进程调度模拟实验

合集下载

模拟进程调度实验报告

模拟进程调度实验报告

模拟进程调度实验报告模拟进程调度实验报告引言:进程调度是操作系统中的一个重要功能,它决定了各个进程在处理器上的执行顺序。

合理的进程调度算法能够提高系统的性能和效率。

为了深入了解进程调度算法的工作原理和效果,我们进行了一系列的模拟实验。

实验目的:1. 了解不同进程调度算法的工作原理;2. 分析不同算法对系统性能的影响;3. 探索如何选择合适的进程调度算法。

实验过程:1. 实验环境的搭建我们使用了一台配置较高的计算机作为实验环境,操作系统选择了Linux。

为了模拟多个进程同时运行的情况,我们编写了一段简单的多进程程序,并通过设置不同的优先级和时间片来模拟不同的进程调度算法。

2. FCFS(先来先服务)调度算法FCFS是最简单的进程调度算法,它按照进程到达的顺序进行调度。

我们通过设置不同的进程到达时间,观察FCFS算法的运行情况。

实验结果显示,FCFS算法对于长时间运行的进程效果较好,但是对于短时间进程会出现饥饿现象。

3. SJF(短作业优先)调度算法SJF算法是根据进程的执行时间来进行调度的,执行时间短的进程优先执行。

我们通过设置不同的进程执行时间,观察SJF算法的运行情况。

实验结果显示,SJF算法能够有效地减少平均等待时间和周转时间,但是对于长时间进程会出现饥饿现象。

4. RR(时间片轮转)调度算法RR算法是按照时间片的方式进行调度的,每个进程被分配一个固定的时间片,当时间片用完后,进程被挂起,等待下一次调度。

我们通过设置不同的时间片长度,观察RR算法的运行情况。

实验结果显示,RR算法能够公平地分配CPU 时间,并且能够较好地处理长时间和短时间进程。

实验结果与讨论:通过对不同进程调度算法的模拟实验,我们得出了以下结论:1. FCFS算法适用于长时间运行的进程,但对于短时间进程容易出现饥饿现象。

2. SJF算法能够有效地减少平均等待时间和周转时间,但对于长时间进程也容易出现饥饿现象。

3. RR算法能够公平地分配CPU时间,但对于长时间进程可能会产生较大的上下文切换开销。

进程调度算法模拟实验报告

进程调度算法模拟实验报告

竭诚为您提供优质文档/双击可除进程调度算法模拟实验报告篇一:操作系统进程调度算法模拟实验报告进程调度算法模拟专业:xxxxx学号:xxxxx姓名:xxx实验日期:20xx年xx月xx日一、实验目的通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。

二、实验要求编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。

三、实验方法内容1.算法设计思路将每个进程抽象成一个控制块pcb,pcb用一个结构体构建一个进程调度类。

将进程调度的各种算法分装在一个类中。

类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。

还有一个pcb实例。

主要保存正在运行的进程。

类中其他方法都是围绕这三个容器可以这个运行中的pcb展开。

主要用到的技术是sTL中的vector以维护和保存进程容器、就绪容器、完成容器。

当程序启动时,用户可以选择不同的调度算法。

然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。

进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。

判断进程容器中是否有新的进程可以加入就绪队列。

2.算法流程图主程序的框架:();//先来先服务();//最短进程优先调度//简单时间片轮转//最高优先数优先//输入进程信息();.m_waitQueue.empty()||.m_processQueue.empt() ();进程调度过程:;3.算法中用到的数据结构structfcfs{//先来先服务算法从这里开始charname[10];floatarrivetime;floatservicetime;float starttime;floatfinishtime;floatzztime;floatdqzztime;};//定义一个结构体,里面包含的有一个进程相关的信息4.主要的常量变量vector m_processQueue;//进程输入队列vector m_waitQueue;//进程就绪队列vectorm_FinishQueue;//完成队列vect(:进程调度算法模拟实验报告)or ::iteratorm_iter;//迭代器pcbm_runprocess;//运行中的进程intm_processcount;//进程数floatm_RunTime;//运行时间intm_tagIsRun;//是否在运行标志。

模拟进程调度实验报告

模拟进程调度实验报告

模拟进程调度实验报告摘要本实验主要采用C语言编写程序,模拟简单的进程调度框架,通过调度算法模拟CPU对于不同进程的调度过程,进一步深化对进程调度算法的理解和应用。

在实验过程中,我们采用了先来先服务(FCFS)、时间片轮转(RR)和优先级调度算法(PSA)三种调度算法进行模拟,并对不同算法的表现进行性能比较和分析。

实验结果表明,PSA算法和FCFS算法的平均等待时间和平均周转时间要比RR算法更小。

RR算法通过时间片的切换,能够较好地解决短进程优先的问题,但对于长进程来说仍然存在较大的等待时间。

在进行进程调度算法的选择时,需根据具体需求和系统特性综合考虑,选择合适的算法以达到最佳性能。

关键词:进程调度、先来先服务、时间片轮转、优先级调度算法、等待时间、周转时间Abstract一、引言进程调度是操作系统的核心概念之一,是操作系统对计算机硬件资源的有效管理机制。

操作系统需要根据一定的策略对进程进行调度,分配CPU时间片、内存等资源,使多个进程在同时执行的情况下,能高效地共享计算机硬件资源。

进程调度算法的优化和改进对操作系统的性能和运行效率至关重要。

本实验主要针对常用的三种进程调度算法,即先来先服务(FCFS)、时间片轮转(RR)和优先级调度算法(PSA),通过程序模拟这些算法的调度过程,进一步深入理解和应用进程调度算法,对进程调度算法进行性能比较和分析。

二、实验设计1.先来先服务算法(FCFS)我们通过先来先服务算法(FCFS)进行模拟。

FCFS算法即按照进程到达时间的先后顺序进行调度,当前一个进程执行完成后,才调度下一个进程,并按照到达的先后顺序不断地运行进程,直到所有进程执行完成。

在程序中,我们首先对进程进行排序,按照到达的先后顺序排列,模拟进程的到达过程。

然后,我们采用循环语句和判断语句模拟CPU对进程的调度过程,记录每个进程的等待时间和周转时间,并计算出平均等待时间(AWT)和平均周转时间(ATT)。

操作系统进程调度算法模拟实验报告

操作系统进程调度算法模拟实验报告

操作系统进程调度算法模拟实验报告一、实验目的本实验旨在深入理解操作系统的进程调度算法,并通过模拟实验来探究不同调度算法之间的差异和优劣。

二、实验原理操作系统的进程调度算法是决定进程执行顺序的重要依据。

常见的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)、轮转法(Round Robin)和多级反馈队列调度(Multilevel Feedback Queue Scheduling)等。

1.先来先服务(FCFS)算法:按照进程到达的先后顺序进行调度,被调度的进程一直执行直到结束或主动阻塞。

2.最短作业优先(SJF)算法:按照进程需要的执行时间的短长程度进行调度,执行时间越短的进程越优先被调度。

3. 优先级调度(Priority Scheduling)算法:为每个进程分配一个优先级,按照优先级从高到低进行调度。

4. 轮转法(Round Robin)算法:将进程按照到达顺序排列成一个队列,每个进程被分配一个时间片(时间量度),当时间片结束时,将进程从队列头取出放置到队列尾。

5.多级反馈队列调度算法:将进程队列分为多个优先级队列,每个队列时间片大小依次递减。

当一个队列中的进程全部执行完毕或者发生阻塞时,将其转移到下一个优先级队列。

三、实验步骤与结果1.实验环境:- 操作系统:Windows 10- 编译器:gcc2.实验过程:(1)首先,设计一组测试数据,包括进程到达时间、需要的执行时间和优先级等参数。

(2)根据不同的调度算法编写相应的调度函数,实现对测试数据的调度操作。

(3)通过模拟实验,观察不同调度算法之间的区别,比较平均等待时间、完成时间和响应时间的差异。

(4)将实验过程和结果进行记录整理,撰写实验报告。

3.实验结果:这里列举了一组测试数据和不同调度算法的结果,以便对比分析:进程,到达时间,执行时间,优先------,----------,----------,-------P1,0,10,P2,1,1,P3,2,2,P4,3,1,P5,4,5,a.先来先服务(FCFS)算法:平均等待时间:3.8完成时间:15b.最短作业优先(SJF)算法:平均等待时间:1.6完成时间:11c. 优先级调度(Priority Scheduling)算法:平均等待时间:2.8完成时间:14d. 轮转法(Round Robin)算法:时间片大小:2平均等待时间:4.8完成时间:17e.多级反馈队列调度算法:第一级队列时间片大小:2第二级队列时间片大小:4平均等待时间:3.8完成时间:17四、实验总结通过上述的实验结果可以得出以下结论:1.在上述测试数据中,最短作业优先(SJF)算法的平均等待时间最短,说明该算法在短作业的情况下能够有效地减少等待时间。

进程调度算法模拟

进程调度算法模拟

操作系统实验报告姓名:班级:学号:指导教师:实验一进程调度算法模拟,用动态优先数及时间片轮转法实现进程调度一.实验内容:设计一个简单的进程调度算法,模拟OS中的进程调度过程二.实验要求:①进程数不少于5个;②进程调度算法任选;最好选用动态优先数法,每运行一个时间片优先数减3③用C++(或C)语言编程;④程序运行时显示进程调度过程。

三.实验步骤:①设计PCB及其数据结构:struct pcb{ /* 定义进程控制块PCB */char name[10];char state;int super;int ntime;int rtime;struct pcb* link;} *ready=NULL,*p;typedef struct pcb PCB;②设计进程就绪队列及数据结构;三个应用队列:PCB *ready=NULL,*run=NULL,*finish=NULL;③设计进程调度算法,并画出程序流程图;④设计输入数据和输出格式;结构格式:当前正运行的进程:0当前就绪队列:2,1,3,4⑤编程上机,验证结果。

源程序代码如下:#include<stdio.h>void main(){int a[4][5]={{0,1,2,3,4},{9,38,30,29,0},{0,0,0,0,0},{3,3,6,3,4}};int a1[5],a0[5],a2[5],num;printf("当前系统中有5个进程,其初始状态如下:\n\n");for(int i=0;i<4;i++){if(i==0)printf("ID ");if(i==1)printf("PRIORITY ");if(i==2)printf("CPUTIME ");if(i==3)printf("ALLTIME ");for(int j=0;j<5;j++){printf("%5d ",a[i][j]);}printf("\n");}printf("STATE ready ready ready ready ready");for(;;){for(i=0;i<5;i++){a0[i]=a[1][i];}for(i=0;i<5;i++){for(int j=0;j<5-1;j++){if(a0[j]<=a0[j+1]){num=a0[j];a0[j]=a0[j+1];a0[j+1]=num;}}}//a0数组为排列好的优先极for(int j=0;j<5;j++){a2[j]=a[1][j];}for(i=0;i<5;i++){for(int j=0;j<5;j++){if(a0[i]==a2[j]){a1[i]=j;a2[j]=-10;break;}}}a[1][a1[0]]-=3;a[2][a1[0]]+=1;a[3][a1[0]]-=1;printf("\n");if(a[3][a1[0]]<=0){a[1][a1[0]]=-3;}int ji=0;for(i=0;i<5;i++){ji+=a[3][i];}printf("\n当前运行程序为:%d\n当前就绪队列:",a1[0]);for(i=1;i<5;i++){if(a[1][a1[i]]>=0)printf("%d ",a1[i]);}if(ji<=0)break;printf("\n\n程序正在运行中...");}printf("\n\n当前程序已全部运行完毕\n");}实验结果:四.实验总结:(1)本次试验后对优先数调度算法和时间片轮转调度算法实现的过程,有了很清楚的认识、理解。

【精品】进程调度算法模拟实验报告

【精品】进程调度算法模拟实验报告

【精品】进程调度算法模拟实验报告一、实验目的本实验通过模拟进程的调度算法,使学生掌握多种进程调度算法的实现过程及其优缺点。

二、实验内容本实验实现了三种进程调度算法:先来先服务(First Come First Served,FCFS)、最短作业优先(Shortest Job First,SJF)、时间片轮转(Round Robin,RR)。

(一)FCFS算法FCFS算法是一种非抢占式的进程调度算法,按照进程到达的先后顺序进行执行,即先到达的进程先被执行,后到达的进程后被执行。

当一个进程在执行过程中发生等待时,其他新到达的进程会继续执行。

等待时间长的进程会长时间等待,造成了响应时间长的问题。

SJF算法是一种动态优先级的进程调度算法,按照进程预计运行时间的大小来决定其优先级,预计运行时间短的进程具有高优先级。

当一个新进程到达时,如果其预计运行时间比当前正在运行的所有进程都短,那么这个新进程就可以立即执行。

该算法在保证短作业优先的同时,可能会导致长作业饥饿的问题。

(三)RR算法RR算法是一种抢占式的进程调度算法,每个进程被分配一个时间片,当一个进程的时间片用完时,就被剥夺CPU,然后排到队列的末尾,等待下一次调度。

该算法能够保证每个进程的响应时间比较短,但可能会导致CPU利用率较低。

三、实验步骤(一)编写程序框架首先,根据实验要求,编写完整的程序框架,包括进程类Process和调度器类Scheduler。

Process类中包含了进程需要的属性和方法,如进程ID、进程到达时间、进程执行时间、进程状态等。

Scheduler类中包含了进程调度所需要的方法,如FCFS、SJF、RR 调度算法等。

(二)实现进程调度算法FCFS算法较为简单,只需要按照进程到达时间排序即可。

```pythondef FCFS(self):queue = Queue()process_time = 0while not self.is_finished():ready_process = self.get_arrived_process(process_time)if ready_process:queue.put(ready_process)if not queue.empty():current_process = queue.get()current_process.status = 'running'current_process.start_time = process_timecurrent_process.end_time = current_process.start_time + current_process.run_timeself.finished_processes.append(current_process)process_time += 1```2. SJF算法SJF算法需要进行进程预计运行时间的排序,然后按照排序后的顺序进行执行。

实验进程调度的实验报告

实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。

2. 掌握进程调度算法的基本原理和实现方法。

3. 培养编程能力和系统分析能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。

1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。

2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。

3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。

4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。

五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。

2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。

3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。

b. SJF算法:优先调度运行时间最短的进程。

c. 优先级调度算法:根据进程的优先级进行调度。

d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。

4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。

b. 循环执行调度算法,将CPU分配给就绪队列中的进程。

c. 更新进程状态,统计进程执行时间、等待时间等指标。

d. 当进程完成时,将其移至完成队列。

六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。

2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告实验目的:了解操作系统进程调度的基本原理和方法,通过编写模拟程序来验证调度算法的正确性。

实验内容:1. 实现进程调度模拟程序,包括进程的创建、调度、挂起、恢复和销毁等基本操作。

2. 实现三种常用的调度算法:先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转(RR)。

3. 对比不同调度算法的性能,包括平均等待时间、平均周转时间和平均响应时间等指标。

实验步骤:1. 首先定义进程类Process,包括进程的ID、到达时间、执行时间和优先级等属性。

2. 实现创建进程的函数create_process,通过用户输入的方式创建多个进程,并保存到一个进程队列中。

3. 根据选择的调度算法,实现调度函数schedule,按照对应的算法对进程进行调度,并记录每个进程的执行时间和等待时间等信息。

4. 对于FCFS算法,按照进程的到达时间进行排序,然后按顺序执行。

5. 对于SJF算法,按照进程的执行时间进行排序,然后按顺序执行。

6. 对于RR算法,设定一个时间片大小,每个进程执行一个时间片后,将其放回队列末尾,然后继续执行下一个进程,直到所有进程都执行完毕。

7. 在各个调度算法中计算平均等待时间、平均周转时间和平均响应时间等指标,并输出结果。

实验结果:通过对不同进程和不同调度算法的模拟,可以得到如下结果:1. FCFS调度算法的平均等待时间较长,不适用于执行时间较长的任务。

2. SJF调度算法的平均等待时间和平均周转时间较短,适用于执行时间较短的任务。

3. RR调度算法能够平均分配CPU时间,适用于执行时间较长的任务。

实验总结:通过本次实验,我们进一步加深了对操作系统进程调度的理解和认识。

通过编写模拟程序,我们能够清楚地了解不同调度算法的工作原理和对应的性能表现。

在实际应用中,根据任务的特点和需求选择合适的调度算法,能够提高系统的性能和效率。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

模拟进程调度实验总结

模拟进程调度实验总结

模拟进程调度实验总结作为一名计算机专业的学生,我认为进程调度是非常重要的一部分,它为计算机的运行提供了基础支持。

本学期,在操作系统课上,我参加了一次进程调度的模拟实验,并从中受益匪浅。

本文是我的模拟进程调度实验总结,主要从以下四个方面进行阐述:一、实验目的本次实验的主要目的是帮助我们深入学习进程调度算法,并加深对其原理的理解,同时模拟不同的进程调度算法,了解其优缺点及在不同场景下的适用性。

通过实验的参与与分析,我们能够更好地理解进程调度算法的本质,为实际开发提供指导。

二、实验内容本次实验主要涉及以下几个方面:1.使用C语言实现五种进程调度算法:FIFO、SJF、HRN、RR和MFQ。

2.分别模拟不同进程数的情况,验证每种算法的优缺点,并对其时间效率进行评估。

3.结合实际案例,讨论每种调度算法的适用场景。

4.分析各个调度算法的优劣,并对其进行优化。

三、实验心得1.学习理论知识:在实验之前,我们需要提前学习进程调度算法的相关知识,掌握其基本原理和实现方式。

只有深入理解原理,并将其联系实际案例,才有可能真正地理解其本质。

2.动手实践:实践是检验理论知识积累的最好方法。

在实验中,我们可以通过编写代码,模拟不同的调度场景,来对进程调度算法进行实际运用并进行分析。

这样可以有效地节约时间,同时也有利于我们更好地理解整个过程。

3.对比分析:对于每种进程调度算法,都有其优缺点,在实践中,我们不仅需要了解其特点和原理,更要深入了解其在不同场景下的使用效果。

这样才能够更好地进行对比分析,从而选出最适合当前场景的进程调度算法。

4.优化调整:在实验过程中,我们还需要分析各个进程调度算法的优缺点,并对其进行优化调整,以期提高其效率和减少其缺陷。

四、总结通过对模拟进程调度实验的参与与分析,我深刻认识到进程调度算法在计算机运行中的重要性。

只有深入理解其基本原理,并结合实际案例进行分析和比较,才有可能选出最适合当前场景的方案,并进行优化调整。

进程调度算法模拟实验报告

进程调度算法模拟实验报告

进程调度算法模拟实验报告
进程调度是指控制多个进程按照一定的规则进行调度的过程,决定着进程在多道程序环境下的并发执行方式。

本次实验使用wiki提供的进程调度算法(短进程优先)来模拟实验,以下是实验的具体事项:
(1)模拟测试环境:Windows 10;
(2)运行环境:采用python 3.8+模拟。

(3)实验条件:三个进程:P1、P2、P3,它们的运行时间分别为12、6、10;
(4)实验步骤:
(a)首先显示所有进程的初始状态:
进程运行时间到达时间优先级进程状态
P1 12 0 1 就绪
P2 6 0 2 就绪
P3 10 0 3 就绪
(b)根据进程调度算法,模拟测试、实现进程的按时间片轮转:
(c)模拟运行完最后一个进程(P3),然后实现短进程优先:
2.实验结论
通过本实验,我们发现使用短进程优先进程调度算法能够高效地实现多个进程的并发执行,满足实际应用中对低延迟、高响应性的要求,其中最短进程最先执行,而最长进程最后执行,真正实现了“短进程优先”的思想。

操作系统进程调度算法模拟实验

操作系统进程调度算法模拟实验

操作系统进程调度算法模拟实验进程调度是操作系统中一个重要的功能,它决定了哪些进程能够获得处理器资源以及如何按照一定的策略来分配这些资源。

为了更好地理解进程调度算法的工作原理,我们可以进行一个模拟实验来观察不同算法的表现效果。

实验设想:我们设想有5个进程要运行在一个单核处理器上,每个进程有不同的运行时间和优先级。

进程信息如下:进程A:运行时间10ms,优先级4进程B:运行时间8ms,优先级3进程C:运行时间6ms,优先级2进程D:运行时间4ms,优先级1进程E:运行时间2ms,优先级5实验步骤:1.先来先服务(FCFS)调度算法实验:将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

2.最短作业优先(SJF)调度算法实验:将上述进程按照运行时间的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

3.优先级调度算法实验:将上述进程按照优先级的大小排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

4.时间片轮转(RR)调度算法实验:设置一个时间片大小,将上述进程按照先来先服务的原则排序,运行对应的模拟程序,观察每个进程的运行时间、完成时间和等待时间。

实验结果:通过模拟实验,我们可以得到每个进程的运行时间、完成时间和等待时间。

对于FCFS算法,进程的运行顺序是按照先来先服务的原则,因此进程A首先得到处理器资源并完成运行,其它进程依次按照到达顺序得到资源。

因此,对于进程A、B、C、D、E,它们的完成时间分别是10ms、18ms、24ms、28ms和30ms,等待时间分别是0ms、10ms、18ms、24ms和28ms。

对于SJF算法,进程的运行顺序是按照运行时间的大小,即短作业优先。

因此,进程E首先得到处理器资源并完成运行,其它进程依次按照运行时间的大小得到资源。

对于进程E、D、C、B、A,它们的完成时间分别是2ms、6ms、12ms、20ms和30ms,等待时间分别是0ms、2ms、6ms、12ms和20ms。

模拟调度实验报告(3篇)

模拟调度实验报告(3篇)

第1篇一、实验背景进程调度是操作系统核心功能之一,它负责在多道程序环境下,按照一定的策略对进程进行调度,以确保系统资源的合理分配和高效利用。

为了加深对进程调度算法的理解,本次实验采用模拟的方式,实现了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种算法,并对实验过程进行了详细记录和分析。

二、实验目的1. 理解进程调度的基本原理和不同调度算法的特点。

2. 掌握进程控制块(PCB)的设计与实现。

3. 通过模拟实验,验证三种调度算法的执行效果。

三、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019四、实验内容1. 定义进程控制块(PCB)进程控制块是操作系统用于描述和管理进程的实体,它包含了进程的基本信息。

本实验中,PCB包含以下字段:- 进程ID:唯一标识一个进程。

- 到达时间:进程进入就绪队列的时间。

- 需要运行时间:进程完成所需的时间。

- 已运行时间:进程已运行的时间。

- 状态:进程当前的状态(就绪、运行、阻塞、完成)。

2. 实现三种调度算法(1)先来先服务(FCFS)算法FCFS算法按照进程到达就绪队列的顺序进行调度,先到先服务。

具体实现如下:- 将进程按照到达时间排序,形成就绪队列。

- 遍历就绪队列,依次执行进程,直到进程完成或被阻塞。

(2)时间片轮转(RR)算法RR算法将CPU时间划分为时间片,每个进程运行一个时间片后,让出CPU,等待下一个时间片。

具体实现如下:- 设置一个时间片大小。

- 将进程按照到达时间排序,形成就绪队列。

- 遍历就绪队列,每个进程执行一个时间片,如果进程未完成,则将其加入就绪队列队尾。

(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度,优先级高的进程优先执行。

具体实现如下:- 设置一个优先级阈值,当进程的优先级高于阈值时,将其加入就绪队列。

- 遍历就绪队列,选择优先级最高的进程执行,直到进程完成或被阻塞。

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告

实验三、进程调度模拟程序实验一、实验目的用高级语言完成一个进程调度程序,以加深对进程的概念及进程调度算法的理解。

二、实验内容和要求设计一个有 N个进程并发执行的进程调度模拟程序。

用C++模拟基于时间片的轮转算法、静态优先算法、动态优先算法、多级反馈队列调度算法。

三、实验方法、步骤及结果测试1.原理分析及流程图(1). 每个进程有一个进程控制块(PCB)表示。

进程控制块包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

(2). 进程的优先数及需要的运行时间可以事先人为地指定,进程的运行时间以时间片为单位进行计算。

(3). 每个进程的状态可以是就绪 r(ready)、运行R(Running)、或完成F(Finished)三种状态之一。

(4). 就绪进程获得 CPU后都只能运行一个时间片。

用已占用CPU时间加1来表示。

(5). 如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待调度。

(6). 每进行一次调度程序都打印一次运行进程、就绪队列中各个进程的 PCB,以便进行检查。

(7). 重复以上过程,直到所要进程都完成为止。

2.主要程序段及其解释:动态优先调度:#include<stdio.h>#include<conio.h>#include<string.h>#define MAX 24struct jcb{char name[10];int reqtime;int runtime;int startime;int fintime;int prio;char status;};typedef struct jcb JCB;void input(JCB job[],int *pnum){int num;int i;printf("process 数:");scanf("%d",&num);for(i=0;i<num;i++){printf("\n第%d个process:\n",i+1);printf("输入proc名:");scanf("%s",job[i].name);printf("Priority:");scanf("%d",&job[i].prio);printf("要求服务时间:");scanf("%d",&job[i].reqtime);job[i].status='r';job[i].runtime=0;}*pnum=num;}void jcbprintf(JCB jcbp[],int n){int i;if (n==0){printf("the queue is null!!\n");return;}printf("\tname\tprio\trqtime\truntime\tstatus");for(i=0;i<n;i++){printf("\nN %d",i+1);printf("\t&s",jcbp[i].name);printf("\t&d",jcbp[i].prio);printf("\t&d",jcbp[i].reqtime);printf("\t&d",jcbp[i].runtime);printf("\t&c",jcbp[i].status);}}void btsort(JCB btjcb[],int n){int i,j;JCB jcbtemp;for(j=1;j<n;j++)for(i=0;i<n-j;i++)if(btjcb[i].prio<btjcb[i+1].prio){jcbtemp=btjcb[i];btjcb[i]=btjcb[i+1];btjcb[i+1]=jcbtemp;}}main(){JCB jobarrived[MAX],jobfinished[MAX];int numarr, numfin;int systime=0;int i,j,n;JCB jcbrunning;input(jobarrived,&numarr);numfin=0;systime=0;btsort (jobarrived,numarr);printf("经按priority排序后,read queue是\n");jcbprintf(jobarrived,numarr);do{btsort(jobarrived,numarr);printf("\n\n\t\t现在系统时间%d:\n\n",systime);printf("ready queue 有\n");jcbprintf(jobarrived,numarr);jcbrunning=jobarrived[0];numarr--;for(i=0;i<numarr;i++)jobarrived[i]=jobarrived[i+1];jcbrunning.status='R';jcbrunning.startime=systime;printf("\n\n\t\t处于运行态的作业名%s\n",);systime++;jcbrunning.runtime++;if (jcbrunning.runtime==jcbrunning.reqtime){jobfinished[numfin]=jcbrunning;jobfinished[numfin].status='F';numfin++;}else{jcbrunning.prio--;jcbrunning.status='r';jobarrived[numarr]=jcbrunning;numarr++;}printf("\n\n\t\t系统时间:%d已经完成的有\n\n",systime);jcbprintf(jobfinished,numfin);getchar();getchar();}while((numarr!=0));printf("\nCompleted!! ByeBye!!");getchar();getchar();}2、#include<stdio.h>#include<conio.h>#include<string.h>#define MAX 100struct jcb{char name[10];int arritime;int runtime;int reqtime;};typedef struct jcb JCB;void input(JCB jcb[],int*pnum){int num;int i;printf("进程调度程序:");scanf("%d",&num);for(i=0;i<num;i++){printf("\n第%d个进程: \n",i);printf("请输入进程名:");scanf("%s",&jcb[i].name);printf("到达时间:");scanf("%d",&jcb[i].arritime);printf("运行时间:");scanf("%d",&jcb[i].reqtime);}for(i=0;i<num;i++){printf("\n现在输出%d个进程",i+1); printf("\t%s",jcb[i].name);printf("\t%d",jcb[i].arritime);printf("\t%d",jcb[i].reqtime);}*pnum=num;}void jcbprintf(JCB jcbp[],int n){int i;printf("\t进程名称\t运行时间");for(i=0;i<n;i++){printf("\nN %d",i+1);printf(" %s",jcbp[i].name);printf(" %d",jcbp[i].reqtime); }}void btsort(JCB btjcb[],int n){int i,j;JCB jcbtemp;for(j=1;j<n;j++){for(i=0;i<n-1;i++){if(btjcb[i].arritime>btjcb[i+1].arritime){jcbtemp=btjcb[i];btjcb[i]=btjcb[i+1];btjcb[i+1]=jcbtemp;}}}}void Printf(JCB job[],int n){int i;printf("进程名称运行时间运行时间片\n");for(i=0;i<n;i++){printf(" %s %d %d\n",job[i].name,job[i].reqtime,job[i].ru ntime);}}void main(){JCB jobarrived[MAX];int numarr,i;JCB jcbrunning;input(jobarrived,&numarr);printf("\n请按任意键继续.............");getchar();getchar();btsort(jobarrived,numarr);printf("\n按到达时间排序后,就绪队列是\n");jcbprintf(jobarrived,numarr);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();for(i=0;i<numarr;i++){jobarrived[i].runtime=0;}printf("\n.............就绪队列是.................\n");Printf(jobarrived,numarr);printf("\n");printf("\n");while(numarr>0){jcbrunning=jobarrived[0];jcbrunning.reqtime=jcbrunning.reqtime-1;jcbrunning.runtime=jcbrunning.runtime+1;printf("\n正在执行的进程名称是%s\n",); printf("\n");printf("\n");if(jcbrunning.reqtime>0){for(i=0;i<numarr;i++)jobarrived[i]=jobarrived[i+1];jobarrived[numarr-1]=jcbrunning;}else{numarr--;for(i=0;i<numarr;i++)jobarrived[i]=jobarrived[i+1];}printf("\n.............就绪队列是.................\n");Printf(jobarrived,numarr);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();}printf("\n请按任意键继续.............");getchar();getchar();}3、#include<stdio.h>#include<conio.h>#include<string.h>#define MAX 100struct jcb{char name[10];int firsttime;int arritime;int runtime;int reqtime;};typedef struct jcb JCB;void input(JCB jcb[],int*pnum){int num;int i;printf("进程调度程序数目:");scanf("%d",&num);for(i=0;i<num;i++){printf("\n第%d个进程: \n",i);printf("请输入进程名:");scanf("%s",&jcb[i].name);printf("到达时间:");scanf("%d",&jcb[i].arritime);printf("运行时间:");scanf("%d",&jcb[i].reqtime);printf("优先级:");scanf("%d",&jcb[i].firsttime);}for(i=0;i<num;i++){printf("\n现在输出%d个进程",i+1);printf("\t%s",jcb[i].name);printf("\t%d",jcb[i].arritime);printf("\t%d",jcb[i].firsttime);printf("\t%d",jcb[i].reqtime);}*pnum=num;}void jcbprintf(JCB jcbp[],int n){int i;printf("\t进程名称\t优先级\t运行时间"); for(i=0;i<n;i++){printf("\nN %d",i+1);printf(" %s",jcbp[i].name);printf(" %d",jcbp[i].firsttime); printf(" %d",jcbp[i].reqtime);}}void btsort(JCB btjcb[],int n){int i,j;JCB jcbtemp;for(j=1;j<n;j++){for(i=0;i<n-1;i++){if(btjcb[i].arritime>btjcb[i+1].arritime){jcbtemp=btjcb[i];btjcb[i]=btjcb[i+1];btjcb[i+1]=jcbtemp;}}}}void Printf(JCB job[],int n){int i;printf("进程名称优先级运行时间运行时间片\n");for(i=0;i<n;i++){printf(" %s %d %d %d\n",job[i].name,job[i].firstti me,job[i].reqtime,job[i].runtime);}}void main(){JCBjobarrived1[MAX],jobarrived2[MAX],jobarrived3[MAX],jobarrived[MAX]; int numarr1,numarr2,numarr3,numarr,i;JCB jcbrunning;numarr2=0;numarr1=0;numarr3=0;input(jobarrived,&numarr);printf("\n请按任意键继续.............");getchar();getchar();btsort(jobarrived,numarr);printf("\n按到达时间排序后,就绪队列是\n");jcbprintf(jobarrived,numarr);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();for(i=0;i<numarr;i++){jobarrived[i].runtime=0;}for(i=0;i<numarr;i++){jobarrived3[i]=jobarrived[i];numarr3++;}printf("\n.............就绪队列3是..........\n");jcbprintf(jobarrived3,numarr3);printf("\n");printf("\n");printf("\n.............就绪队列2是..........\n");jcbprintf(jobarrived2,numarr2);printf("\n");printf("\n");printf("\n...........就绪队列1是.............\n");jcbprintf(jobarrived1,numarr1);printf("\n");printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();while(numarr3>0){jcbrunning=jobarrived3[0];if(jcbrunning.firsttime==3){if(jcbrunning.reqtime>0){jcbrunning.firsttime=jcbrunning.firsttime-1; jcbrunning.reqtime=jcbrunning.reqtime-1;jcbrunning.runtime=jcbrunning.runtime+1;printf("\n正在执行的进程名称是%s\n",); printf("\n");printf("\n");}jobarrived3[0]=jcbrunning;}if(jobarrived3[0].reqtime>0){jobarrived2[numarr2]=jobarrived3[0];numarr2++;}numarr3--;for(i=0;i<numarr3;i++){jobarrived3[i]=jobarrived3[i+1];}printf("\n.............就绪队列3是..........\n");Printf(jobarrived3,numarr3);printf("\n");printf("\n");printf("\n.............就绪队列2是..........\n");Printf(jobarrived2,numarr2);printf("\n");printf("\n");printf("\n...........就绪队列1是.............\n");Printf(jobarrived1,numarr1);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();}while(numarr2>0){jcbrunning=jobarrived2[0];if(jcbrunning.firsttime==2){if(jcbrunning.reqtime>2){jcbrunning.firsttime=jcbrunning.firsttime-1;jcbrunning.reqtime=jcbrunning.reqtime-2;jcbrunning.runtime=jcbrunning.runtime+2;printf("\n正在执行的进程名称是%s\n",);}else{jcbrunning.firsttime=jcbrunning.firsttime-1;jcbrunning.reqtime=jcbrunning.reqtime-jcbrunning.reqtime;jcbrunning.runtime=jcbrunning.runtime+jcbrunning.reqtime;printf("\n正在执行的进程名称是%s\n",); }jobarrived2[0]=jcbrunning;}if(jobarrived2[0].reqtime>0){jobarrived1[numarr1]=jobarrived2[0];numarr1++;}numarr2--;for(i=0;i<numarr2;i++){jobarrived2[i]=jobarrived2[i+1];}printf("\n.............就绪队列3是..........\n");Printf(jobarrived3,numarr3);printf("\n");printf("\n");printf("\n.............就绪队列2是..........\n");Printf(jobarrived2,numarr2);printf("\n");printf("\n");printf("\n...........就绪队列1是.............\n");Printf(jobarrived1,numarr1);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();}while(numarr1>0){jcbrunning=jobarrived1[0];if(jcbrunning.firsttime==1){if(jcbrunning.reqtime>0){jcbrunning.firsttime=jcbrunning.firsttime-1;jcbrunning.reqtime=jcbrunning.reqtime-jcbrunning.reqtime; jcbrunning.runtime=jcbrunning.runtime+jcbrunning.reqtime; printf("\n正在执行的进程名称是%s\n",); }}numarr1--;for(i=0;i<numarr1;i++){jobarrived1[i]=jobarrived1[i+1];}printf("\n.............就绪队列3是..........\n");Printf(jobarrived3,numarr3);printf("\n");printf("\n");printf("\n.............就绪队列2是..........\n");Printf(jobarrived2,numarr2);printf("\n");printf("\n");printf("\n...........就绪队列1是.............\n");Printf(jobarrived1,numarr1);printf("\n");printf("\n");printf("\n请按任意键继续.............");getchar();getchar();}printf("\n请按任意键继续.............");getchar();getchar();}3.运行结果及分析四、 实验总结这次的实验是我们这门课第一次以个人为单位来完成的实验,然后这次实验用了三个星期去完成,虽然每次上机课老师都会先讲,可是我还是不太懂,到自己做的时候又不会,都是照样画葫芦。

进程调度实验报告答案(3篇)

进程调度实验报告答案(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。

二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。

2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。

3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。

2. 实现进程调度函数,根据所选调度算法进行进程调度。

3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。

4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。

分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。

2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。

分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。

3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。

分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。

进程调度模拟实验

进程调度模拟实验

进程调度模拟实验1.实验目的通过对进程调度算法的模拟加深对进程概念和进程调度过程的理解。

2.实验内容用C语言、Pascal语言或其他开发工具实现对N(N=5)个进程的调度模拟,要求至少采用两种不同的调度算法(如简单轮转法Round Robin和优先权高者优先算法Highest Priority First),分别进行模拟调度。

每个用来标识进程的进程控制块PCB用结构(记录)来描述,根据需要,它包括以下字段:进程标识数ID。

进程优先数Priority,并规定优先数越大的进程,其优先权越高。

采用简单轮转法时该字段无用。

进程已经占用的CPU时间CPUTIME(以时间片为单位,下同)。

进程还需占用的CPU时间ALLTIME。

当进程运行完毕时,ALLTIME变为0。

进程的阻塞时间STARTBLOCK,表示当进程再运行STARTBLOCK个时间片后,进程将进入阻塞状态。

进程被阻塞的时间BLOCKTIME,表示已经阻塞的进程再等待BLOCKTIME个时间片后,将转换成就绪状态。

进程状态STATE。

队列指针NEXT,用来将PCB排成队列。

优先数改变的原则(采用简单轮转法时该字段无用):进程在就绪队列中等待一个时间片,优先数增加1;进程每运行一个时间片,优先数减3。

假设在进行调度前,系统中有5个进程,它们的初始状态可以编程输入(更具有灵活性),也可以初始化为如下内容:ID PRIORITY CPUTIME ALLTIME STARTBLOCK BLOCKTIME STA TE0 9 0 3 2 3 READY1 38 0 3 -1 0 READY2 30 0 6 -1 0 READY3 29 0 3 -1 0 READY4 0 0 4 -1 0 READY为了清楚地观察诸进程的调度过程,程序应该将每个时间片内各进程的情况显示出来并暂停,参考格式如下:运行/Running:I就绪队列/Ready Queue:Idi,Idj,…阻塞队列/Block Queue:Idk,Idl,…======================================================================进程号优先数已运行时间需要时间开始阻塞时间阻塞时间状态0 P0 C0 A0 T0 B0 S01 P1 C1 A1 T1 B1 S12 P2 C2 A2 T2 B2 S23 P3 C3 A3 T3 B3 S34 P4 C4 A4 T4 B4 S4======================================================================3.实验分析和思考在实际的进程调度中,还有哪些可行的算法,怎样模拟?在实际的进程调度中,除了按算法选择下一个运行的进程之外,操作系统还应该做哪些工作?为什么对进程的优先数可以按上述原则进行修改?有什么好处?4.实验学时安排:6学时,在调度与死锁内容学习之后进行。

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告一、实验目的进程调度是操作系统的核心功能之一,它负责合理地分配 CPU 资源给各个进程,以提高系统的性能和效率。

本次实验的目的是通过编写和模拟进程调度程序,深入理解不同的进程调度算法的原理和特点,并比较它们在不同情况下的性能表现。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

操作系统为 Windows 10。

三、实验原理1、先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源。

2、短作业优先(SJF)调度算法短作业优先调度算法优先调度执行时间短的进程。

3、时间片轮转(RR)调度算法时间片轮转调度算法将 CPU 时间划分为固定大小的时间片,每个进程轮流获得一个时间片的 CPU 资源。

四、实验设计1、进程类的设计创建一个进程类,包含进程 ID、到达时间、服务时间、剩余服务时间等属性,以及用于更新剩余服务时间和判断进程是否完成的方法。

2、调度算法实现分别实现先来先服务、短作业优先和时间片轮转三种调度算法。

3、模拟流程(1)初始化进程列表。

(2)按照选定的调度算法进行进程调度。

(3)计算每个进程的等待时间、周转时间等性能指标。

五、实验步骤1、定义进程类```pythonclass Process:def __init__(self, pid, arrival_time, service_time):selfpid = pidselfarrival_time = arrival_timeselfservice_time = service_timeselfremaining_service_time = service_time```2、先来先服务调度算法实现```pythondef fcfs_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0for process in process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("先来先服务调度算法的平均等待时间:",average_waiting_time)print("先来先服务调度算法的平均周转时间:",average_turnaround_time)```3、短作业优先调度算法实现```pythondef sjf_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0sorted_process_list = sorted(process_list, key=lambda x: xservice_time) for process in sorted_process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("短作业优先调度算法的平均等待时间:",average_waiting_time)print("短作业优先调度算法的平均周转时间:",average_turnaround_time)```4、时间片轮转调度算法实现```pythondef rr_scheduling(process_list, time_slice):current_time = 0total_waiting_time = 0total_turnaround_time = 0ready_queue =while len(process_list) > 0 or len(ready_queue) > 0:for process in process_list:if processarrival_time <= current_time:ready_queueappend(process)process_listremove(process)if len(ready_queue) == 0:current_time += 1continueprocess = ready_queuepop(0)if processremaining_service_time <= time_slice: waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += processremaining_service_time turnaround_time = current_time processarrival_time total_turnaround_time += turnaround_time processremaining_service_time = 0else:waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += time_sliceprocessremaining_service_time = time_sliceready_queueappend(process)average_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均等待时间:", average_waiting_time)print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均周转时间:", average_turnaround_time)```5、主函数```pythonif __name__ =="__main__":process_list =Process(1, 0, 5),Process(2, 1, 3),Process(3, 2, 8),Process(4, 3, 6)print("先来先服务调度算法:")fcfs_scheduling(process_list)print("短作业优先调度算法:")sjf_scheduling(process_list)time_slice = 2print("时间片轮转调度算法(时间片大小为",time_slice, "):")rr_scheduling(process_list, time_slice)```六、实验结果与分析1、先来先服务调度算法平均等待时间为 575,平均周转时间为 1275。

进程调度算法模拟实验报告

进程调度算法模拟实验报告

竭诚为您提供优质文档/双击可除进程调度算法模拟实验报告篇一:操作系统进程调度算法模拟实验报告进程调度算法模拟专业:xxxxx学号:xxxxx姓名:xxx实验日期:20xx年xx月xx日一、实验目的通过对进程调度算法的模拟加深对进程概念和进程调度算法的理解。

二、实验要求编写程序实现对5个进程的调度模拟,要求至少采用两种不同的调度算法分别进行模拟调度。

三、实验方法内容1.算法设计思路将每个进程抽象成一个控制块pcb,pcb用一个结构体构建一个进程调度类。

将进程调度的各种算法分装在一个类中。

类中存在三个容器,一个保存正在或未进入就绪队列的进程,一个保存就绪的进程,另一个保存已完成的进程。

还有一个pcb实例。

主要保存正在运行的进程。

类中其他方法都是围绕这三个容器可以这个运行中的pcb展开。

主要用到的技术是sTL中的vector以维护和保存进程容器、就绪容器、完成容器。

当程序启动时,用户可以选择不同的调度算法。

然后用户从控制台输入各个进程的信息,这些信息保存到进程容器中。

进程信息输入完毕后,就开始了进程调度,每调度一次判断就绪队列是否为空,若为空则系统时间加一个时间片。

判断进程容器中是否有新的进程可以加入就绪队列。

2.算法流程图主程序的框架:();//先来先服务();//最短进程优先调度//简单时间片轮转//最高优先数优先//输入进程信息();.m_waitQueue.empty()||.m_processQueue.empt() ();进程调度过程:;3.算法中用到的数据结构structfcfs{//先来先服务算法从这里开始charname[10];floatarrivetime;floatservicetime;float starttime;floatfinishtime;floatzztime;floatdqzztime;};//定义一个结构体,里面包含的有一个进程相关的信息4.主要的常量变量vector m_processQueue;//进程输入队列vector m_waitQueue;//进程就绪队列vectorm_FinishQueue;//完成队列vect(:进程调度算法模拟实验报告)or ::iteratorm_iter;//迭代器pcbm_runprocess;//运行中的进程intm_processcount;//进程数floatm_RunTime;//运行时间intm_tagIsRun;//是否在运行标志。

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告

操作系统进程调度模拟程序实验报告一、实验目的本次实验旨在通过编写一个模拟操作系统进程调度的程序,以加深对进程调度算法的理解。

二、实验内容1. 实现进程相关的数据结构:进程PCB(Process Control Block)。

2.实现进程的创建、撤销以及调度等操作函数。

3. 实现常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)、轮转调度(RR)、优先级调度(Priority)。

4.编写测试程序,验证实现的进程调度算法在不同场景下的表现。

三、实验过程及结果1.进程PCB的设计与实现进程PCB是进程的核心数据结构,用于存储和管理进程相关的信息,包括进程状态(就绪、运行、阻塞)、优先级、执行时间等。

2.进程的创建、撤销及调度函数的实现(1)进程创建函数:实现进程的创建,包括为其分配空间、初始化进程PCB等。

可以根据实际需求,设定进程的优先级、执行时间等属性。

(2)进程撤销函数:实现进程的撤销,包括释放其占用的资源、回收其使用的空间等。

(3)进程调度函数:根据不同的调度算法,实现进程的调度。

可以通过设置时间片大小、优先级设定等方式,实现不同调度算法的效果。

3.进程调度算法的设计与实现(1)先来先服务(FCFS)调度算法:按照进程到达的先后顺序,依次进行调度。

(2)最短作业优先(SJF)调度算法:根据进程的执行时间,选择执行时间最短的进程进行调度。

(3)轮转调度(RR)算法:按照时间片的大小进行调度,每个进程在一个时间片内执行,超过时间片后,暂停并进入等待队列,让其他进程执行。

(4)优先级调度(Priority)算法:根据进程的优先级,选择优先级最高的进程进行调度。

4.测试程序编写测试程序,模拟不同的进程到达顺序、执行时间和优先级等场景,验证不同调度算法的表现。

四、实验结果与分析通过测试程序的运行结果,观察不同调度算法的特点和效果。

可以得出以下结论:1.FCFS算法适用于进程到达时间差异较大的场景,保证了先到先服务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进程调度模拟实验
pr a[MAX];
int n;//进程数
int t;//时间片大小
void input()
{
int i;
printf("请输入进程的名字优先级到达系统时间运行时间:(中间用空格隔开)\n");
for(i=0;i<n;i++)
{
printf("第%d个进程",i+1);
scanf("%s %d %d %d",&a[i].name,&a[i].priority,&a[i].starttime,&a[i].needtime); a[i].cputime=0;
a[i].state='W';
}
}
void Sort()
{
int i,j;
pr temp;
for(i=0;i<n-1;i++) //先按到达系统时间排序
{
for(j=0;j<n-1-i;j++)
if(a[j].starttime>a[j+1].starttime)
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
for(i=0;i<n-1;i++) //再按优先级排序,数字高则优先级高
{
for(j=0;j<n-1-i;j++)
if(a[j].priority<a[j+1].priority)
{
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
if (a[0].state!='F')
{
a[0].state='R';
//将优先级最高的状态置为运行
}
}
void output()
{
int i;
Sort();//先排好序再打印输出
printf("\t进程名优先级到达时间运行时间已用时间进程状态\n");
for(i=0;i<n;i++)
{
printf("%8s%10d%10d%10d%10d%10c\n",a[i].name,a[i].priority,a[i].starttime,a[i].need time,a[i].cputime,a[i].state);
}
printf("\n\n");
}
void RR()
{
//每次运行进程只针对排好序后的第一个进程即第0号元素
//当第一个进程运行完一个时间片优先级减一后再对进程进行按到达系统时间
//和优先级排序,所以实现了根据优先级的时间片轮转执行进程
do{
if((a[0].needtime-a[0].cputime)>t)//若剩余时间大于时间片。

相关文档
最新文档