立体几何(知识点总结,解题方法总结)
高中立体几何知识点总结
![高中立体几何知识点总结](https://img.taocdn.com/s3/m/bfea264577c66137ee06eff9aef8941ea76e4b32.png)
高中立体几何知识点总结高中立体几何是数学的一个分支,研究的是空间中的图形、体积、表面积等属性。
它是数学中的一个重要内容,也是考试中的重点之一。
在高中阶段,学生需要掌握立体几何的基本概念、性质和定理,并能够运用这些知识解决与立体几何相关的问题。
一、立体几何的基本概念1. 立体图形:立体几何研究的对象是立体图形,立体图形是三维空间中的图形,包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
2. 面:面是立体图形的一部分,是一个平面。
立体图形可以由多个面组成,例如,一个正方体有六个面。
3. 边:边是立体图形的一部分,是两个面的交线。
立体图形可以有多条边。
4. 角:角是立体图形的一部分,是两个边的交线。
立体图形可以有多个角。
二、立体图形的性质和定理1. 球体的性质:球体的所有点到球心的距离相等,球面是由无数个等半径的圆组成。
2. 圆柱体的性质:圆柱体的底面是一个圆,其侧面是由与底面平行的矩形组成。
3. 圆锥体的性质:圆锥体的底面是一个圆,其侧面是由底面上的点与尖顶连接而成的直线组成。
4. 棱柱体的性质:棱柱体的底面是一个多边形,其侧面是由底面上的顶点和对应顶点间的边连接而成的矩形组成。
5. 棱锥体的性质:棱锥体的底面是一个多边形,其侧面是由底面上的顶点和对应顶点间的边连接而成的三角形组成。
6. 体积和表面积的计算公式:不同立体图形的体积和表面积可以通过特定的公式进行计算,例如,球体的体积公式是V=4/3πr³,表面积公式是S=4πr²。
7. 锐角三角形和钝角三角形的性质:在三角形中,根据三个内角的大小关系,可以将它们分为锐角三角形(三个内角都小于90°)、直角三角形(有一个内角等于90°)和钝角三角形(至少一个内角大于90°)。
8. 正多面体的性质:正多面体是由等边等角的多个等面体组成,例如,正方体、正六面体、正四面体等。
正多面体具有相等的面积和体积。
9. 空间几何体的平行关系:在空间中,两个面、两条直线或两个平面可以相互平行,也可以相交。
高考数学立体几何知识要点知识点总结及解题思路方法
![高考数学立体几何知识要点知识点总结及解题思路方法](https://img.taocdn.com/s3/m/0474f7753c1ec5da50e270a7.png)
高考数学立体几何知识要点知识点总结及解题思路方法一、知识提纲(一)空间的直线与平面⒈平面的基本性质⑴三个公理及公理三的三个推论和它们的用途.⑵斜二测画法.⒉空间两条直线的位置关系:相交直线、平行直线、异面直线.⑴公理四(平行线的传递性).等角定理.⑵异面直线的判定:判定定理、反证法.⑶异面直线所成的角:定义(求法)、范围.⒊直线和平面平行直线和平面的位置关系、直线和平面平行的判定与性质.⒋直线和平面垂直⑴直线和平面垂直:定义、判定定理.⑵三垂线定理及逆定理.5.平面和平面平行两个平面的位置关系、两个平面平行的判定与性质.6.平面和平面垂直互相垂直的平面及其判定定理、性质定理.(二)直线与平面的平行和垂直的证明思路(见附图)(三)夹角与距离7.直线和平面所成的角与二面角⑴平面的斜线和平面所成的角:三面角余弦公式、最小角定理、斜线和平面所成的角、直线和平面所成的角.⑵二面角:①定义、范围、二面角的平面角、直二面角.②互相垂直的平面及其判定定理、性质定理.8.距离⑴点到平面的距离.⑵直线到与它平行平面的距离.⑶两个平行平面的距离:两个平行平面的公垂线、公垂线段.⑷异面直线的距离:异面直线的公垂线及其性质、公垂线段.(四)简单多面体与球9.棱柱与棱锥⑴多面体.⑵棱柱与它的性质:棱柱、直棱柱、正棱柱、棱柱的性质.⑶平行六面体与长方体:平行六面体、直平行六面体、长方体、正四棱柱、正方体;平行六面体的性质、长方体的性质.⑷棱锥与它的性质:棱锥、正棱锥、棱锥的性质、正棱锥的性质.⑸直棱柱和正棱锥的直观图的画法.10.多面体欧拉定理的发现⑴简单多面体的欧拉公式.⑵正多面体.11.球⑴球和它的性质:球体、球面、球的大圆、小圆、球面距离. ⑵球的体积公式和表面积公式.二、常用结论、方法和公式1.从一点O 出发的三条射线OA 、OB 、OC ,若∠AOB=∠AOC ,则点A 在平面∠BOC 上的射影在∠BOC 的平分线上;2. 已知:直二面角M -AB -N 中,AE ⊂ M ,BF ⊂ N,∠EAB=1θ,∠ABF=2θ,异面直线AE 与BF 所成的角为θ,则;c o s c o s c o s 21θθθ=3.立平斜公式:如图,AB 和平面所成的角是1θ,AC 在平面内,BC 和AB 的射影BA 1成2θ,设∠ABC=3θ,则cos 1θcos 2θ=cos 3θ;4.异面直线所成角的求法:(1)平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;(2)补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;5.直线与平面所成的角斜线和平面所成的是一个直角三角形的锐角,它的三条边分别是平面的垂线段、斜线段及斜线段在平面上的射影。
高考数学中的立体几何解题方法总结
![高考数学中的立体几何解题方法总结](https://img.taocdn.com/s3/m/20b10956793e0912a21614791711cc7931b7789b.png)
高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。
对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。
本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。
一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。
立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。
学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。
二、立体几何定理掌握一些常见的立体几何定理十分必要。
例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。
这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。
三、快速计算体积的方法体积是立体几何题目中最常见的考点。
理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。
例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。
此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。
四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。
学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。
例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。
五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。
例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。
这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。
以上五点是掌握高考数学中的立体几何解题方法的基础。
学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。
通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。
上海高二立体几何知识点
![上海高二立体几何知识点](https://img.taocdn.com/s3/m/52227b58a66e58fafab069dc5022aaea988f4170.png)
上海高二立体几何知识点一、概述立体几何是数学中研究空间内各种几何体的形状、大小、位置等性质的一门学科。
上海高二立体几何知识点是指上海高二学生需要掌握的与立体几何相关的重要知识点。
本文将为大家介绍上海高二立体几何的核心概念、公式以及解题方法等内容。
二、立体几何的基本概念和性质2.1空间几何体的分类空间几何体主要包括点、线、面以及体。
其中,点是空间的最基本的元素,线是由无数个点构成的,面是由无数个线构成的,体是由无数个面构成的。
2.2空间几何体的性质不同的空间几何体具有不同的特征和性质。
例如,平面内的点与点之间可以通过直线相连,而在空间内则需要使用线段。
此外,空间几何体还具有对称性、轴对称性、等距性等重要性质。
三、立体几何的重要知识点3.1立体的表面积和体积计算计算立体的表面积和体积是立体几何中的基本问题。
根据不同立体的特征,具体的计算公式有所不同。
例如,计算正方体的表面积可以使用公式:$S=6a^2$,其中$a$表示边长。
计算长方体的体积可以使用公式:$V=l wh$,其中$l$、$w$和$h$分别表示长、宽和高。
3.2空间固体与投影空间固体的投影是指将立体物体在某个平面上的投影图形。
在计算空间固体的投影时,需要考虑物体与投影面的相对位置关系。
例如,计算柱体在水平面上的投影可以使用公式:$S=\p ir^2$,其中$r$表示柱体的半径。
3.3空间几何体的位置关系在立体几何中,空间几何体的位置关系通常包括在平面内的位置关系和在空间内的位置关系两个方面。
对于在平面内的位置关系,常见的问题包括如何判断两条直线的平行性以及如何判断两条直线的垂直性。
在空间内的位置关系问题中,常见的问题包括如何判断两个平面的平行性以及如何判断两个平面的垂直性。
3.4空间几何体的相似性空间几何体的相似性是指两个或多个几何体在形状上具有相似的特征。
根据相似性理论,我们可以通过已知几何体的一些特征来推导出未知几何体的特征。
例如,如果两个几何体的对应边成比例,且对应角相等,则可判定两个几何体相似。
高中数学立体几何知识点归纳总结
![高中数学立体几何知识点归纳总结](https://img.taocdn.com/s3/m/3b91ccc4ac51f01dc281e53a580216fc710a5345.png)
③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边
长一半,构成四个直角三角形;如上图: SOB, SOH, SBH, OBH 为直角三角形
3.3 侧面展开图:正 n 棱锥的侧面展开图是有 n 个全等的等腰三角形组成的;
3.4
面积、体积公式:S
正棱锥侧=
1 2
ch
,S
正棱锥全=
推论 2:两条相交直线确定一个平面. 图形语言:
推论 3:两条平行直线确定一个平面. 图形语言:
用途:用于确定平面;
公理 3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线两个
平面的交线.
用途:常用于证明线在面内,证明点在线上.
图形语言:
符号语言:
形语言,文字语言,符号语言的转化:
2.3 侧面展开图:圆柱的侧面展开图是以底面周长和 母线长为邻边的矩形.
A
O
B
2.4 面积、体积公式:
C'
轴
轴截面
C
侧面
底面
S = 圆柱侧 2 rh ;S = 圆柱全 2 rh 2 r2 ,V 圆柱=S 底 h= r2h 其中 r 为底面半径,h 为圆柱高
3.棱锥
3.1 棱锥——有一个面是多边形,其余各 面是有一个公共顶点的三角形,由这些
母线 l
轴
h
侧面
轴截面
A
r O
B 底面
S
我们把截面与底面之间的部分称为棱台.
5.2 正棱台的性质: ①各侧棱相等,各侧面都是全等的等腰梯形; ②正棱台的两个底面以及平行于底面的截面是 正多边形; ③ 如右图:四边形 O`MNO,O`B`BO 都是直角梯 形
高中立体几何知识点总结(通用5篇)精选全文完整版
![高中立体几何知识点总结(通用5篇)精选全文完整版](https://img.taocdn.com/s3/m/44e1217959fb770bf78a6529647d27284a73375c.png)
可编辑修改精选全文完整版高中立体几何知识点总结(通用5篇)高中立体几何知识点总结(通用5篇)总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它能够给人努力工作的动力,为此要我们写一份总结。
你想知道总结怎么写吗?下面是小编为大家整理的高中立体几何知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
高中立体几何知识点总结篇11、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高中数学—立体几何知识点总结(精华版)
![高中数学—立体几何知识点总结(精华版)](https://img.taocdn.com/s3/m/6b8b28c9d05abe23482fb4daa58da0116c171f4c.png)
立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。
直,那么这条直线垂直于这个平面。
如果两条直线同垂直于一个平面,那么这两条直线平行。
如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
行,那么这条直线和这个平面平行。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
面,那么这两个平面平行。
行。
8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
高三立体几何知识点总结
![高三立体几何知识点总结](https://img.taocdn.com/s3/m/bfcd4e21a66e58fafab069dc5022aaea998f4125.png)
高三立体几何知识点总结立体几何是数学中的一个重要分支,它研究的是在三维空间中的图形和其性质。
在高中阶段,立体几何作为数学课程的一部分,对学生的综合能力以及解决实际问题的能力有着重要的提升作用。
本文将对高三立体几何的知识点进行总结,以帮助同学们更好地掌握这一内容。
一、直线与平面的关系1. 平面与平面的关系:(1)相交:两个平面相交于一条直线。
(2)垂直:两个平面相交的直线与第三个平面垂直。
(3)平行:两个平面相交的直线与第三个平面平行。
2. 直线与直线的关系:(1)相交:两条不平行直线相交于一点。
(2)平行:两条直线在平面上不相交。
(3)异面直线:两条直线在空间中不相交。
二、立体图形的性质1. 三棱柱:具有5个面、9条边和6个顶点的立体。
2. 四棱锥:具有5个面、8条边和5个顶点的立体。
3. 三棱锥:具有四个面、6条边和4个顶点的立体。
4. 正方体:具有六个面、12条边和8个顶点的立体,其中每个面都是正方形。
5. 正六面体:具有六个面、12条边和8个顶点的立体,其中每个面都是正六边形。
6. 正八面体:具有八个面、12条边和6个顶点的立体,其中每个面都是正八边形。
7. 正十二面体:具有十二个面、30条边和20个顶点的立体,其中每个面都是正五边形。
三、立体图形的体积与表面积计算1. 三棱柱的体积公式:体积 = 底面积 ×高2. 四棱锥的体积公式:体积 = (底面积 ×高)/ 33. 球的体积公式:体积 = (4/3)πr³,其中r为球的半径。
4. 直角三棱锥的体积公式:体积 = (1/3)×面积 ×高,其中面积为底面积。
5. 立方体的体积公式:体积 = 边长³,其中边长为立方体的边长。
6. 平行四边形棱台的体积公式:体积 = 底面积 ×高四、立体图形的投影1. 平行投影:图形在平行于某个平面的投影面上的投影。
2. 斜向投影:图形在斜向的投影面上的投影。
立体几何知识点归纳总结
![立体几何知识点归纳总结](https://img.taocdn.com/s3/m/843ad94e26284b73f242336c1eb91a37f1113216.png)
立体几何知识点归纳总结立体几何是几何学中一个重要的分支,主要研究空间中的物体的形状、大小和位置等问题。
它不仅在工程技术和科学领域有广泛的应用,而且在美术和设计等领域也占有重要地位。
本文将对立体几何的知识点进行归纳总结。
一、立体图形的基本概念立体图形指的是具有长度、宽度和高度三个维度的物体。
立体图形有很多种分类方法,其中最常用的是按形状分类。
按形状分类后,立体图形主要可以分为正方体、长方体、圆柱、圆锥、球等几种。
二、立体图形的表面积和体积在立体几何中,表面积和体积是非常重要的概念。
表面积指的是立体图形所有表面的总面积,体积指的是立体图形所占据的空间大小。
计算不同形状的立体图形的表面积和体积的公式如下:1.正方体:表面积=6a²,体积=a³(a为正方体的边长)2.长方体:表面积=2ab+2bc+2ca,体积=abc(a,b,c分别为长方体的三条棱)3.圆柱:表面积=2πrh+2πr²,体积=πr²h(r为底面的半径,h为高)4.圆锥:表面积=πr(r+√(r²+h²))(r为底面的半径,h为高),体积=1/3πr²h。
5.球:表面积=4πr²,体积=4/3πr³(r为球的半径)三、立体几何的计算方法计算立体几何的方法有很多,常用的方法包括平面截面法、双积最小法和体性变换法等。
下面我们来逐一介绍这三种方法。
1.平面截面法:这种方法主要用于计算有规律的立体图形的体积,如正方体、长方体、圆柱等。
方法是将立体图形沿着某个方向划分成若干个小立方体或小圆柱,然后将小立方体或小圆柱的体积加起来即可得到整个立体图形的体积。
2.双积最小法:这种方法主要用来计算任意形状的立体图形的体积。
方法是将该立体图形投影到某个平面上,形成一个平面图形。
然后在平面图形上任取两个正交坐标轴,计算这两个坐标轴的积分。
最后将两个积分结果相乘,再乘以某个系数即可得到该立体图形的体积。
高中数学立体几何知识点总结
![高中数学立体几何知识点总结](https://img.taocdn.com/s3/m/e2fd652349d7c1c708a1284ac850ad02de80078e.png)
高中数学立体几何知识点总结立体几何是数学中的一个重要分支,研究对象是三维空间中的几何体,包括点、线、面以及体。
在高中数学中,学生需要学习和掌握一系列的立体几何知识点,本文将对这些知识点进行总结。
一、点、线、面的基本概念1. 点:在三维空间中没有长度、宽度和高度,只有位置,用坐标表示。
2. 线:由无数相邻的点组成,没有宽度和高度。
3. 面:由无数相邻的线组成,有长度和宽度,无高度。
二、几何体的分类及特征1. 定义:立体几何中的几何体是由点、线、面组成的,有一定形状和大小的实体。
2. 分类:a. 二面体:只有两个面,如圆柱体、圆锥体等。
b. 三面体:有三个面,如正方体、四面体等。
c. 多面体:有多个面,如五面体、六面体等。
3. 特征:a. 顶点:几何体的尖角,由多个线相交而成。
b. 棱:几何体的边界线段,由多个点相连而成。
c. 面:几何体的表面,由多个线组成。
三、常见几何体的特征与性质在学习几何体的过程中,我们需要掌握一些常见几何体的特征与性质,以下是其中几个重要的例子。
1. 立方体:a. 特征:六个面都是正方形,相邻面之间的角为直角。
b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。
2. 正方体:a. 特征:六个面都是正方形。
b. 性质:对称性强,体积为边长的立方,表面积为6倍的边长的平方。
3. 圆柱体:a. 特征:两个底面是圆形,侧面是矩形。
b. 性质:体积等于底面积乘以高,表面积等于两个底面积加上侧面矩形的面积。
4. 圆锥体:a. 特征:一个底面是圆形,侧面是三角形。
b. 性质:体积等于底面积乘以高再除以3,表面积等于底面积加上底面到顶点的直线与侧面三角形的面积之和。
四、立体几何的计算方法学习立体几何还需要掌握一些计算方法,包括体积、表面积等的计算。
1. 体积计算:a. 立方体的体积等于边长的立方。
b. 柱体的体积等于底面积乘以高。
c. 圆锥体的体积等于底面积乘以高再除以3。
2. 表面积计算:a. 立方体的表面积等于6倍的边长的平方。
(完整版)立体几何知识点总结完整版
![(完整版)立体几何知识点总结完整版](https://img.taocdn.com/s3/m/f44bb4aa168884868662d623.png)
立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、 空间两条直线的三种位置关系,并会判定。
3、 平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线 平行及角相等的方法。
4、 异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范 围,会求异面直线的所成角。
5•理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算 ;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6•了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念•掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图, 能识别上述的三视图所表示的立体模型, 会用斜二测法画出它们的直观图•7•空间平行与垂直关系的论证 •8.掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题 ,进一步掌握异面直线所成角的求解方法,熟练解决有关问题9•理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转 化法、向量法)•对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】<— 翅MJL 何体的峯构特征一袞间几何怀的表面锲和体枳 —I 吩间儿何体的三视图和吒现图 空何向話的槪念线性运算空间向园数呈积理和坐标运算【重点知识整合】1. 空间几何体的三视图专间儿何体空问点仁n线、平面ft置关系宀VIHI向虽与<体儿何(1) 正视图:光线从几何体的前面向后面正投影得到的投影图;(2) 侧视图:光线从几何体的左面向右面正投影得到的投影图;(3) 俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2. 斜二测画水平放置的平面图形的基本步骤(1) 建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox, Oy,建立直角坐标系;(2) 画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox', Oy',使/ x Oy = 45。
立体几何知识点总结_典型方法总结
![立体几何知识点总结_典型方法总结](https://img.taocdn.com/s3/m/3b0ea93e7e21af45b307a8a5.png)
数学必修(二)知识梳理与解题方法分析第一章《空间几何体》一、本章总知识结构二、各节内容分析1.1空间几何体的结构1.本节知识结构1.2空间几何体三视图和直观图1、本节知识结构1.3 空间几何体的表面积与体积1、本节知识结构。
三、高考考点解析本部分内容在高考中主要考查以下两个方面的内容:1.多面体的体积(表面积)问题;2.点到平面的距离(多面体的一个顶点到多面体一个面的距离)问题—“等体积代换法”。
(一)多面体的体积(表面积)问题1. 在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 .(1)求四棱锥P -ABCD 的体积; 【解】(1)在四棱锥P-ABCD 中,由PO⊥平面ABCD,得 ∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°. 在Rt△AOB 中BO=ABsin30°=1,由PO⊥BO, 于是,PO=BOtan 60°=3,而底面菱形的面积为23. ∴四棱锥P-ABCD 的体积V=31×23×3=2. 2.如图,长方体ABCD-1111D C B A 中,E 、P 分别是BC 、11A D 的中点,M 、N 分别是AE 、1CD 的中点,1AD=AA ,a =AB=2,a (Ⅲ)求三棱锥P -DEN 的体积。
【解】 (Ⅲ)111124NEP ECD P S S BC CD ∆==⋅矩形 2221544a a a a =⋅⋅+= 作1DQ CD ⊥,交1CD 于Q ,由11A D ⊥面11CDD C 得11AC DQ ⊥ ∴DQ ⊥面11BCD A ∴在1Rt CDD ∆中,1155CD DD DQ a CD a ⋅===∴13P DEN D ENP NEP V V S DQ --∆==⋅215345a a =⋅316a =。
立体几何知识归纳+典型例题+方法总结
![立体几何知识归纳+典型例题+方法总结](https://img.taocdn.com/s3/m/6fdddd93d15abe23482f4dad.png)
立体几何知识归纳+典型例题+方法总结一、知识归纳1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题.(1)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上.(2)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线.(3)证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合.2. 空间直线(1)空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点(2)平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图).(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[οο∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3)两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若PA⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相PO A a交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上.4. 平面平行与平面垂直(1)空间两个平面的位置关系:相交、平行.(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行⇒线线平行”)(4两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.所以结论成立 b.最小角定理的应用(∠PBN 为最小角) 简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.5. 棱柱. 棱锥(1)棱柱a.①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱PαβθM A B O柱}⊃{正方体}.{直四棱柱}I {平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各.个侧面都是矩形.......;正棱柱的各个侧面都是全等的矩形...... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.d.平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则 1cos cos cos 222=++γβα.推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. (2)棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V S h V ==. a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α) 附:以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别求多个三角形面积和的方法). b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面l abc多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.(3)球:a.球的截面是一个圆面.①球的表面积公式:24R S π=.②球的体积公式:334R V π=. b.纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度.附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥体体积:Sh V 31=(S 为底面积,h 为高)(1). ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧,得R a R a a a ⋅⋅+⋅=⋅2224331433643a a a R 46342334/42=⋅==⇒. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=-. ②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.b.共线向量定理:对空间任意两个向量)0(≠a , ∥的充要条件是存在实数λ(具有唯一性),使b a λ=.c.共面向量:若向量a 使之平行于平面α或a 在α内,则a 与α的关系是平行,记作∥α.d.①共面向量定理:如果两个向量b a ,不共线,则向量与向量b a ,共面的充要条件是存在实数对x 、y 使y x +=.②空间任一点...O .和不共线三点......A .、.B .、.C .,则)1(=++++=z y x OC z OB y OA x OP 是PABC 四点共面的充要条件. (简证:→+==++--=AC z AB y AP OC z OB y OA z y OP )1(P 、A 、B 、C 四点共面)注:①②是证明四点共面的常用方法.(2)空间向量基本定理:如果三个向量....c b a ,,不共面...,那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 z y x ++=(这里隐含x+y+z≠1). O BDO R注:设四面体ABCD 的三条棱,,,,d AD c AC b AB ===其中Q 是△BCD 的重心, 则向量)(31c b a AQ ++=用MQ AM AQ +=即证.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r , 则四点P 、A 、B 、C 是共面⇔1x y z ++=(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵坐标),z 轴是竖轴(对应为竖坐标). ①令=(a 1,a 2,a 3),),,(321b b b =,则),,(332211b a b a b a b a ±±±=+,))(,,(321R a a a a ∈=λλλλλ,332211b a b a b a b a ++=⋅ ,a ∥)(,,332211Rb a b a b a b ∈===⇔λλλλ332211b a b a b a ==⇔ 0332211=++⇔⊥b a b a b a .222321a a a ++==(向量模与向量之间的转化:a a =⇒•=空间两个向量的夹角公式232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++⋅++++=⋅•>=<ρρρρρρ(a =123(,,)a a a ,b =123(,,)b b b ). ②空间两点的距离公式:212212212)()()(z z y y x x d -+-+-=.b.法向量:若向量a 所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥a ,如果α⊥a 那么向量a 叫做平面α的法向量.c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α||n . ②异面直线间的距离d = (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).③直线AB 与平面所成角的正弦值sin ||||AB m AB m β⋅=u u u r u r u u u r u r (m u r 为平面α的法向量). ④利用法向量求二面角的平面角定理:设21,n n 分别是二面角βα--l 中平面βα,的法向量,则21,n n 所成的角就是所求二面角的平面角或其补角大小(21,n n 方向相同,则为补角,21,n 反方,则为其夹角).d.证直线和平面平行定理:已知直线⊄a 平面α,α∈∈D C a B A ,,,,且C 、D 、E 三点不共线,则a ∥α的充要条件是存在有序实数对μλ,使μλ+=.(常设μλ+=求解μλ,若μλ,存在即证毕,若μλ,不存在,则直线AB 与平面相交).AB二、经典例题考点一 空间向量及其运算1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++u u u r u u u r u u u r u u u r , 试判断:点P 与,,A B C 是否一定共面?解析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y 使AP xAB y AC =+u u u r u u u r u u u r 或对空间任一点O ,有OP OA x AB y AC =++u u u r u u u r u u u r u u u r .答案:由题意:522OP OA OB OC =++u u u r u u u r u u u r u u u r ,∴()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r ,∴22AP PB PC =+u u u r u u u r u u u r ,即22PA PB PC =--u u u r u u u r u u u r ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2.如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE .解析:要证明//MN 平面CDE ,只要证明向量NM u u u u r 可以用平面CDE 内的两个不共线的向量DE u u u r 和DC u u u r 线性表示. 答案:证明:如图,因为M 在BD 上,且13BM BD =, 所以111333MB DB DA AB ==+u u u r u u u r u u u r u u u r .同理1133AN AD DE =+u u u r u u u r u u u r , 又CD BA AB ==-u u u r u u u r u u u r ,所以MN MB BA AN =++u u u u r u u u r u u u r u u u r 1111()()3333DA AB BA AD DE =++++u u u r u u u r u u u r u u u r u u u r 2133BA DE =+u u u r u u u r 2133CD DE =+u u u r u u u r . 又CD uuu r 与DE u u u r 不共线,根据共面向量定理,可知MN u u u u r ,CD uuu r ,DE u u u r 共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 答案:解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1; (II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (23,2,0) (1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC DE =,∴DE ∥AC 1.A B C A B C E x yz4. 如图所示,四棱锥P —ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA=AD=CD=2AB=2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)在侧面PAD 内找一点N ,使MN ⊥平面PBD ;(3)求直线PC 与平面PBD 所成角的正弦.解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)ΘM 是PC 的中点,取PD 的中点E ,则 ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄,PAD EA 平面⊂∴BM ∥PAD 平面(2)以A 为原点,以AB 、AD 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则())0,0,1B ,()0,2,2C ,()0,2,0D ,()2,0,0P ,()1,1,1M ,()1,1,0E在平面PAD 内设()z y N ,,0,()1,1,1---=→--z y MN ,()2,0,1-=→--PB ,()0,2,1-=→--DB 由→--→--⊥PB MN ∴0221=+--=⋅→--→--z PB MN ∴21=z由→--→--⊥DB MN ∴0221=+--=⋅→--→--y DB MN ∴21=y∴⎪⎭⎫ ⎝⎛21,21,0N ∴N 是AE 的中点,此时BD MN P 平面⊥(3)设直线PC 与平面PBD 所成的角为θ()2,2,2-=→--PC ,⎪⎭⎫ ⎝⎛---=→--21,21,1MN ,设→--→--MN PC ,为α 3226322cos -=⋅-=⋅=→--→--→--→--MN PC MNPC α 32cos sin =-=αθ 故直线PC 与平面PBD 所成角的正弦为32解法二: (1)ΘM 是PC 的中点,取PD 的中点E ,则ME CD 21,又AB CD 21 ∴四边形ABME 为平行四边形∴BM ∥EA ,PAD BM 平面⊄PAD EA 平面⊂∴BM ∥PAD 平面(2)由(1)知ABME 为平行四边形ABCD PA 底面⊥∴AB PA ⊥,又AD AB ⊥∴PAD AB 平面⊥ 同理PAD CD 平面⊥,PAD 平面⊂AE∴A E A B ⊥ ∴AB ME 为矩形 CD ∥ME ,PD CD ⊥,又A E PD ⊥ ∴PD ⊥ME ∴ABME 平面⊥PD PBD PD 平面⊂∴ABME PBD 平面平面⊥ 作EB ⊥MF 故PBD 平面⊥MFMF 交AE 于N ,在矩形ABME 内,1==ME AB ,2=AE∴32=MF ,22=NE N 为AE 的中点 ∴当点N 为AE 的中点时,BD MN P 平面⊥(3)由(2)知MF 为点M 到平面PBD 的距离,MPF ∠为直线PC 与平面PBD 所成的角,设为θ,32sin ==MP MF θ ∴直线PC 与平面PBD 所成的角的正弦值为32点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. 如图,四棱锥P ABCD -中,侧面PDC 是边长为2的正三角形,且与底面垂直,底面ABCD 是60ADC ∠=o 的菱形,M 为PB 的中点.(Ⅰ)求PA 与底面ABCD 所成角的大小;(Ⅱ)求证:PA ⊥平面CDM ;(Ⅲ)求二面角D MC B --的余弦值.解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平 移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法答案:(I)取DC 的中点O ,由ΔPDC 是正三角形,有PO ⊥DC . 又∵平面PDC ⊥底面ABCD ,∴PO ⊥平面ABCD 于O .连结OA ,则OA 是PA 在底面上的射影.∴∠PAO 就是PA 与底面所成角.∵∠ADC =60°,由已知ΔPCD 和ΔACD 是全等的正三角形,从而求得OA =OP =3∴∠PAO =45°.∴PA 与底面ABCD 可成角的大小为45°.(II)由底面ABCD 为菱形且∠ADC =60°,DC =2,DO =1,有OA ⊥DC . 建立空间直角坐标系如图, 则(3,0,0),(0,0,3),(0,1,0)A P D -, (3,2,0),(0,1,0)B C .由M 为PB 中点,∴33(1,M . ∴33((3,0,3),DM PA ==u u u u r u u u r (0,2,0)DC =u u u r . ∴333203)0PA DM ⋅=⨯-=u u u r u u u u r ,03200(3)0PA DC ⋅=⨯+⨯-=u u u r u u u r .∴PA ⊥DM ,PA ⊥DC . ∴PA ⊥平面DMC .(III)33(),(3,1,0)CM CB ==u u u u r u u u r .令平面BMC 的法向量(,,)n x y z =r , 则0n CM ⋅=u u u u r r ,从而x +z =0; ……①, 0n CB ⋅=u u u r r 30x y +=. ……②由①、②,取x =−1,则3,1y z =. ∴可取(3,1)n=-r . 由(II)知平面CDM 的法向量可取(3,0,3)PA =u u u r , ∴2310cos ,||||56n PA n PA n PA ⋅-<>=⋅u u u r r u u u r r u u u r r 10法二:(Ⅰ)方法同上(Ⅱ)取AP 的中点N ,连接MN ,由(Ⅰ)知,在菱形ABCD 中,由于60ADC ∠=o ,则AO CD ⊥,又PO CD ⊥,则CD APO ⊥平面,即CD PA ⊥,又在PAB ∆中,中位线//MN 12AB ,1//2CO AB ,则//MN CO , 则四边形OCMN 为Y ,所以//MC ON ,在APO ∆中,AO PO =,则ON AP ⊥,故AP MC ⊥而MC CD C =I ,则PA MCD ⊥平面(Ⅲ)由(Ⅱ)知MC PAB ⊥平面,则NMB ∠为二面角D MC B --的平面角, 在Rt PAB ∆中,易得PA=PB ===,cos AB PBA PB ∠===,cos cos()5NMB PBA π∠=-∠=-故,所求二面角的余弦值为5-点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. 如图,在长方体1111ABCD A B C D -中,11,2,AD AA AB ===点E 在线段AB 上. (Ⅰ)求异面直线1D E 与1A D 所成的角;(Ⅱ)若二面角1D EC D --的大小为45︒,求点B 到平面1D EC 的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利1D A B CD E 1A 1B 1C于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结1AD .由已知,11AA D D 是正方形,有11AD A D ⊥.∵AB ⊥平面11AA D D ,∴1AD 是1D E 在平面11AA D D 内的射影.根据三垂线定理,11AD D E ⊥得,则异面直线1D E 与1A D 所成的角为90︒. 作DF CE ⊥,垂足为F ,连结1D F ,则1CE D F ⊥所以1DFD ∠为二面角1D EC D --的平面角,145DFD ∠=︒.于是111,DF DD D F ==易得Rt Rt BCE CDF ∆≅∆,所以2CE CD ==,又1BC =,所以BE =. 设点B 到平面1D EC 的距离为h .∵1,B CED D BCE V V --=即1111113232CE D F h BE BC DD ⋅⋅⋅=⋅⋅⋅,∴11CE D F h BE BC DD ⋅⋅=⋅⋅,即=,∴4h =.故点B 到平面1D EC 解法二:分别以1,,DA DB DD 为x 轴、y 轴、z 轴,建立空间直角坐标系.(Ⅰ)由1(1,0,1)A ,得1(1,0,1)DA =u u u u r设(1,,0)E a ,又1(0,0,1)D ,则1(1,,1)D E a =-u u u u r .∵111010DA D E ⋅=+-=u u u u r u u u u r ∴11DA D E ⊥u u u u r u u u u r则异面直线1D E 与1A D 所成的角为90︒.(Ⅱ)(0,0,1)=m 为面DEC 的法向量,设(,,)x y z =n 为面1CED 的法向量,则(,,)x y z =n|||cos ,|cos 45||||2⋅<>===︒=m n m n m n ∴222z x y =+. ①由(0,2,0)C ,得1(0,2,1)DC =-u u u u r ,则1D C ⊥u u u u r n ,即10DC ⋅=u u u u r n ∴20y z -= ② 由①、②,可取(3,1,2)=n 又(1,0,0)CB =u u u r ,所以点B 到平面1D EC 的距离||36422CB d ⋅===u u u r n |n |. 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平面互相垂直且DE=2,ED//AF 且∠DAF =90°.(1)求BD 和面BEF 所成的角的余弦;(2)线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算. 答案:(1)因为AC 、AD 、AB 两两垂直,建立如图坐标系,则B (2,0,0),D (0,0,2),E (1,1,2),F (2,2,0), 则)0,2,0(),2,1,1(),0,0,2(=-==BF BE DB设平面BEF 的法向量x z y x n -=则),,,(0,02==++y z y ,则可取)0,1,2(=n ,∴向量)1,0,2(=n DB 和所成角的余弦为1010)2(21220222222=-++-+⋅. 即BD 和面BEF 所成的角的余弦1010. (2)假设线段EF 上存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,不妨设EP 与PF 的比值为m ,则P 点坐标为),12,121,121(m m m m m +++++ 则向量=),12,121,121(m m m m m +++++,向量=CP ),12,11,121(mm m m ++-++ 所以21,012)2(12101212==+-++++++m m m m m m 所以. 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求.8. 如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点,CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin 62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,022a a CD ⎛⎫= ⎪⎝⎭u u u r ,,,(0)AB a a =-u u u r ,,. 从而2211(0)0002222a a ABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭u u u r u u u r ,,,,··,即AB CD ⊥.同理2211(0)tan 02222a a AB VD a a a a θ⎛⎫=-=-++ ⎪ ⎪⎝⎭u u u r u u u r ,,,,··即AB VD ⊥.又CD VD D =I ,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==u u u r,··nn .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-u u u r,,,于是πsin 62BC BC θ===u u u r u u u r n n ··,即sin 2θ=π02θ<<∵,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6.解法3:(Ⅰ)以点D 为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,002DC ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,,(00)AB =u u u r ,.从而(00)AB DC =u u u r u u u r ,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 0AB DV θ⎛⎫== ⎪ ⎪⎝⎭u u u r u u u r ,,·,即AB DV ⊥. 又DC DV D =I , AB ⊥∴平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==u u u r u u u r ,··n n ,得2022tan 022ay ax az θ⎧=⎪⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又220BC a a ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,,, 于是22tan π22sin sin 61tan a BC BC a θθθ===+u u u r u u u r n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故角π4θ=时, 即直线BC 与平面VAB 所成角为π6.点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.已知正方形ABCD E 、F 分别是AB 、CD 的中点,将ADE V 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<(I) 证明//BF 平面ADE ;(II)若ACD V 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF 分别为正方形ABCD 得边AB 、CD 的中点,ADBCVxyAEB CF DG∴EB//FD,且EB=FD,∴四边形EBFD 为平行四边形∴BF//ED.,EF AED BF AED ⊂⊄Q 平面而平面,∴//BF 平面ADE(II)如右图,点A 在平面BCDE 内的射影G 在直线EF 上,过点A 作AG 垂直于平面BCDE,垂足为G,连结GC,GDQ ∆ACD 为正三角形,∴AC=AD. ∴CG=GD. Q G在CD 的垂直平分线上, ∴点A 在平面BCDE 内的射影G 在直线EF 上,过G 作GH 垂直于ED 于H,连结AH,则AH DE ⊥,所以AHD ∠为二面角A-DE-C 的平面角 即G AH θ∠=.设原正方体的边长为2a,连结AF,在折后图的∆AEF中,EF=2AE=2a,即∆AEF 为直角三角形, AG EF AE AF ⋅=⋅.2AG a ∴=在Rt ∆ADE 中, AH DE AE AD ⋅=⋅AH ∴=.GH ∴=,1cos 4GH AH θ== 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线.关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD 的底面是正方形,且MA =MD ,MA ⊥AB ,如果ΔAMD 的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径. 解: ∵AB ⊥AD ,AB ⊥MA , ∴AB ⊥平面MAD ,由此,面MAD ⊥面AC.记E 是AD 的中点,从而ME ⊥AD. ∴ME ⊥平面AC ,ME ⊥EF.设球O 是与平面MAD 、平面AC 、平面MBC 都相切的球. 不妨设O ∈平面MEF ,于是O 是ΔMEF 的内心. 设球O 的半径为r ,则r =MFEM EF S MEF++△2设AD =EF =a,∵S ΔAMD =1. ∴ME =a 2.MF =22)2(aa +, r =22)2(22aa a a +++≤2222+=2-1. 当且仅当a =a2,即a =2时,等号成立.∴当AD =ME =2时,满足条件的球最大半径为2-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系. 三、方法总结1.位置关系:(1)两条异面直线相互垂直证明方法:○1证明两条异面直线所成角为90º;○2证明两条异面直线的方向量相互垂直.(2)直线和平面相互平行证明方法:○1证明直线和这个平面内的一条直线相互平行;○2证明这条直线的方向向量和这个平面内的一个向量相互平行;○3证明这条直线的方向向量和这个平面的法向量相互垂直.(3)直线和平面垂直证明方法:○1证明直线和平面内两条相交直线都垂直,○2证明直线的方向量与这个平面内不共线的两个向量都垂直;○3证明直线的方向量与这个平面的法向量相互平行.(4)平面和平面相互垂直证明方法:○1证明这两个平面所成二面角的平面角为90º;○2证明一个平面内的一条直线垂直于另外一个平面;○3证明两个平面的法向量相互垂直.2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离.(1)两条异面直线的距离。
高中数学立体几何的重点知识点整理如何解决立体几何题目
![高中数学立体几何的重点知识点整理如何解决立体几何题目](https://img.taocdn.com/s3/m/a52bf04378563c1ec5da50e2524de518964bd388.png)
高中数学立体几何的重点知识点整理如何解决立体几何题目立体几何是数学的一个重要分支,其研究的是空间中的图形和物体。
在高中数学中,学生将接触到一些重要的立体几何知识点,并且需要学会如何解决立体几何题目。
本文将对高中数学立体几何的重点知识点进行整理,并介绍如何解决立体几何题目。
一、立体几何的基本概念1. 空间中的点、直线和平面是立体几何的基本概念。
学生需要理解三维空间中点、直线和平面的性质,以及它们之间的相互关系。
2. 学生还需要掌握棱、面和顶点的概念,并能够正确识别出立体图形中的棱、面和顶点。
二、多面体的特征和性质1. 多面体是由多个平面围成的空间图形。
学生需要了解常见的多面体,例如立方体、正四面体、正六面体等,并掌握它们的特征和性质。
2. 对于立体图形,学生还需要学会计算其表面积和体积。
通过求解表面积和体积的问题,可以帮助学生加深对多面体的认识。
三、平行线与平面的交角1. 平行线与平面的交角是数学中的重要概念。
学生需要理解平行线与平面的交角定义,并熟练运用相关的性质解决问题。
2. 根据平行线与平面的交角定义,学生可以判断两个立体图形是否相似,并进行相关计算。
四、截痕与截面1. 截痕是指平面与立体图形的交线。
学生需要理解截痕的特征和性质,并能够根据截痕计算立体图形的体积和表面积。
2. 截面是指平面与立体图形的交面。
学生需要学会根据截面的形状和大小来判断立体图形的性质,并运用相关的性质解决问题。
五、三棱锥和三棱柱的特征和计算1. 三棱锥是由一个底面和三个棱共同围成的空间图形。
学生需要掌握三棱锥的特征和性质,并能够计算三棱锥的表面积和体积。
2. 三棱柱是由两个平面底面和三个棱共同围成的空间图形。
学生需要了解三棱柱的特征和性质,并学会计算三棱柱的表面积和体积。
通过掌握以上的立体几何知识点,学生可以更好地解决立体几何题目。
在解题过程中,可以使用以下方法:1. 理清题意,明确问题的要求。
2. 根据题目给出的条件,运用相应的知识点进行分析。
高中数学立体几何知识点
![高中数学立体几何知识点](https://img.taocdn.com/s3/m/8a931d64182e453610661ed9ad51f01dc28157ab.png)
高中数学立体几何知识点(大全)一、【空间几何体结构】1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。
2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。
棱柱(1):棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。
底面是几边形就叫做几棱柱。
(2):棱柱中除底面的各个面。
(3):相邻侧面的公共边叫做棱柱的侧棱。
(4):侧面与底面的公共顶点叫做棱柱的顶点棱柱的表示:用表示底面的各顶点的字母表示。
如:六棱柱表示为ABCDEF-A’B’C’D’E’F’3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥。
棱锥4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。
圆柱(1):旋转轴叫做圆柱的轴。
(2):垂直于轴的边旋转而成的圆面叫做圆柱的底面。
(3):平行于轴的边旋转而成的曲面叫做圆柱的侧面。
(4):无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱用表示它的轴的字母表示,如:圆柱O’O(注:棱柱与圆柱统称为柱体)5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。
圆锥(1):作为旋转轴的直角边叫做圆锥的轴。
(2):另外一条直角边旋转形成的圆面叫做圆锥的底面。
(3):直角三角形斜边旋转形成的曲面叫做圆锥的侧面。
(4):作为旋转轴的直角边与斜边的交点。
(5):无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。
圆锥可以用它的轴来表示。
如:圆锥SO(注:棱锥与圆锥统称为锥体)二、【棱台和圆台的结构特征】1.棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。
棱台(1):原棱锥的底面和截面分别叫做棱台的下底面和上底面。
高中立体几何基础知识点全集(图文并茂)
![高中立体几何基础知识点全集(图文并茂)](https://img.taocdn.com/s3/m/63a1a62058eef8c75fbfc77da26925c52cc591ae.png)
高中立体几何基础知识点全集(图文并茂)立体几何知识点整理 2. 线面平行:姓名: 方法一:用线线平行实现。
一、直线和平面的三种位置关系:1.线面平行lim lm⊂aI=a}⇒IBa符号表示:2.线面相交方法二:用面面平行实现。
α//βI⊂β⇒Iα符号表示:3.线在面内符号表示:方法三:用平面法向量实现。
若n为平面α的一个法向量。
⃗⃗且/ɑα.则111α. 3. 面面平行:二. 平行关系:方法一:用线线平行实现。
1. 线线平行:方法一:用线面平行实现。
lIIaI ⇒lIm方法二:用面面平行实现。
方法三:用线面垂直实现。
1//rm∥m'l. m=β且相交 ⇒α∥βl',m'cα且相交方法二:用线面平行实现。
1/1am//α ⇒α∥β 1. m ⊂β且相交)三.垂直关系:1.线面垂直:若/⊥α,m⊥α,则|∥m.方法四:用向量方法:若向量i 和向量 ⃗共线且1. m 不重合,则|//m 。
方法一:用线线垂直实现。
IA方法二:用面面垂直实现。
2.面面垂直:方法一:用线面垂直实现。
方法二:计算所成二面角为直角。
3. 线线重直:方法一:用线面垂直实现。
方法二:三重线定理及其逆定理。
方法三:用向量方法:若向量/和向量⃗的数量积为0,则/⊥m.三.夹角问题。
(一)异面直线所成的角:(1) 范围: (0°,90°](2)求法:方法一:定义法。
步骤1:平移,使它们相交,找到夹角。
步骤2:解三角形求出角。
(常用到余弦定理)(计算结果可能是其补角)方法二:向量法。
转化为向量的夹角(二)线面角(1)定义:直线/ 上任取一点P(交点除外),作PO⊥α于O,连结AO,则AO为斜线PA 在面α内的射影,∠PAO(图中θ)为直线t与面α所成的角。
(2)范围: [0°.90°]当θ=0°时, 1cα或1//α当θ=90°时, 1⊥α(3)求法:方法一:定义法。
立体几何解题技巧汇总
![立体几何解题技巧汇总](https://img.taocdn.com/s3/m/8453526b650e52ea5518988c.png)
立体几何解题技巧汇总1.平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2.空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法;②补形法;③向量法。
(2)直线和平面所成的角:①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3.空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4.熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5.翻折、展开关注不变因素平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修(二)知识梳理与解题方法分析第一章《空间几何体》一、本章总知识结构二、各节内容分析空间几何体的结构1.本节知识结构空间几何体三视图和直观图1、本节知识结构空间几何体的表面积与体积1、本节知识结构。
三、高考考点解析本部分内容在高考中主要考查以下两个方面的内容:1.多面体的体积(表面积)问题;2.点到平面的距离(多面体的一个顶点到多面体一个面的距离)问题—“等体积代换法”。
(一)多面体的体积(表面积)问题1.在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60 ,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60 .(1)求四棱锥P-ABCD的体积;【解】(1)在四棱锥P-ABCD中,由PO⊥平面ABCD,得∠PBO是PB与平面ABCD所成的角,∠PBO=60°.在Rt△AOB中BO=ABsin30°=1,由PO⊥BO,于是,PO=BOtan60°=3,而底面菱形的面积为23. ∴四棱锥P-ABCD 的体积V=31×23×3=2. 2.如图,长方体ABCD-1111D C B A 中,E 、P 分别是BC 、11A D 的中点,M 、N 分别是AE 、1CD 的中点,1AD=AA ,a =AB=2,a(Ⅲ)求三棱锥P -DEN 的体积。
【解】 (Ⅲ)111124NEP ECD P S S BC CD ∆==⋅矩形 22215444a a a a =⋅⋅+= 作1DQ CD ⊥,交1CD 于Q ,由11A D ⊥面11CDD C 得11AC DQ ⊥ ∴DQ ⊥面11BCD A ∴在1Rt CDD ∆中,112255CD DD a a DQ a CD a ⋅⋅===∴13P DEN D ENP NEP V V S DQ --∆==⋅2152345a a =⋅316a =。
(二)点到平面的距离问题—“等体积代换法”。
1 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======(III )求点E 到平面ACD 的距离。
【解】 (III ) 设点E 到平面ACD 的距离为.hE ACD A CDE V V --=,∴ 11.33ACD CDE h S AO S ∆∆=在ACD ∆中,2,2,CA CD AD ===2212722().222ACD S ∆∴=⨯⨯-=而21331,2,242CDE AO S ∆==⨯⨯= CADBOE31.212.772CDEACDAO S h S ∆∆⨯∴===∴点E 到平面ACD 的距离为21.72.如图,已知正三棱柱111ABC A B C -的侧棱长和底面边长为1,M 是底面BC 边上的中点,N 是侧棱1CC 上的点,且12CN C N =。
(Ⅱ)求点1B 到平面AMN 的距离。
【解】(Ⅱ)过1B 在面11BCC B 内作直线1B H MN ⊥,H 为垂足。
又AM ⊥平面11BCC B ,所以AM ⊥1B H 。
于是1B H ⊥平面AMN ,故1B H 即为1B 到平面AMN 的距离。
在11R B HM ∆中,1B H=1B M 151sin 1125B MH =⨯-=。
故点1B 到平面AMN 的距离为1。
3 如图,已知三棱锥O ABC -的侧棱OA OB OC 、、两两垂直,且OA=1,OB=OC=2,E 是OC 的中点。
(1)求O 点到面ABC 的距离;【解】(1)取BC 的中点D ,连AD 、OD 。
OB OC =,则OD BC AD BC ⊥⊥、, ∴BC ⊥面OAD 。
过O 点作OH ⊥AD 于H , 则OH ⊥面ABC ,OH 的长就是所要求的距离。
22BC =,222OD OC CD =-=。
OA OB OA OC⊥⊥,,∴OA⊥面OBC,则OA OD⊥。
223AD OA OD=+=,在直角三角形OAD中,有2633OA ODOHAD⋅===。
(另解:由112363O ABC ABCV S OH OA OB OC-∆∆=⋅=⋅⋅=知:63OH=)第二章《点、直线、平面之间的位置关系》一、本章的知识结构二、各节内容分析空间中点、直线、平面之间的位置关系1、本节知识结构2.内容归纳总结(1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① ② ③它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。
已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。
(易知:夹角范围090θ<≤︒) 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。
(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:_______________________________;共面直线平行直线:_______________________________;异面直线:_________________________________________.(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种: 1.23//l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩直线在平面内:.直线与平面相交:直线在平面外.直线与平面平行:(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种: 1.//2.lαβαβ⎧⎨=⎩两个平面平行:两个平面相交:直线、平面平行的判定及其性质1、本节知识结构(1)四个定理定理定理内容符号表示分析解决问题的常用方法直线与平面平行的判定平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行。
,,////a b a baααα⊄⊂⇒且在已知平面内“找出”一条直线与已知直线平行就可以判定直线与平面平行。
即将“空间问题”转化为“平面问题”平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
,,,//,////a ba b P a bββααβα⊂⊂=⇒判定的关键:在一个已知平面内“找出”两条相交直线与另一平面平行。
即将“面面平行问题”转化为“线面平行问题”直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
//,,//a a ba bαβαβ⊂=⇒平面与平面平行的性质如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
//,,//ab a bαβαγβγ==⇒(2)定理之间的关系及其转化两平面平行问题常转化为直线与直线平行,而直线与平面平行又可转化为直线与直线平行,所以在解题时应注意“转化思想”的运用。
这种转化实质上就是:将“高维问题”转化为“低维问题”,将“空间问题”转化为“平面问题”。
直线、平面平垂直的判定及其性质1、本节知识结构(一)基本概念1.直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。
直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。
直线与平面的公共点P 叫做垂足。
2. 直线与平面所成的角: 角的取值范围:090θ<<︒。
3.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的记法:二面角的取值范围:0180θ<<︒ 两个平面垂直:直二面角。
(二)四个定理,n P n =⊥两条相交直线与已知直线垂直就可以判定直线与平面垂直。
即将“线面垂直”βα⇒⊥垂直知平面内直线与另一平面平行。
垂直的性质平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另一个平面垂直。
,,,l aa l aαβαββα⊥=⊂⊥⇒⊥解决问题时,常添加的辅助线是在一个平面内作两平面交线的垂线(三)定理之间的关系及其转化:两平面垂直问题常转化为直线与直线垂直,而直线与平面垂直又可转化为直线与直线垂直,所以在解题时应注意从“高维”到“低维”的转化,即“空间问题”到“平面问题”的转化。
三、高考考点解析第一部分、三类角(异面直线所成的夹角、直线与平面所成的角、二面角)的求解问题(一)异面直线所成的夹角与异面直线的公垂线1.异面直线所成的夹角是本部分的重点和难点更是高考的考点。
异面直线所成的角的大小是刻划空间两条异面直线的相关位置的一个量,掌握好概念是解题的关键,其思维方法是把两条异面直线所成的角通过“平移法”转化为“平面角”,然后证明这个角就是所求的角,再利用三角形解出所求的角(简言之:①“转化角”、②“证明”、③“求角”)。
以上三个步骤“转化角”是求解的关键,因为转化的过程往往就是求解的过程——其目的就是将“空间问题”转化为“平面问题(角问题)”。
1.如图所示,AF、DE分别是O、1O的直径,AD与两圆所在的平面均垂直,8AD=.BC是O的直径,6AB AC==,//OE AD。
(II)求直线BD与EF所成的角。
【解】(II)第一步:将“问题”转化为求“平面角”问题根据定义和题设,我们只能从两条异面直线的四个顶点出发作其中一条直线的平行线,此题我们只能从点D作符合条件的直线。
连结DO,则∠ODB即为所求的角。
第二步:证明∠ODB就是所求的角在平面ADEF 中,DE BC ⊂ABCD 10BD =82DO =82cos 10ODB ∠=82arccos10由E 是PB 的中点,得EF∥PA,∴∠FED 是异面直线DE 与PA 所成角(或它的补角)。
在Rt△AOB 中AO=ABcos30°=3=OP,于是,在等腰Rt△POA 中,PA=6,则EF=26. 在正△ABD 和正△PBD 中,DE=DF=3. cos∠FED=34621=DE EF=42∴异面直线DE 与PA 所成角的大小是arccos42. 3. 如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======(II )求异面直线AB 与CD 所成角的大小; 【解】 本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。