气相色谱法与高效液相色谱法的异同点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气相色谱法与高效液相色谱法的异同点
气相色谱法与高效液相色谱法的异同点
气相色谱法和高效液相色谱法是色谱法中的一种,因流动相物态不同,才有此分类。一、
一、气相色谱法与高效液相色谱法的不同点
1、流动相
气相色谱法的流动相是气体(又称载气),液相色谱法的流动相为液相(又称淋洗液)。 2、2、分类(按固定相不同)
气相色谱法中,按固定相不同可分为:气---固色谱法;气---液色谱法。高效液相色谱法中,按固定相不同可分为:液---固色谱法;液---液色谱法。
3、固定相
气固(液固)色谱的固定相:多孔性的固体吸附剂颗粒,如活性炭,活性氧化铝,硅胶等。气液(液液)色谱的固定相:化学惰性的固体微粒(担体),固定液+担体。
4、特点
气相色谱法的特点:高效能、选择性好、灵敏度高、操作简单、应用广泛。高效液相色谱法的特点:高压、高速、高效、高灵敏度。
5、应用范围
气相色谱法的应用范围:对于难挥发和热不稳定
的物质是不适用的。高效液相色谱法的应用范围:从原则上说,高沸点难挥发且相对分子质量大的有机物都适用。
6、分离机理
(1)气相色谱法:气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。
(2)液相色谱法:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送;色谱柱是以特殊的方法用小粒径的填料填充而成,同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。
概括为:气固色谱的分离机理: 吸附与脱附的不断重复过程;气液色谱的分离机理:气液(液液)两相间的反复多次分配过程。液固色谱的分离机理:溶质分子和溶剂分子对吸附剂活性表面的竞争吸附。
7、仪器构造
(1)气相色谱法:由载气系统、进样系统、色
谱柱、检测系统和数据处理系统组成。进样系统、色谱柱和检测器的温度均在控制状态。
(2)液相色谱法:高效液相色谱仪主要由进样系统、输液系统、分离系统、检测系统和数据处理系统组成。
8、进样器
高效液相为平头进样针,气相色谱为尖头进样针。
9、色谱柱长
(1)气相色谱柱通常几米到几十米。(气相色谱由于载气的相对分析量较低,分子间隙大,故粘度低,流动性好,组分在气相中流动速度快,因此可以增加柱长,以提高柱效)。
(2)液相色谱柱通常为几十到几百毫米。
10、样品柱前变化
气相色谱的样品在柱前必须变为气体(气化室汽化),而液相色谱的样品在柱前则无变化。
11、所用检测器
液相色谱法主要为:紫外检测器,荧光检测器、示差折光检测器等;
气相色谱主要为:氢火焰离子化检测器(FID),热导检测器(TCD),电子捕获检测器(ECD),
火焰光度检测器(FPD),氮磷检测器(NPD)等。
12、死时间
气相色谱过程中,只要载气流速稳定就可以进样分析,而液相色谱过程中,通常需要平衡一段时间后再进样分析,特别是进行梯度洗脱后柱子平衡时间较长。
13、操作温度
液相色谱通常在室温下操作,较低的温度,一般有利于色谱分离条件的选择。而气相色谱则不能,因为室温变动幅度较大,使气相色谱基线漂移严重而无法分析,所以必须精确控制温度。
二、气相色谱法和液相色谱法的相同点
它们的理论基础同为“两相及两相的相对运动”,且它们在保留值、分配系数、分配比、分离度、塔板理论、速率理论方面是一致的,但其中有细微的区别,现比较如下:
1、分配系数
组分在固定相和流动相间发生的吸附、脱附,或溶解、挥发的过程叫做分配过程。在一定温度下,组分在两相间分配达到平衡时的浓度(单位:g / mL)比,称为分配系数,用K 表
示,即:
k=组分在固定相中的浓度组分在流动相中的浓度=c
s c M 液---液分配色谱法与气---液分配色谱法,当溶质在固定相和流动相间进行分配达到平衡时,物质的分配都服从于分配系数。其中,分离的顺序决定于分配系数的大小,分配系数大的组分保留值大,而气相色谱法中流动相的性质对分配系数影响不大,液相色谱法中流动相的种类对分配系数却有较大的影响。
2、分配比
分配比是指,在一定温度下,组分在两相间分配达到平衡时的质量比:
k=组分在固定相中的质量组分在流动相中的质量=m s m M
其中,分配比与分配系数的关系为:
k=M s
M m =M s V s V s M s V m V m =c s c m .V s V m =K β V M 为流动相体积,即柱内固定相颗粒间的空隙体积;V S 为固定相体积,对不同类型色谱柱, V S 的含义不同。对于气-液色谱柱: V S 为固定液体积;而气-固色谱柱: V S 为吸附剂表面容量。
3、分离度
难分离物质的分离度大小受色谱过程中两种因素的综合影响:保留值之差──色谱过程的热力学因素;区域宽度──色谱过程的动力学因素。色谱分离中的四种情况如图所示:
分离度的表达式:
(1)分离度与柱效
R=2(t R(2)−t R(1)) W b(2)+W b(1)=2(t R(2)−t R(1))
1.699(Y12(2)
⁄+Y12(1)
⁄)
分离度与柱效的平方根成正比, r21一定时,增加柱效,可提高分离度,但组分保留时间增加且峰扩展,分析时间长。
(2)分离度与r21
增大r21是提高分离度的最有效方法,计算可知,在相同分离度下,当r21增加一倍,需要的n有效减小10000倍。增大r21的最有效方法是选择合适的固定液。
4、塔板理论
半经验理论;
将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复(类似于蒸馏塔塔板上的平衡过程);塔板理论的假设:(1)在每一个平衡过程间隔内,平衡可以迅速达