,故0.71c <<,所以a c b <<.故选:A . 3.若0.60.590.5,0.6,log 3a b c ===,则,,a b c 的大小关系是() A .a b c << B .c a b << C .c b a << D .b c a <<【答案】B 【分析】根据指数函数和幂函数的单调性分别比较0.60.50.5,0.5和0.50.50.5,0.6的大小,即可比较,a b ,再根据91log 32c ==,即可得出答案. 【详解】解:因为函数0.5x y =是减函数,所以0.60.50.50.50.5<<,又函数0.5y x =在()0,∞+上是增函数,所以0.50.50.50.6<,所以0.60.50.50.6<,即12a b <<,91log 32c ==,所以c a b <<.故选:B.【题型三】差比法与商比法 【典例分析】已知实数a b c 、、满足13266,log 3log 4,51213b b c a b ==++=,则a b c 、、的关系是() A .b a c >> B .c b a >> C .b c a >> D .c a b >>【答案】C 【分析】利用幂函数的性质知2a <,利用对数的运算性质及作差法可得20b ->,再构造1313c b -,根据指数的性质判断其符号,即可知,b c 的大小. 【详解】1133682a =<=;()2226222log 3log 312log 3log 4log 3201log 31log 3b b ⋅-=+=+-=>++,,2b >;2221351251213c b b =+>+=,2c >;222222222222131351213551212131351212121313c b b b b b b b b b b -------=+-=⋅+⋅-⋅<⋅+⋅-⋅2222222212(512)131313(1213)0b b b b ----=+-⋅=-<,∴b c >,综上,b c a >>.故选:C【变式演练】1.已知0.40.8a -=,5log 3b =,8log 5c =,则()A .a b c <<B .b c a <<C .c b a <<D .a c b <<【答案】B 【分析】应用作商法,由对数的运算性质、基本不等式可得222ln 3ln8(ln 3ln8)ln 54ln 5b c ⋅+=<可知b 、c 的大小,再结合指对数的性质可知a 、c 的大小. 【详解】25228log 3ln 3ln 8(ln 3ln 8)1log 5ln 54ln 5b c ⋅+==<=<,即b c <, ∵0.410.8c a -<<=,∴综上,b c a <<.故选:B2.已知324log 0.3log 3.4log 3.615,5,5a b c ⎛⎫=== ⎪⎝⎭,则 ( )A .a b c >>B .b a c >>C .a c b >>D .c a b >>【答案】C【详解】因为310log 35c =,又24log 3.41,log 3.61><,231010lg3.4lg3lg 2lglg 6.8lg3-lg 2lg3lg 2lg 10lg 6.8lg3lg 233log 3.4log =03lg 2lg3lg 2lg3lg 2lg3----==>(),所以23410log 3.4log 1log 3.6,3>>>324log 0.3log 3.4log 3.61555⎛⎫>> ⎪⎝⎭,即a c b >>3.已知3610a b ==,则2,ab ,a b +的大小关系是() A .2ab a b <+< B .2ab a b <<+ C .2a b ab <+< D .2ab a b <<+【答案】D 【分析】先将指数式化为对数式,再根据对数函数单调性以及运算法则比较大小,确定选项. 【详解】33log 1029log a =>=,6log 101b =>,∴2ab >;又11lg3lg6lg181a b ab a b+=+=+=>∴ a b ab +>,∴2a b ab +>>.故选:D. 【题型四】利用对数运算分离常数比大小 【典例分析】已知m =log 4ππ,n =log 4e e ,p =e 13-,则m ,n ,p 的大小关系是(其中e 为自然对数的底数)( ) A .p <n <m B .m <n <p C .n <m <p D .n <p <m【答案】C 【分析】根据已知条件,应用对数函数的单调性、对数的换底公式,可比较m ,n ,12的大小关系,再由指数的性质有p =e 1312->,即知m ,n ,p 的大小关系.【详解】由题意得,m =log 4ππlg lg lg 41lg 4lg 4lg lg 4lg πππππ===-++,4lg lg lg 4log 1lg 4lg 4lg lg 4lg e e e n e e e e====-++, ∵lg4>lgπ>lg e >0,则lg4+lg4>lg4+lgπ>lg4+lg e ,∴lg 4lg 4lg 4111lg 4lg 4lg 4lg lg 4lg eπ->->-+++,∴12n m <<,而p =e 1312-=>,∴n <m <p .故选:C .【变式演练】1.2log 3、8log 12、lg15的大小关系为() A .28log 3log 12lg15<< B .82log 12lg15log 3<< C .28log 3log 12lg15>> D .82log 12log 3lg15<< 【答案】C 【分析】应用对数的运算性质可得2321log 31log 2=+、8321log 121log 8=+、321lg151log 10=+,进而比较大小关系. 【详解】22232331log 3log (2)1log 122log 2=⋅=+=+,88832331log 12log (8)1log 122log 8=⋅=+=+,32331lg15lg(10)1lg 122log 10=⋅=+=+,∵3332220log 2log 8log 10<<<, ∴28log 3log 12lg15>>,故选:C. 2.已知b 0,b 1a a >>=,若()21,log ,2a b x y a b z a b ==+=+,则()log 3x x ,()log 3y y ,()log 3z z 的大小关系为()A .()()()log 3log 3log 3x y z x y z >>B .()()()log 3log 3log 3y x z y x z >>C .()()()log 3log 3log 3x z y x z y >>D .()()()log 3log 3log 3y z x y z x >>【答案】D 【分析】先化简33333log (3)111log (3)1,log (3)1,log (3)1log log log log x y z x x y z x x y z ==+=+=+,再根据,,x y z 的大小关系,利用对数函数的单调性即可得到其大小关系. 【详解】 因为33333log (3)111log (3)1,log (3)1,log (3)1log log log log x y z x x y z x x y z==+=+=+, 函数31log y x =在(0,1)和(1,)+∞上均单调递减,又b 0,b 1a a >>=,所以1,0 1.a b ><<而21,log (),2a b x y a b z a b==+=+, 所以0x <1,1,22y z <>>,即,y x z x >>,可知log (3)x x 最小.由于222221log ()log ,2log 2log 4a ay a b a z a a⎛⎫=+=+=== ⎪⎝⎭,所以比较真数1a a +与4a 的大小关系.当1a >时,14aa a+<,所以1z y >>, 即331111log log y z+>+. 综上,log (3)log (3)log (3)y z x y z x >>.故选:D .3.已知3log 15a =,4log 40b =,23c =,则() A .a c b >> B .c a b >> C .b a c >> D .a b c >>【答案】C 【分析】把c 用对数表示,根据式子结构,转化为比较10323log 5log 4log 2、、的大小,分别与1和32比较即可. 【详解】3333log 15=log 3log 5=1log 5a =++,4444log 40=log 4log 10=1log 10b =++,由23c =得,223log 31log 2c ==+. 因为353,104,22>><,所以323log 51log 2>>,423log 101log 2>>,即,a c b c >>. 下面比较a 、b 的大小关系:32333log 5log 32<=(其中323 5.2≈),324443l og 10l o g 8=l o g 4=2>,所以34log 5log 10< 所以b a >所以b a c >>.故选:C.【题型五】构造函数:lnx/x 型函数 【典例分析】 设24ln 4e a -=,1e b =,ln 22c =,则a ,b ,c 的大小关系为() A .a c b << B .c a b << C .a b c << D .b a c <<【答案】B 【分析】设()ln xf x x =,利用导数判断单调性,利用对数化简2e 2a f ⎛⎫= ⎪⎝⎭,()e b f =,()()24c f f ==,再根据单调性即可比较a ,b ,c 的大小关系.【详解】设()ln x f x x =,则()221ln 1ln ⋅--'==x xx x f x x x, 当()1,e x ∈,()0f x '>,()f x 单调递增,当()e,x ∈+∞,()0f x '<,()f x 单调递减,因为()222222e ln 2ln e ln 24ln 4e 2e e e 22a f -⎛⎫-==== ⎪⎝⎭,()1ln e e e eb f ===,()ln 222c f ==,所以()e b f =最大,又因为()()24c f f ==,2e e 42<<,所以()2e 42a f f c ⎛⎫=>= ⎪⎝⎭,所以b a c >>,故选:B.【变式演练】1.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是( ) A . cB .cC .cD . c【答案】D 对 同除 ,转化为之间的比较,构造函数 =,利用导数研究函数的单调性,得到答案. 【详解】===, , , 的大小比较可以转化为的大小比较. 设 =ln,则 =ln,当 = 时, = ,当 时, ,当时,在 上单调递减, 3lnlnln=ln, ,故选:D .2.以下四个数中,最大的是( )A .B .1eC .ln ππD 【答案】B 【详解】由题意,令()ln x f x x=,则()21xf x x-'=,所以e x >时,()0f x '<,∴()f x 在(,)e +∞上递减,又由315e π<<<,∴()()()3(15)f e f f f π>>>,则111113315ln ln3ln ln ln15ee πππ>>>>>,即1ln e ππ>>>,故选:B . 3.下列命题为真命题的个数是ln3 3ln ; lnπ; ; 3 ln A .1B .2C .3D .4【答案】C 本题首先可以构造函数 =,然后通过导数计算出函数 =的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数 =的单调性即可比较出大小。

专题12 指、对数函数比较大小-2021年高考数学(理)母题题源解密(原卷版)

专题12 指、对数函数比较大小-2021年高考数学(理)母题题源解密(原卷版)

专题12 指、对数函数比较大小【母题原题1】【2020年高考全国Ⅲ卷,理数】已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.【母题原题2】【2019年高考全国Ⅲ卷理数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.【母题原题3】【2018年高考全国Ⅲ卷理数】设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】0.22log 0.3,log 0.3a b ==,0.30.311log 0.2,log 2a b∴==, 0.311log 0.4a b ∴+=,1101a b ∴<+<,即01a b ab+<<, 又0,0a b ><,0ab ∴<,∴0ab a b <+<.故选B .【名师点睛】本题主要考查对数的运算和不等式,属于中档题.【命题意图】主要考查数形结合思想、分类讨论思想的运用和考生的逻辑推理能力、数学运算能力. 【命题规律】在高考中的考查热点有:(1)比较指、对数式的大小;(2)指、对数函数的图象与性质的应用;(3)以指、对数函数为载体,与其他函数、方程、不等式等知识的综合应用.以选择题和填空题为主,难度中等.【答题模板】1.比较指数幂大小的常用方法一是单调性法,不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底;二是取中间值法,不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,进而得出大小关系;三是图解法,根据指数函数的特征,在同一平面直角坐标系中作出它们相应的函数图象,借助图象比较大小.2.比较对数值大小的类型及相应方法【方法总结】1.指数函数图象的特点(1)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(2)当a>1时,指数函数的图象呈上升趋势;当0<a<1时,指数函数的图象呈下降趋势.(3)指数函数在同一坐标系中的图象的相对位置与底数大小关系如图所示,其中0<c<d<1<a<b,在y 轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.2.对数函数图象的特点(1)当a >1时,对数函数的图象呈上升趋势; 当0<a <1时,对数函数的图象呈下降趋势.(2)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.(3)在直线x =1的右侧:当a >1时,底数越大,图象越靠近x 轴;当0<a <1时,底数越小,图象越靠近x 轴,即“底大图低”.3.解决对数型复合函数的单调性问题的步骤 (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,要考查其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性. 研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,否则所得范围易出错.1.(2020·广西壮族自治区高三月考(文))已知函数()f x 是定义在R 上的奇函数,当0x ≤时,()f x 单调递增,则( ).A .()()93log 4(1)log 4f f f >>B .()()93log 4(1)log 4f f f <<C .()()93(1)log 4log 4f f f >>D .()()93(1)log 4log 4f f f <<2.(2020·广西壮族自治区高三其他(文))已知0.2log 2a =,20.2b =,0.23c =,则( ) A .a b c << B .a c b << C .c a b <<D .b c a <<3.(2020·广西壮族自治区田阳高中高二月考(理))已知0.64a =, 1.12b =,4log 12c =,则( ) A .c b a <<B .b a c <<C .a b c <<D .c a b <<4.(2020·广西壮族自治区田阳高中高二月考(文))已知20.8a =,0.82b =,2log 0.8c =,则a ,b ,c 的大小关系为( )A .a b c >>B . a c b >>C . b a c >>D . c a b >>5.(2020·广西壮族自治区桂平市第五中学高三月考(文))已知()12log ,02,0x x x f x x >⎧⎪=⎨⎪≤⎩,()()2a f f =-,ln π2b =,lncos5c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .b a c >>D .c a b >>6.(2020·广西壮族自治区南宁三中高三期末(文))已知ln 2a =,ln b π=,125ln 24c =,则a ,b ,c 的大小关系为( ) A .b c a <<B .c a b <<C .a b c <<D .a c b <<7.(2020·湖南省高三一模(理))已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >>8.(2020·广西壮族自治区高三三模(文))已知函数()1112xf x e =-+,若()1.32a f =,()0.74b f =,()3log 8c f =,则a ,b ,c 的大小关系为( )A .c a b <<B .a c b <<C .b a c <<D .a b c <<9.(2020·广西壮族自治区南宁三中高三月考(理))已知13(ln 2)a =,13(ln 3)b =,21log 3c =,则a ,b ,c 的大小关系是( ).A .a b c <<B .c a b <<C .b a c <<D .c b a <<10.(2020·四川省金堂中学校高三一模(文))若a ,b ,c 满足23a =,2log 5b =,32c =.则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<11.(2020·四川省绵阳南山中学高三一模(理))已知0.50.70.70.7,0.5,log 0.5a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .b a c <<C .c b a <<D .c a b <<12.(2020·四川省成都外国语学校高二期中(理))已知实数ln22a =,22ln2b =+,2(ln2)c =,则a ,b ,c 的大小关系是( ) A .c a b << B .c b a << C .b a c <<D .a c b <<13.(2020·四川省绵阳南山中学高三一模(文))已知5log 312a ⎛⎫= ⎪⎝⎭,5log 314b ⎛⎫= ⎪⎝⎭,5log 0.12c =,则( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>14.(2020·四川省南充市第一中学高二期中(理))设0.40.831.2, 1.2,log 2a b c ===,则,,a b c 的大小关系是( ) A .b c a >>B .b a c >>C .c b a >>D .a b c >>15.(2020·四川省高三三模(文))已知a =log 20.2,b =20.2,c =0.20.3,则A .a <b <cB .a <c <bC .c <a <bD .b <c <a16.(2020·宜宾市叙州区第一中学校高三二模(理))已知0.22018a =,20180.2b =,2018log 0.2c =,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>17.(2020·西昌市第二中学高三二模(理))已知2log 3a =,ln3b =,123c -=,则( )A .a b c <<B .c a b <<C .b c a <<D .c b a <<18.(2020·四川省棠湖中学高三一模(文))已知0.250.5log 2,1og 0.2,0.5a b c ===,则( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b19.(2020·四川省阆中中学高三二模(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A .a c b << B .a b c << C .b c a <<D .c a b <<20.(2020·四川省高三三模(理))已知函数(1)=-y f x 的图象关于直线1x =对称,且当(0,)x ∈+∞时,ln ()x f x x =.若2e a f ⎛⎫=- ⎪⎝⎭,(2)b f =,23c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是( ) A .b a c >>B .a b c >>C .a c b >>D .c b a >>21.(2020·贵州省高三其他(文))已知2log 0.7a =,0.12b =,ln 2c =,则( )A .b c a <<B .a c b <<C .b a c <<D .a b c <<22.(2020·贵州省高三其他(文))若0.32=a ,2log 0.3b =,3log 2c =,则实数a ,b ,c 之间的大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .b a c >>23.(2020·嘉祥县第一中学高三三模)若x ∈(0,1),a =lnx ,b =ln 12x⎛⎫ ⎪⎝⎭,c =e lnx ,则a ,b ,c 的大小关系为( ) A .b >c >aB .c >b >aC .a >b >cD .b >a >c24.(2020·贵州省凯里一中高三月考(理))已知,,a b c 均为正实数,若122log aa -=,122log bb -=,21log 2cc ⎛⎫= ⎪⎝⎭,则( ) A .c a b <<B .c b a <<C .a b c <<D .b a c <<25.(2020·贵州省高三月考(理))已知132a -=, 21log 3b =, 131log 4c =,则( ) A .a b c >> B .a c b >> C .c b a >>D .c a b >>26.(2020·云南省云南师大附中高三月考(理))设2log 0.2a =,0.5log 3b =,154c=,则a ,b ,c 的大小关系是( ) A .c a b >>B .c b a >>C .b a c >>D .a b c >>27.(2020·云南省高三其他(文))已知352a =,253b =,135c -=,则( ) A .b a c <<B .a b c <<C .c b a <<D .c a b <<28.(2020·云南省下关第一中学高一期末)已知a =log 20.3,b =20.1,c =0.21.3,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<29.(2020·四川省泸县五中高三月考(文))0.70.60.7log 6,6,0.7a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .b c a >>30.(2020·会泽县茚旺高级中学高一开学考试)三个数60.7,0.76,0.7log 6的大小关系为( )A .60.70.70.7log 66<<B .60.70.7log 60.76<<C .0.760.7log 660.7<<D .60.70.70.76log 6<<31.(2020·云南省云南师大附中高三月考(理))已知函数()2sin f x x x x =-,若()0.2log 3a f =,()3log 0.2b f =,()30.2c f =,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>32.(2020·云南省高三月考(文))若13log 2a =,1312b ⎛⎫=⎪⎝⎭,2log 3c =,则a b c ,,的大小关系是( ) A .b a c << B .b c a << C .a b c <<D .c b a <<33.(2020·西藏自治区拉萨中学高三月考(文))已知123a =,131log 2b =,21log 3c =,则( )A .a b c >>B .b c a >>C .c b a >>D .b a c >>34.(2020·西藏自治区拉萨那曲第二高级中学高三月考(文))已知1(,1)x e -∈,ln a x =,ln 1()2xb =,ln x c e =,则,,a b c 的大小关系为( )A .c b a >>B .b c a >>C .a b c >>D .b a c >>。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第41炼 指对数比较大小在填空选择题中我们会遇到一类比较大小的问题,通常是三个指数和对数混在一起,进行排序。

这类问题如果两两进行比较,则花费的时间较多,所以本讲介绍处理此类问题的方法与技巧一、一些技巧和方法1、如何快速判断对数的符号?八字真言“同区间正,异区间负”,容我慢慢道来: 判断对数的符号,关键看底数和真数,区间分为()0,1和()1,+∞(1)如果底数和真数均在()0,1中,或者均在()1,+∞中,那么对数的值为正数 (2)如果底数和真数一个在()0,1中,一个在()1,+∞中,那么对数的值为负数 例如:30.52log 0.50,log 0.30,log 30<>>等2、要善于利用指对数图像观察指对数与特殊常数(如0,1)的大小关系,一作图,自明了3、比较大小的两个理念:(1)求同存异:如果两个指数(或对数)的底数相同,则可通过真数的大小与指对数函数的单调性,判断出指数(或对数)的关系,所以要熟练运用公式,尽量将比较的对象转化为某一部分相同的情况例如:1113423,4,5,比较时可进行转化,尽管底数难以转化为同底,但指数可以变为相同()()()11111143634212121233,44,55===,从而只需比较底数的大小即可(2)利用特殊值作“中间量”:在指对数中通常可优先选择“0,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤(在兵法上可称为“分割包围,各个击破”,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如2log 3,可知2221log 2log 3log 42=<<=,进而可估计2log 3是一个1点几的数,从而便于比较4、常用的指对数变换公式:(1)nm mn a a ⎛⎫= ⎪⎝⎭(2)log log log a a a M N MN += log log log a a a M M N N-= (3)()log log 0,1,0na a N n N a a N =>≠>(4)换底公式:log log log c a c bb a=进而有两个推论:1log log a b b a =(令c b =) log log m na a n N N m=二、典型例题:例1:设323log ,log log a b c π===,,a b c 的大小关系是______________ 思路:可先进行0,1分堆,可判断出1,0b 1,0c 1a ><<<<,从而a 肯定最大,只需比较,b c 即可,观察到,b c 有相同的结构:真数均带有根号,抓住这个特点,利用对数公式进行变换:223311log log 3,log log 222b c ====,从而可比较出32log 21log 3<<,所以c b < 答案:c b a <<例2:设123log 2,ln 2,5a b c -===,则,,a b c 的大小关系是___________思路:观察发现,,a b c 均在()0,1内,,a b 的真数相同,进而可通过比较底数得到大小关系:a b <,在比较和c 的大小,由于c 是指数,很难直接与对数找到联系,考虑估计,,a b c 值得大小:12152c -==<=,可考虑以12为中间量,则331log 2log 2a =>=,进而12a c >>,所以大小顺序为b a c >> 答案:b a c >>例3:设ln2ln3ln5,,,235a b c === 则,,a b c 的大小关系为( )A. a b c >>B. a c b >>C. b a c >>D. b c a >> 思路:观察到,,a b c 都是以e 为底的对数,所以将其系数“放”进对数之中,再进行真数的比较。

111352ln 2ln3ln5ln 2,ln3,ln5,235a b c ======发现真数的底与指数也不相同,所以依然考虑“求同存异”,让三个真数的指数一致:()()()1111111510635230303022,33,55=== ,通过比较底数的大小可得:b a c >> 答案:C小炼有话说:(1)本题的核心处理方式就是“求同存异”,将三个数变形为具备某相同的部分,从而转换比较的对象,将“无法比较”转变为“可以比较”(2)本题在比较指数幂时,底数的次数较高,计算起来比较麻烦。

所以也可以考虑将这三个数两两进行比较,从而减少底数的指数便于计算。

例如可以先比较,:a b ()()11113232662=2,3=3,从而a b <,同理再比较,a c 或,b c 即可例4:设6log 3=a ,10log 5=b ,14log 7=c ,则( )A. a b c >>B. b c a >>C. a c b >>D. a b c >> 思路:观察可发现:()()()335577log 321log 2,log 521log 2,log 721log 2a b c =⨯=+=⨯=+=⨯=+357log 2log 2log 2>>,所以可得:a b c >>答案:D例5:设232555322,,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则,,a b c 的大小关系为( )A. a b c >>B. a c b >>C. b a c >>D. b c a >> 思路:观察可发现,b c 的底数相同,,a c 的指数相同,进而考虑先进行这两轮的比较。

对于,b c ,两者底数在()0,1,则指数越大,指数幂越小,所以可得b c <,再比较,a c ,两者指数相同,所以底数越大,则指数幂越大,所以a c >,综上:a c b >> 答案:B例6:已知三个数0.5333,log 2,cos2a b c ===,则它们之间的大小关系是( ) A. c b a << B. c a b << C. a b c << D. b c a <<思路:可先进行0,1分组,0.531a =>,0,1b c <<,所以只需比较,b c 大小,两者都介于0,1之间且一个是对数,一个是三角函数,无法找到之间的联系。

所以考虑寻找中间值作为桥梁。

以3cos2作为入手点。

利用特殊角的余弦值估计其大小。

331cos cos 23232ππ>⇒<=,而331log 2log 2>=,从而12c b <<,大小顺序为c b a <<答案:A小炼有话说:在寻找中间量时可以以其中一个为入手点,由于非特殊角的三角函数值可用特殊角三角函数值估计值的大小,所以本题优先选择c 作为研究对象。

例7:(2015甘肃河西三校第一次联考)设 1.1 3.13log 7,2,0.8a b c ===,则( )A. b a c <<B. a c b <<C. c b a <<D. c a b << 思路:首先进行0,1分组,可得1,c a b <<,下面比较,a b 的大小,可以考虑以2作为中间量,1.13322,log 7log 92b a =>=<=,所以2a b <<,从而c a b <<答案:D例8:设0,1a b a b >>+=且1111,log ,log bb a b x y ab z a a ⎛⎫+ ⎪⎝⎭⎛⎫=== ⎪⎝⎭,则,,x y z 的大小关系是( )A. y x z <<B. z y x <<C. y z x <<D. x y z <<思路:由0,1a b a b >>+=可得:1012b a <<<<,先用0,1将,,x y z 分堆,0x >,,0y z <,则x 为最大,只需要比较,y z 即可,由于,y z 的底数与真数不同,考虑进行适当变形并寻找中间量。

111log log log 1a b ababa b y ab ab ab +⎛⎫+ ⎪⎝⎭====-,而1log log b bz a a ==-,因为01b <<,所以log log 1,log 1b b b a b z a y <==->-=,所以顺序为y z x << 答案:C例9:下列四个数:()()2ln2,ln ln2,ln2a b c d ====的大小顺序为________ 思路:观察发现()ln ln20b =<,其余均为正。

所以只需比较,,a c d ,考虑()ln20,1∈,所以a d <,而1ln22c d ==<,所以下一步比较,a c :()(211ln 2ln 2ln 2ln 2ln 2ln 2022a c ⎛⎫-=-=-=-> ⎪⎝⎭,所以a c >,综上所述,大小顺序为b c a d <<<答案:b c a d <<<例10:已知,,a b c 均为正数,且11222112log ,log ,log 22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则( )A. a b c <<B. c b a <<C. c a b <<D. b a c << 思路:本题要通过左右相等的条件,以某一侧的值作为突破口,去推断,,a b c 的范围。

首先观察等式左侧,左侧的数值均大于0,所以可得:11222log ,log ,log a b c 均大于0,由对数的符号特点可得:(),0,1,1a b c ∈>,只需比较,a b 大小即可。

观察到1212ba⎛⎫>> ⎪⎝⎭,从而1122log log a b a b >⇒<,所以顺序为a b c <<答案:A小炼有话说:本题也可用数形结合的方式比较大小,观察发现前两个等式右侧为12log y x =的形式,而第三个等式也可变形为2121log log 2cc c ⎛⎫-=-= ⎪⎝⎭,从而可以考虑视,,a b c 分别为两个函数的交点。

先作出12log y x =图像,再在这个坐标系中作出112,,22x xxy y y ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,比较交点的位置即可。

相关文档
最新文档