操作系统原理-进程调度实验报告

合集下载

计算机操作系统进程调度实验报告

计算机操作系统进程调度实验报告

计算机操作系统进程调度实验报告实验报告:计算机操作系统进程调度1.实验背景与目的计算机操作系统是一种负责管理和协调计算机硬件和软件资源的系统。

进程调度作为操作系统的重要功能之一,主要负责决定哪些进程可以运行、何时运行以及运行多长时间等问题。

本实验旨在通过实践学习进程调度的原理和实现细节,加深对操作系统的理解。

2.实验原理与步骤(1)实验原理:进程调度的目标是充分利用计算机资源,提高系统的吞吐率和响应时间。

常用的调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。

在本实验中,我们将实现时间片轮转调度算法,并对比不同算法的性能差异。

(2)实验步骤:1)设计进程数据结构:创建进程控制块(PCB)结构体,包含进程的标识符、到达时间、服务时间、剩余时间、等待时间等信息。

2)生成进程:根据指定的进程个数和服务时间范围,生成随机的进程并初始化进程控制块。

3)时间片轮转调度算法:根据时间片大小,按照轮转调度的方式进行进程调度。

4)性能评估:通过记录进程的等待时间和周转时间,比较不同调度算法的性能差异。

3.实验结果与分析通过实验我们生成了10个进程,并使用时间片大小为2进行轮转调度。

下表列出了各个进程的信息及调度结果。

进程到达时间服务时间剩余时间等待时间周转时间P108068P214004P3291310P4350115P542032P6570147P763063P8761714P981071P1093104从实验结果可以看出,时间片轮转调度算法相对公平地分配了CPU给各个进程,减少了等待时间和周转时间。

但是,对于长时间服务的进程,可能出现饥饿问题,即一些耗时较长的进程无法得到充分的CPU时间。

与时间片轮转算法相比,先来先服务(FCFS)算法对于短作业具有更好的响应时间,但可能导致长作业等待时间过长。

最短作业优先(SJF)算法能够最大化短作业的优先级,提高整体性能。

4.实验总结与体会本次实验通过实践了解了进程调度的原理与实现细节,加深了对操作系统的理解。

操作系统实验报告进程调度

操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。

其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。

实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。

实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。

在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。

实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。

在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。

2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。

在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。

3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。

在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。

实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。

在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。

因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。

结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。

同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。

实验一、进程调度实验报告

实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。

通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。

就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。

2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。

先来先服务算法按照进程到达的先后顺序进行调度。

短作业优先算法优先调度执行时间短的进程。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。

四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。

实现进程的创建、插入、删除等操作。

实现不同的调度算法。

2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。

分别采用先来先服务、短作业优先和时间片轮转算法进行调度。

记录每个算法下的平均周转时间、平均等待时间等性能指标。

五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。

操作系统实验报告进程调度

操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言操作系统是计算机系统中最核心的软件之一,它负责管理和调度计算机的资源,提供良好的用户体验。

在操作系统中,进程调度是其中一个重要的功能,它决定了进程的执行顺序和时间片分配,对于提高计算机系统的效率和响应能力至关重要。

本篇实验报告将重点介绍进程调度的相关概念、算法和实验结果。

一、进程调度的概念进程调度是操作系统中的一个重要组成部分,它负责决定哪个进程可以使用CPU,并为其分配执行时间。

进程调度的目标是提高系统的吞吐量、响应时间和公平性。

在多道程序设计环境下,进程调度需要考虑多个进程之间的竞争和协作,以实现资源的合理利用。

二、进程调度算法1. 先来先服务调度(FCFS)先来先服务调度算法是最简单的进程调度算法之一,它按照进程到达的顺序进行调度,即先到达的进程先执行。

这种算法的优点是公平性高,缺点是无法适应长作业和短作业混合的情况,容易产生"饥饿"现象。

2. 最短作业优先调度(SJF)最短作业优先调度算法是根据进程的执行时间来进行调度的,即执行时间最短的进程先执行。

这种算法的优点是能够最大程度地减少平均等待时间,缺点是无法适应实时系统和长作业的情况。

3. 时间片轮转调度(RR)时间片轮转调度算法是一种抢占式调度算法,它将CPU的执行时间划分为固定大小的时间片,并按照轮转的方式分配给各个进程。

当一个进程的时间片用完后,它将被挂起,等待下一次调度。

这种算法的优点是能够保证每个进程都能够获得一定的执行时间,缺点是无法适应长作业和短作业混合的情况。

4. 优先级调度(Priority Scheduling)优先级调度算法是根据进程的优先级来进行调度的,优先级高的进程先执行。

这种算法的优点是能够根据进程的重要性和紧急程度进行灵活调度,缺点是可能会导致低优先级的进程长时间等待。

三、实验结果与分析在实验中,我们使用了不同的进程调度算法,并对其进行了性能测试。

操作系统原理 实验一:进程调度实验报告书-模板

操作系统原理 实验一:进程调度实验报告书-模板

计算机科学系实验报告书课程名:《操作系统原理》题目:进程调度班级:学号:姓名:操作系统原理实验——进程调度实验报告一、目的与要求1)进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C 语言编写一个进程调度模拟程序,使用优先级或时间片轮转法实现进程调度。

本实验可加深对进程调度算法的理解。

2)按照实验题目要求独立正确地完成实验内容(编写、调试算法程序,提交程序清单及及相关实验数据与运行结果)3)于2012年10月22日以前提交本次实验报告(含电子和纸质报告,由学习委员以班为单位统一打包提交)。

2 实验内容或题目1)设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。

2)模拟调度程序可任选两种调度算法之一实现(有能力的同学可同时实现两个调度算法)。

3)程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。

4)本次实验内容(项目)的详细说明以及要求请参见实验指导书。

3 实验步骤与源程序实验步骤:1、理解本实验中关于两种调度算法的说明。

2、根据调度算法的说明,画出相应的程序流程图。

3、按照程序流程图,用C语言编程并实现。

源程序:#include <stdlib.h>/*进程调度优先权法*/#include <stdio.h>#include <time.h>#define null 0struct PCB{int id;int prior;int used;int need;int run;char status;struct PCB * next;};main(){struct PCB *head,*rear,*temp,*run,*small,*p,*q;int i,j,t;printf("优先权进程调度算法\n\n 5个初始进程详细信息如下:\n\n");printf("\t进程号\t优先级\tused\tneed\t状态\t下一PCB\n\n");head=null;rear=null;for(i=1;i<=5;i++) { //动态生成含5个元素的队列temp=malloc(sizeof(struct PCB)); //动态分配一个PCB temp->id=i;temp->prior=rand()%5;temp->status='W';temp->next=null;if (head==null){head=temp;rear=head;}else{rear->next=temp;rear=temp;}}temp=head;while(temp!=null){printf("\t%d\t%d\t%c\t%d\n",temp->id,temp->prior,temp->status,temp->next);temp=temp->next;}getchar(); //让程序停下来,可以查看结果。

进程调度实验报告

进程调度实验报告

进程调度实验报告一、实验目的。

本实验旨在通过对进程调度算法的模拟和实验,加深学生对进程调度原理的理解,掌握各种进程调度算法的特点和应用场景,提高学生的实际操作能力和分析问题的能力。

二、实验环境。

本次实验使用了C语言编程语言,通过模拟实现了先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)和多级反馈队列(MFQ)四种进程调度算法。

三、实验过程。

1. 先来先服务(FCFS)调度算法。

先来先服务调度算法是一种非抢占式的调度算法,按照进程到达的先后顺序进行调度。

在本次实验中,我们通过模拟多个进程到达并排队等待CPU执行,观察其平均等待时间和平均周转时间。

实验结果表明,先来先服务调度算法适用于作业长度差异较大的情况,但容易产生“饥饿”现象。

2. 最短作业优先(SJF)调度算法。

最短作业优先调度算法是一种非抢占式的调度算法,按照作业执行时间的长短进行调度。

在本次实验中,我们通过模拟多个作业的执行时间,观察其平均等待时间和平均周转时间。

实验结果表明,最短作业优先调度算法能够最大程度地减少平均等待时间,但可能会导致长作业被“饿死”。

3. 时间片轮转(RR)调度算法。

时间片轮转调度算法是一种抢占式的调度算法,每个进程被分配一个时间片,当时间片用完后,该进程被放到队尾等待。

在本次实验中,我们通过模拟多个进程的执行和时间片的调度,观察其平均等待时间和平均周转时间。

实验结果表明,时间片轮转调度算法能够保证每个进程都能得到一定的执行时间,但可能会导致上下文切换频繁。

4. 多级反馈队列(MFQ)调度算法。

多级反馈队列调度算法是一种综合性的调度算法,根据进程的优先级和执行时间进行动态调整。

在本次实验中,我们通过模拟多个进程的执行和不同优先级队列的调度,观察其平均等待时间和平均周转时间。

实验结果表明,多级反馈队列调度算法能够兼顾短作业和长作业,提高了系统的整体性能。

四、实验总结。

通过本次实验,我们深入理解了不同进程调度算法的特点和适用场景。

进程调度操作系统实验报告

进程调度操作系统实验报告

进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。

二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。

先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。

这种算法简单直观,但可能导致短作业等待时间过长。

短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。

如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。

优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。

四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。

2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。

从就绪队列中取出第一个进程进行调度执行,直到其完成。

3、实现短作业优先算法计算每个进程的剩余服务时间。

将进程按照剩余服务时间从小到大排序,放入就绪队列。

从就绪队列中取出剩余服务时间最短的进程进行调度执行。

4、实现时间片轮转算法设定时间片大小。

将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。

进程在时间片内未完成的,放回就绪队列末尾。

5、实现优先级调度算法为每个进程设置优先级。

将进程按照优先级从高到低排序,放入就绪队列。

从就绪队列中取出优先级最高的进程进行调度执行。

6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。

实验进程调度的实验报告

实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。

2. 掌握进程调度算法的基本原理和实现方法。

3. 培养编程能力和系统分析能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。

常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。

1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。

2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。

3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。

4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。

五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。

2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。

3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。

b. SJF算法:优先调度运行时间最短的进程。

c. 优先级调度算法:根据进程的优先级进行调度。

d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。

4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。

b. 循环执行调度算法,将CPU分配给就绪队列中的进程。

c. 更新进程状态,统计进程执行时间、等待时间等指标。

d. 当进程完成时,将其移至完成队列。

六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。

2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。

实验二 进程调度 实验报告

实验二 进程调度 实验报告
2.程序实现步骤
(1)输入进程数、进程名、要求运行时间、已运行时间以及进程状态,初
始状态都为“就绪”,用“R”表示。当一个进程运行结束后,它的状态为“结束”,用“E”表示。
(2)把所有进程按顺序排成循环队列,用指针进行连接。
(3)运行队列中的队首进程,执行一个时间片,同时将该进程的“已运行
时间”+1,同时判断“要求运行时间”和“已运行时间”是否相等,如果相等,则将该进程状态修改为“E”,并退出循环队列,指针指向下一个进程;若不相等,则指针直接指向下一个进程,执行下一个时间片。
3.流程图
五、实验结果和分析(运行结果截图)
问题一
问题二
2.问题二
本题采用的是动态改变响应比的办法。首先根据公式
计算每个进程的响应比即优先数,根据响应比的大小降序排列,响应比大
的进程优先得到服务,每次执行一个时间片。由于本实验是模拟操作系统调
度进程的过程,被选中的进程并不实际的启动运行,而是执行: 要求运行
时间-1、等待时间为0,其它进程等待时间+1。进入下一轮运行时进程重
实验目的如下:
1.利用高级语言模拟进程的时间片轮转调度算法,并熟练掌握。
2.利用高级语言模拟进程的响应比高者优先调度算法,并熟练掌握。
二、实验原理
1.问题一
针对系统的所有进程,首先确定所有进程的要求运行时间(已运行时间初始值为0);将所有进程按顺序排成循环队列,用指针指出队列连接情况,同时另用一个标志单元记录轮到运行的进程,此时以轮转法进行调度;先将CPU分配给队首进程,并令其执行一个时间片,当它运行完毕后,将CPU分配给就绪队列中新的队首进程,让其执行一个时间片,进程每被调度一次,该进程已运行时间+1,同时,判断该进程的要求运行时间与已运行时间,若该进程的要求运行时间已运行时间,则表示它尚未执行结束,应待到下一轮时再运行,若该进程的要求运行时间=已运行时间,则表示它已经执行结束,应指导它的状态修改成“结束”,并退出队列。此时,把该进程的进程控制块中的指针值送到前面一个进程的指针位置,直到所有的进程都成为“结束”状态。

进程调度 实验报告

进程调度 实验报告

进程调度实验报告进程调度实验报告概述:进程调度是操作系统中一个重要的组成部分,它负责决定在多个进程同时运行时,每个进程分配到的CPU时间片以及切换进程的时机。

合理的进程调度算法能够提高系统的性能和资源利用率,因此对进程调度的研究和优化具有重要意义。

1. 背景介绍进程调度是操作系统中的一个关键任务,它负责管理和控制多个进程的执行顺序,以实现对CPU的合理分配。

在多道程序设计环境下,进程调度的作用尤为重要。

进程调度算法的好坏直接影响着系统的性能和响应速度。

2. 进程调度算法2.1 先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的先后顺序进行调度,即先到达的进程先执行,直到该进程执行完成或者发生I/O操作。

FCFS算法的优点是公平且易于实现,但是它无法适应不同进程的执行时间差异,可能导致长作业效应。

2.2 最短作业优先(SJF)最短作业优先调度算法是根据进程的执行时间长度来进行调度,执行时间越短的进程越优先执行。

SJF算法能够最大程度地减少平均等待时间,但是它需要预先知道进程的执行时间,这在实际应用中往往是不可行的。

2.3 时间片轮转(RR)时间片轮转是一种经典的调度算法,它将CPU的执行时间划分为若干个时间片,每个进程在一个时间片内执行,如果时间片用完还没有执行完,则将该进程放入就绪队列的末尾,继续执行下一个进程。

RR算法能够保证每个进程都能获得公平的CPU时间,但是对于长时间执行的进程,会导致较大的上下文切换开销。

3. 实验设计与结果分析为了评估不同进程调度算法的性能,我们设计了一系列实验。

首先,我们使用不同的进程到达时间和执行时间生成一组测试数据。

然后,分别使用FCFS、SJF和RR算法进行调度,并记录每个进程的等待时间和周转时间。

最后,我们对实验结果进行分析。

实验结果显示,FCFS算法对于执行时间较长的进程会出现较长的平均等待时间,而SJF算法能够有效减少平均等待时间。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

操作系统实验——动态优先级进程调度实验报告

操作系统实验——动态优先级进程调度实验报告

1.实验名称:动态优先权调度过程中就绪队列的模拟2.实验要求:采用动态优先权的进程调度算法,用C语言编程模拟调度过程中每个时间片内的就绪队列。

3.实验内容:(1)每个进程控制块PCB用结构描述,包括以下字段:*进程标识符id*进程优先数priority,并规定优先数越大的进程,其优先权越高。

*进程已占用的CPU时间cputime*进程还需占用的CPU时间alltime,当进程运行完毕时,aiitime变为0*进程的阻塞时间startblock,当进程再运行startblock个时间片后,进程将进入阻塞状态*进程被阻塞的时间blocktime,已阻塞的进程再等待blocktime个时间片后,将转换成就绪状态*进程状态state*队列指针next,将PCB排成队列。

2)调度前,系统中有五个进程,它们的初始状态如下:3)进程在就绪队列呆一个时间片,优先数增加1。

4)进程每运行一个时间片,优先数减3。

5)按下面格式显示每个时间片内就绪队列的情况:READY_QUEUE:->id1->id24.任务分析进程控制块用结构体来表示,包含它的各项属性。

建立两个队列:一个就绪队列,一个阻塞队列。

创建一个进程控制块表示当前正在运行的进程。

程序开始运行时,所有进程都在就绪队列中。

当startblock减少到0时,进程进入阻塞队列。

在阻塞队列中的进程,当blocktime减少到0时,转入就绪队列。

在就绪队列中的进程,如果优先级比当前正在执行的进程高,就可以取代当前进程获取时间片。

当前进程如果运行完毕,就绪队列中优先级最高的进程就可以成为新当前进程。

5.程序流程图#include〈iostream〉#include〈string〉usingnamespace std;#define LEN5typedefenum STATE{READYBLOCKEND}STATE;//定义进程控制块typedefstruct PCB{int id;int priority;int cputime;int alltime;int startblock;int blocktime;STATE state;}PCB;//定义队列typedefstruct queue{int si ze;PCB*data[LEN];}Queue;PCB ps[LEN];PCB*cp; //进程最大数量//进程状态//就绪//阻塞//完成//进程标识符//进程优先级//已占用的CPU时间//还需占用的CPu时间//阻塞时间//被阻塞时间//进程状态//队列中进程的数量//进程的指针//进程数组//当前正在运行的进程6.程序清单Queue rQueue,bQueue;//就绪队列和阻塞队列//就绪队列按优先级降序排序(使用了冒泡排序法)void rQueueSort(){ PCB*temp;for(int i=0;i<rQueue.size-1;i++){for(int j=0;j<rQueue.size-1-i;j++){if(rQueue.data[j]-〉priority<rQueue.data[j+1]-〉priority){temp=rQueue.data[j];rQueue.data[j]=rQueue.data[j+1];}}rQueue.dataj+1]=temp;}}//初始化void init(){//给进程赋值for(int i=0;i<LEN;i++){ps[i].id=i;ps[i].state=READY;ps[i].cputime=0;ps[i].alltime=3;ps[i].blocktime=0;ps[i].startblock=T;}ps[0].priority=9;ps[1].priority=38;ps[2].priority=30;ps[3].priority=29;ps[4].priority=0;ps[2].alltime=6;ps[4].alltime=4;ps[0].startblock=2;ps[0].blocktime=3;cp=NULL;//当前进程赋空bQueue.size=0;//阻塞队列没有进程for(int i=0;i<LEN;i++){bQueue.data[i]=NULL;rQueue.data[i]=&ps[i];}rQueue.size=5;//所有进程全部进入就绪队列rQueueSort();//对就绪队列排序}//打印void print(){cout〈〈"\nRUNNINGPROG:";if(cp!=NULL){cout〈〈cp->id;}cout<<"\nREADY_QUEUE:";for(int i=0;i<rQueue.size;i++){cout〈〈"-〉"〈〈rQueue.data[i]-〉id; }cout<<"\nBLOCK_QUEUE:";for(int i=0;i<bQueue.size;i++){cout〈〈"-〉"〈〈bQueue.data[i]-〉id; }cout〈〈"\n"<<endl;cout<<"ID\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].id<<"\t";}cout<<"\nPRI0RITY\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].priority〈〈"\t";}cout<<"\nCPUTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].cputime〈〈"\t";}cout<<"\nALLTIME\t\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].alltime〈〈"\t";}cout<<"\nSTARTBLOCK\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].startblock<<"\t";}cout<<"\nBLOCKTIME\t";for(int i=0;i<LEN;i++){cout〈〈ps[i].blocktime<<"\t";}cout<<"\nSTATE\t\t";for(int i=0;i<LEN;i++){if(ps[i].state==READY){cout<<"READY"<<"\t";}elseif(ps[i].state==BLOCK){cout<<"BLOCK"<<"\t";}elseif(ps[i].state==END){cout〈〈"END"<<"\t";}}cout〈〈endl;}//出队,返回进程指针PCB*pop(Queue*q){PCB*temp;if(q-〉size>0){temp=q-〉data[0];//取出队首进程for(int i=0;i<q-〉size-1;i++){q-〉data[i]=q-〉data[i+1];//其他进程依次向前移动}q->size__;return temp;//返回队首进程}return NULL;}//入队void push(Queue*q,PCB*p){if(q_>size<LEN){q_>data[q_〉size]=p;//将入队的进程放在队尾q_>size++;}return;}//运行进程void run(){if(rQueue.size〉0||bQueue.size〉0){if(cp==NULL){//程序一开始运行时,从就绪队列取出首进程cp=pop(&rQueue);}//当前进程没有结束,但优先级比就绪队列首进程低if(cp_〉alltime〉0&&cp_>priority<rQueue.data[0]_〉priority){}push(&r Queue,c//改变进程状态//从就绪队列取出新的当前进程//修改当前进程的状态 //将当前进程加入阻塞队列 //从就绪队列取出新的当前进程{//当前进程的startblock 为正数时//运行一次减一个时间片//减到0时,修改进程状态//每运行一个时间片//就绪队列中的进程优先级+1//每运行一个时间片//阻塞队列中的进程blocktime-1//将当前进程放入就绪队列 //就绪队列队首进程成为当前进程if (cp-〉alltime==0){cp->state =END ;cp=pop(&rQueue); }//如果当前进程运行结束//startblock 为0,标志着当前进程要进入阻塞状态if (cp —>startblock==0&&cp —>blocktime>0){cp —>state=BLOCK ; push(&bQueue,cp); cp=pop(&rQueue); }elseif (cp —>startblock>0)cp —>st artblock 一; }cp —>alltime ——;if (cp —>alltime==0){cp —>state=END ;for (int i=0;i<rQueue.size;i++){rQueue.data[i]-〉priority++; }for (int i=0;i<bQueue.size;i++){if (bQueue.data[i]-〉blocktime>0){bQueue.data[i]-〉blocktime--; }//当阻塞队列队首进程blocktime 为0时if (bQueue.size 〉0&&bQueue.data[0]-〉blocktime==0){bQueue.data[0]-〉state=READY ;//修改进程状态push(&rQueue,pop(&bQueue));//将阻塞队列首进程取出,放入就绪队列cp —〉priority-=3;//修改当前进程的优先级cp —>cputime++; //当前进程占用CPU 时间片+1 if (cp —>alltime>0){//当前进程还需运行的时间片-1}//每运行一个时间片,就绪队列排一次序rQueueSort();} }//主函数int main(){init();//初始化 print();//打印进程信息 while (1){_sleep(1000);if (rQueue.size==0&&bQueue.size==0){//当两个队列都为空时,结束程序cp-〉state=END ;break ; }run();//运行进程 print();//打印进程信息 }return 0; }7.实验过程记录m 匚:\WINDQWS\system32\cmd.exe程序开始执行,当前进程是优先级最高的1号进程,1号进程的优先级减3、cputime++、执行几次之后,1号进程执行完毕而且优先级也不是最高的了,所以优先级为33的2号进程成为当前进程,开始执行。

操作系统进程调度实验报告

操作系统进程调度实验报告

操作系统进程调度实验报告操作系统进程调度实验报告引言:操作系统是计算机系统中的核心软件之一,负责管理计算机的硬件资源并提供用户与计算机硬件之间的接口。

进程调度作为操作系统的重要功能之一,负责决定哪个进程可以获得处理器的使用权,以及进程如何在处理器上运行。

本实验旨在通过设计和实现一个简单的进程调度算法,加深对操作系统进程调度原理的理解。

一、实验目的本实验的主要目的是通过编写代码模拟操作系统的进程调度过程,掌握进程调度算法的实现方法,深入理解不同调度算法的特点和适用场景。

二、实验环境本实验使用C语言进行编程实现,可在Linux或Windows系统下进行。

三、实验内容1. 进程调度算法的选择在本实验中,我们选择了最简单的先来先服务(FCFS)调度算法作为实现对象。

FCFS算法按照进程到达的先后顺序进行调度,即先到先服务。

这种调度算法的优点是简单易实现,但缺点是无法适应不同进程的执行时间差异,可能导致长作业效应。

2. 进程调度的数据结构在实现进程调度算法时,我们需要定义进程的数据结构。

一个进程通常包含进程ID、到达时间、执行时间等信息。

我们可以使用结构体来表示一个进程,例如:```struct Process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间};```3. 进程调度算法的实现在FCFS调度算法中,我们需要按照进程到达的先后顺序进行调度。

具体实现时,可以使用一个队列来保存待调度的进程,并按照到达时间的先后顺序将进程入队。

然后,按照队列中的顺序依次执行进程,直到所有进程执行完毕。

4. 实验结果分析通过实现FCFS调度算法,我们可以观察到进程调度的过程和结果。

可以通过输出每个进程的执行顺序、等待时间和周转时间等指标来分析调度算法的效果。

通过比较不同调度算法的指标,可以得出不同算法的优缺点。

四、实验步骤1. 定义进程的数据结构,包括进程ID、到达时间和执行时间等信息。

进程调度实验报告答案(3篇)

进程调度实验报告答案(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度过程的理解,掌握三种基本调度算法(先来先服务(FCFS)、时间片轮转、动态优先级调度)的原理和实现方法,并能够通过编程模拟进程调度过程,分析不同调度算法的性能特点。

二、实验环境1. 操作系统:Linux/Windows2. 编程语言:C/C++3. 开发环境:Visual Studio、Code::Blocks等三、实验内容1. 实现三种基本调度算法:FCFS、时间片轮转、动态优先级调度。

2. 编写代码模拟进程调度过程,包括进程创建、进程调度、进程运行、进程结束等环节。

3. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

4. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

四、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、已用时间、优先数、进程状态等信息。

2. 实现进程调度函数,根据所选调度算法进行进程调度。

3. 编写主函数,初始化进程信息,选择调度算法,并模拟进程调度过程。

4. 每次调度后,打印当前运行的进程、就绪队列以及所有进程的PCB信息。

5. 编写实验报告,描述数据结构、算法流程,展示实验结果,并总结心得。

五、实验结果与分析1. FCFS调度算法实验结果:按照进程到达时间依次调度,每个进程结束后,调度下一个进程。

分析:FCFS调度算法简单,易于实现,但可能会导致进程的响应时间较长,特别是当有大量进程到达时,后到达的进程可能会长时间等待。

2. 时间片轮转调度算法实验结果:每个进程完成一个时间片后,放弃处理机,转到就绪队列队尾。

分析:时间片轮转调度算法能够保证每个进程都能得到一定的运行时间,但可能会出现进程饥饿现象,即某些进程长时间得不到运行。

3. 动态优先级调度算法实验结果:每个进程完成一个时间片后,优先级减1,插入到就绪队列相关位置。

分析:动态优先级调度算法能够根据进程的运行情况动态调整优先级,使得优先级高的进程能够得到更多的运行时间,从而提高系统的响应速度。

计算机操作系统实验---进程调度

计算机操作系统实验---进程调度

操作系统实验报告--进程调度计科02-8 王长青05年4月17日计算机操作系统实验——进程调度一.实验目的进程调度是处理机管理的核心内容。

通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数调度算法的具体实施办法。

二.程序功能本程序使用VC++编译调试,用于实现进程优先数调度的模拟。

主要包含三个模块:1、主界面:用于显示进程调度的过程。

2、数据录入模块:用于获取进程的初始值,其中有三种获取方式,手动输入方式、随即生成方式和从文件中读去数据的方式。

当用户在主窗口中点击“开始”菜单项时即可打开数据录入对话框,用户通过这三种方式之一均可完成数据的录入。

3、进程控制模块:主要实现创建新的进程,就绪队列的管理,完成队列的管理,进程的调度。

三.实验原理(1)本程序采用优先数调度算法对进程进行调度,每个进程可有三个状态,即:就绪状态,运行状态,完成状态。

并假设初始状态为就绪状态。

这三种状态的转换情况如右图:(2)为了便于处理,程序中的某进程运行时间以时间片为单位计算。

各进程的优先数以及进程需运行的时间片数的初始值均由用户给定(通过数据录入模块完成)。

(3)程序通过设置一个定时器来实现时间片的轮转,时间片的大小是1秒,在定时器消息的响应函数中从用户录入的数据中读取一个创建进程,将其加入到就绪队列中,然后进行调度和执行。

在调度函数中,对于遇到优先数一致的情况,采用FIFO策略解决。

(4)在优先数算法中,进程每执行一次,优先数减3,进程还需要运行的时间数减1。

四.详细设计(1)设计进程控制块PCB结构:struct PCB{ int pid; //进程号int pri; //进程优先数int time; //进程所需运行时间int status; // 进程状态 0就绪,1 执行,-1完成};(2)将进程的各种操作封装在类CProMoni中,该类的定义如下:class CProMoni{public:CProMoni();virtual ~CProMoni();void InsertRQ(PCB* p); //将p所指的进程插入到就绪队列中void InsertFQ(PCB* p); //将p所指的进程插入到完成队列中void ProSchedule(); //进程调度函数void ProRun(); //运行函数void Display(CDC* pDC); //以表格形式输出运行过程bool GetFinishFlag();bool OpenLogFile(); //打开日志文件void CloseLogFile(); //关闭日志文件bool WriteLogToFile(); //向日志文件中写入数据private:PCB *m_pRunning; //指向当前运行的进程CPtrList m_readyList; //就绪队列CPtrList m_finishList; //完成队列bool m_finish; //完成标志CString m_LogFileName; //日志文件名CStdioFile m_LogFile; //日志文件public:int m_clock; //时钟序列};(3)主要成员函数的实现:void CProMoni::InsertRQ(PCB* p){ //将p插入到就绪队列中POSITION pre,pos=m_readyList.GetHeadPosition();PCB *q;while(pos!=NULL){pre=pos;q=(PCB*)m_readyList.GetNext(pos);if(q->pri < p->pri){m_readyList.InsertBefore(pre,p);return;}}if(pos==NULL){m_readyList.AddTail(p);}}void CProMoni::ProSchedule(){//进程调度PCB *p;if(m_pRunning==NULL){if(m_readyList.IsEmpty()){m_finish=true;return;}else{p=(PCB*)m_readyList.RemoveHead();m_pRunning=p;}}else{if(!m_readyList.IsEmpty()){p=(PCB*)m_readyList.GetHead();//m_readyList将头节点与当前PCB的权值比较if(p->pri > m_pRunning->pri ){PCB *q=m_pRunning;m_pRunning=(PCB*)m_readyList.RemoveHead();m_pRunning->status=1;q->status=0;InsertRQ(q);}}}}void CProMoni::ProRun(){//运行进程if(!m_finish){if(m_pRunning==NULL){ AfxMessageBox("当前运行的进程不存在!");return;}m_pRunning->pri-=3;m_pRunning->time-=1;{ m_pRunning->time=0;PCB*p=m_pRunning;p->status=-1;InsertFQ(p);m_pRunning=NULL;}}}(4)试图类的主要成员函数:PCB* CProcessView::CreatePCB(){//创建PCBPCB* p=new PCB;p->pid=n+1;p->pri=m_pris[n];p->time=m_times[n];p->status=0;n++;return p;}#include"pritimedlg.h"void CProcessView::OnStart(){ CPriTimeDlg dlg; //定义数据录入对话框dlg.DoModal();if(dlg.m_ok){ m_proTotal=dlg.m_proNum;for(int i=0;i<m_proTotal;i++){ m_pris[i]=dlg.m_pris[i];m_times[i]=dlg.m_times[i];}m_proMoni.OpenLogFile(); //打开日志文件PCB* p=CreatePCB(); //创建新进程m_proMoni.InsertRQ(p); //将新进程插入到就绪队列中m_proMoni.WriteLogToFile(); //写日志文件m_proMoni.ProSchedule(); //进程调度m_start=true; //设置开始标志Invalidate(); //刷新视图m_killTimer=false;SetTimer(1,1000,NULL);//设置定时器}}void CProcessView::OnTimer(UINT nIDEvent){ m_proMoni.m_clock++;m_proMoni.WriteLogToFile();//写日志m_proMoni.ProRun(); //运行进程if(n<m_proTotal){ PCB *p=CreatePCB();//创建新进程m_proMoni.InsertRQ(p);}m_proMoni.ProSchedule();Invalidate();if(m_proMoni.GetFinishFlag()){//若已完成则删除定时器KillTimer(1);m_killTimer=true;AfxMessageBox("演示完毕");}CScrollView::OnTimer(nIDEvent);}五.运行结果(1)数据录入界面:(2)进程调度过程的结果:六、实验总结通过本实验使我对进程的相关概念及进程的优先数调度算法有了更深的理解,使自己在程序设计及编制方面也有了一定的提高。

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告

进程调度模拟程序实验实验报告一、实验目的进程调度是操作系统的核心功能之一,它负责合理地分配 CPU 资源给各个进程,以提高系统的性能和效率。

本次实验的目的是通过编写和模拟进程调度程序,深入理解不同的进程调度算法的原理和特点,并比较它们在不同情况下的性能表现。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

操作系统为 Windows 10。

三、实验原理1、先来先服务(FCFS)调度算法先来先服务调度算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 资源。

2、短作业优先(SJF)调度算法短作业优先调度算法优先调度执行时间短的进程。

3、时间片轮转(RR)调度算法时间片轮转调度算法将 CPU 时间划分为固定大小的时间片,每个进程轮流获得一个时间片的 CPU 资源。

四、实验设计1、进程类的设计创建一个进程类,包含进程 ID、到达时间、服务时间、剩余服务时间等属性,以及用于更新剩余服务时间和判断进程是否完成的方法。

2、调度算法实现分别实现先来先服务、短作业优先和时间片轮转三种调度算法。

3、模拟流程(1)初始化进程列表。

(2)按照选定的调度算法进行进程调度。

(3)计算每个进程的等待时间、周转时间等性能指标。

五、实验步骤1、定义进程类```pythonclass Process:def __init__(self, pid, arrival_time, service_time):selfpid = pidselfarrival_time = arrival_timeselfservice_time = service_timeselfremaining_service_time = service_time```2、先来先服务调度算法实现```pythondef fcfs_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0for process in process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("先来先服务调度算法的平均等待时间:",average_waiting_time)print("先来先服务调度算法的平均周转时间:",average_turnaround_time)```3、短作业优先调度算法实现```pythondef sjf_scheduling(process_list):current_time = 0total_waiting_time = 0total_turnaround_time = 0sorted_process_list = sorted(process_list, key=lambda x: xservice_time) for process in sorted_process_list:if current_time < processarrival_time:current_time = processarrival_timewaiting_time = current_time processarrival_timetotal_waiting_time += waiting_timecurrent_time += processservice_timeturnaround_time = current_time processarrival_timetotal_turnaround_time += turnaround_timeaverage_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("短作业优先调度算法的平均等待时间:",average_waiting_time)print("短作业优先调度算法的平均周转时间:",average_turnaround_time)```4、时间片轮转调度算法实现```pythondef rr_scheduling(process_list, time_slice):current_time = 0total_waiting_time = 0total_turnaround_time = 0ready_queue =while len(process_list) > 0 or len(ready_queue) > 0:for process in process_list:if processarrival_time <= current_time:ready_queueappend(process)process_listremove(process)if len(ready_queue) == 0:current_time += 1continueprocess = ready_queuepop(0)if processremaining_service_time <= time_slice: waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += processremaining_service_time turnaround_time = current_time processarrival_time total_turnaround_time += turnaround_time processremaining_service_time = 0else:waiting_time = current_time processarrival_time total_waiting_time += waiting_timecurrent_time += time_sliceprocessremaining_service_time = time_sliceready_queueappend(process)average_waiting_time = total_waiting_time / len(process_list)average_turnaround_time = total_turnaround_time / len(process_list) print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均等待时间:", average_waiting_time)print("时间片轮转调度算法(时间片大小为", time_slice, ")的平均周转时间:", average_turnaround_time)```5、主函数```pythonif __name__ =="__main__":process_list =Process(1, 0, 5),Process(2, 1, 3),Process(3, 2, 8),Process(4, 3, 6)print("先来先服务调度算法:")fcfs_scheduling(process_list)print("短作业优先调度算法:")sjf_scheduling(process_list)time_slice = 2print("时间片轮转调度算法(时间片大小为",time_slice, "):")rr_scheduling(process_list, time_slice)```六、实验结果与分析1、先来先服务调度算法平均等待时间为 575,平均周转时间为 1275。

进程调度实验报告

进程调度实验报告

操作系统实验 报告实验项目: 进程调度学 院: 计算机学院专 业:班 级:学 号:姓 名:1. 实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。

当就绪进程个数大于处理机数时,就必须依照某种策略来决定哪些进程优先占用处理机。

本实验模拟在单处理机情况下的进程调度,加深了解进程调度的工作。

2. 实验内容设计一个按时间片轮转法实现进程调度的程序。

(1)假定系统有五个进程,每一个进程用一个进程控制块PCB 来代表,进程控制块的格式为:其中,进程名——作为进程的标识,假设五个进程的进程名分别为Q 1,Q 2,Q 3,Q 4,Q 5。

指针——进程按顺序排成循环队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程的指针指出第一个进程的进程控制块首地址。

要求运行时间——假设进程需要运行的单位时间数。

已运行时间——假设进程已经运行的单位时间数,初始值为“0”。

状态——有两种状态,“就绪”和“结束”,初始状态都为“就绪”,用“R ”表示。

当一个进程运行结束后,它的状态为“结束”,用“E ”表示。

(2)每次运行所设计的进程调度程序前,为每个进程任意确定它的“要求运行时间”。

(3)把五个进程按顺序排成循环队列,用指针指出队列连接情况。

另用一标志单元记录轮到运行的进程。

例如,当前轮到Q 2执行,则有:进程名 指针 要求运行时间 已运行时间 状态标志单元(4)进程调度总是选择标志单元指示的进程运行。

由于本实验是模拟进程调度的功能,所以对被选中的进程并不实际的启动运行,而是执行“已运行时间+1”来模拟进程的一次运行,表示进程已经运行过一个单位的时间。

请注意:在实际的系统中,当一个进程被选中运行时,必须置上该进程可以运行的时间片值,以及恢复进程的现场,让它占有处理机运行,直到出现等待事件或运行满一个时间片。

在这时省去了这些工作,仅用“已运行时间+1”来表示进程已经运行满一个时间片。

(5)进程运行一次后,应把该进程的进程控制块中的指针值送到标志单元,以指示下一个轮到运行的进程。

进程调度实验报告

进程调度实验报告

进程调度实验报告引言:进程调度是操作系统中一个重要的概念,它决定了一个进程何时开始执行、何时暂停、何时唤醒等等。

一个良好的进程调度算法可以提高系统的效率和响应时间。

在这次实验中,我们将对不同的进程调度算法进行测试和对比分析,旨在探究不同算法对系统性能的影响。

实验步骤:1. 实验准备在实验开始前,我们需要准备一个充分复杂的测试环境,包括不同类型的进程、不同进程的优先级、进程执行时间等参数。

这些参数的设置将影响我们对不同调度算法的评估。

2. 先来先服务调度算法(FCFS)先来先服务调度算法是最简单的一种调度算法,按照进程到达CPU的顺序依次执行。

在这个实验中,我们首先对先来先服务调度算法进行测试。

结果显示,对于短时进程,FCFS算法效果较好,但在遇到长时进程时,会出现“饥饿”现象,易导致优先级较低的进程无法获得CPU时间。

3. 短作业优先调度算法(SJF)短作业优先调度算法根据进程执行时间的长短来进行调度。

在实验中,我们通过设置不同长度的进程来对SJF算法进行测试。

结果显示,SJF算法能够较好地避免“饥饿”现象,但如果长作业在一个时间片内到达,就会导致短作业等待时间过长。

4. 优先级调度算法(Priority)优先级调度算法通过为每个进程指定一个优先级来进行调度,优先级高的进程先执行。

在实验中,我们设置不同优先级的进程,测试Priority算法的效果。

结果显示,Priority算法能够合理地根据优先级分配CPU时间,但如果优先级的划分不合理,可能导致某些进程优先级一直很低,影响整体系统性能。

5. 时间片轮转调度算法(Round Robin)时间片轮转调度算法是一种较为公平的调度算法,每个进程被分配一个时间片,在时间片用完后,进程暂停执行,并被放置于“就绪队列”尾部,等待下一个时间片。

在测试中,我们可以通过设置不同的时间片长度来观察时间片轮转算法的效果。

结果显示,时间片轮转算法能够较好地平衡进程的等待时间和执行时间。

操作系统实验之进程调度报告

操作系统实验之进程调度报告

实验一:进程调度一、实习内容1.模拟批处理多道操作系统的进程调度;2.模拟实现同步机构避免并发进程执行时可能与时间相关的错误;二、实习目的进程调度时进程管理的主要内容之一,通过设计,编制,调试一个简单的进程调度模拟系统,对进程调度,进程运行状态变换及PV操作加深理解和掌握。

三、实习题目采用剥夺式优先算法,对三个进程进行模拟调度模拟PV操作同步机构,用PV操作解决进程进入临界区的问题。

【提示】(1)对三个进程进行模拟调度,对各进程的优先数静态设置,P1,P2,P3三个进程的优先数为1,2,3,并指定P1的优先数最高,P3的优先数最低,每个进程都处于执行态“e”,就绪态“r”,等待态“w”三种状态之一,并假定初始态为“r”。

(2)每一个进程用一个PCB表,PCB表的内容根据具体情况设置,该系统在运行过程中能显示或打印各进程和参数的变化情况,以便观察各进程的调度。

(3)在完成必要的初始化后,便进入进程调度程序,首先由P1进入执行,当执行进程因等待某各事件被阻塞或唤醒某个进程等待进程时,转进程调度。

(4)在进入临界区前后,调PV操作。

(5)如果被唤醒的进程优先数高于现有执行的进程,则剥夺现行进程的执行权。

(6)当三个进程都处于等待状态时,本模拟系统退出执行。

四、示例1.数据结构:(1)进程控制块PCBstruct{int id;char status;int priority;int waiter1;}(2)信号量struct{int value;int waiter2;}sem[2](3)现场保护栈stackchar stack[11][4]每个进程都有一个大小为10个字的现场保护栈,用来保护被中断时的断点地址等信息。

(4)全局变量int i;用以模拟一个通用寄存器char addr;用以模拟程序计数器int m1,m2;为系统设置的公用数据被三个进程共享使用。

五、程序框图:六、程序说明:本程序是用C语言编写,模拟三个进程的运行情况,过程在运行中要调用P操作申请信号量,如果该过程得到其申请的信号量,就继续运行,否则P操作阻塞该申请过程的运行,并将过程置为所申请信号量的等待者,如果已有其它过程在等待同一信号量则将该申请过程排在所有等待进程之后。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
通过对进程调度算法的设计,深入理解进程调度的原理。

进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。

进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。

进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。

二、实验环境
VC++6.0
三、实验内容
实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR)
[提示]:
(1) 先来先服务(FCFS)调度算法
原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。

该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。

将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。

它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。

按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。

(2) 时间片轮转调度算法RR
原理:时间片轮转法主要用于进程调度。

采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。

进程调度按一定时间片(q)轮番运行各个进程.
进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。

固定时间片轮转法:
1 所有就绪进程按 FCFS 规则排队。

2 处理机总是分配给就绪队列的队首进程。

3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。

4 因等待某事件而阻塞的进程送到阻塞队列。

5 系统把被唤醒的进程送到就绪队列的队尾。

可变时间片轮转法:
1 进程状态的转换方法同固定时间片轮转法。

2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。

3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。

多就绪队列轮转法:
(3) 算法类型
(4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。

流程图如下:
(5) 按模拟算法设计程序,运行设计的程序,观察得到的结果。

四、实验结果(含程序、数据记录及分析、实验总结等)MFC的设计框如下:
实验代码以及分析:
RR算法实现分析:先根据到达时间对进程进行排序,然后调度时,超出时间片的就放至队尾,然后继续调度。

变量添加:
int m_id; IDC_EDIT_ID
用来输入进程ID
int m_reachtime; IDC_EDIT_REACHTIME
用来输入进程到达时间
int m_run; IDC_EDIT_RUN
用来输出正在运行的进程
int m_runtime; IDC_EDIT_RUNTIME
用来输入进程运行时间
int m_timeslice; IDC_EDIT_TIMELICE
用来输入时间片
CString m_result; IDC_EDIT_RESULT
用来输出最终调度队列
CString m_readyqueue; IDC_EDIT_READYQUEUE
用来输出等待队列
CString m_pcb; IDC_EDIT_PCB
用来显示输入的进程信息
数据存储:利用结构体来存储进程信息
struct PCB{
int reachtime;
int runtime;
}pcb[1000],pcb1[1000];
添加进程:
void CMfcDlg::OnADD()
{
// TODO: Add your control notification handler code here
UpdateData(true);
CString str1;
pcb[NO].id=m_id;
pcb[NO].reachtime=m_reachtime;
pcb[NO].runtime=m_runtime;
str1.Format("%-8d %-8d %-8d\r\n",m_id,m_reachtime,m_runtime);
m_pcb+=str1;
m_id=0; m_id=0;
m_reachtime=0;
m_runtime=0;
NO++;
UpdateData(false);
}
RR算法
void CMfcDlg::OnRr()
{
// TODO: Add your control notification handler code here
UpdateData(true);
m_result.Empty();
UpdateData(FALSE);
UpdateWindow();
int NO2=NO;
int a[1000];
for(int i=0;i<NO;i++){
a[i]=pcb[i].reachtime;
}
int temp; //冒泡排序
for(i=1;i<NO;i++){
for(int j=NO-1;j>=i;j--){
if(a[j]<a[j-1]){
temp=a[j-1];
a[j-1]=a[j];
a[j]=temp;
}
}
for(i=0;i<NO;i++){
for(int j=0;j<NO;j++){
if(a[i]==pcb[j].reachtime){
readyqueue[i]=pcb[j].id;
pcb1[i]=pcb[j];
}
}
} //按进程到达时间进行排序,并把排好序的进程队列赋给临时进程队列pcb1[]。

for(i=0;i<NO;i++){
if(pcb1[i].runtime<=m_timeslice){ //如果进程运行时间小于时间片m_run=pcb1[i].id;
CString str1;
for(int k=i+1;k<NO;k++){
str1.Format("%d ",readyqueue[k]);
m_readyqueue += str1;
m_readyqueue += " ";
}
UpdateData(FALSE);
UpdateWindow();
m_readyqueue.Empty();
Sleep(pcb1[i].runtime*1000);
}
else{ //如果进程运行时间大于时间片
pcb1[NO]=pcb[i]; //将该进程放至临时进程队列尾部
readyqueue[NO]=pcb1[NO].id; //改变等待队列
pcb1[NO].runtime -= m_timeslice; //运行时间改变
NO++; //进程数增加
m_run=pcb1[i].id;
CString str1;
for(int k=i+1;k<NO;k++){
str1.Format("%d ",readyqueue[k]);
m_readyqueue += str1;
m_readyqueue += " ";
}
UpdateData(FALSE);
UpdateWindow();
m_readyqueue.Empty();
Sleep(pcb1[i].runtime*1000);
}
m_run=0;
CString str;
for( i=0;i<NO;i++){
str.Format("%d ",readyqueue[i]);
m_result += str;
m_result += " ";
}
NO=NO2; //恢复以前的进程数,便于进行其他算法。

UpdateData(false);
}
实验结果:
使用RR算法对进程进行调度
测试中使用的数据:时间片是2
进程到达时间运行时间
1 1 1
2 2 2
3 3 3
结果如下:
实验总结:
在该实验完成的过程中,我首先复习了进程调度的算法分析,并对这三种算法进行比较分析,同时,经过对RR算法的编写,以及MFC的设计,使我更加深入的理解了这几种算法的运算过程。

在实验中也遇到许多平时并没注意到得问题,而解决这些问题又能获得很多,也感到很快乐。

总之,通过这次实验,我不但进程调度的算法理解更深入,而且也同时提高了我的MFC编程模拟的能力。

相关文档
最新文档