晶体缺陷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述
1、晶体缺陷:晶体中原子(离子、分子)排列的不规则性及不完整性。种类:点缺陷、线缺陷、面缺陷。
1) 由上图可得随着缺陷数目的增加,金属的强度下降。原因是缺陷破坏了警惕的完整性,降低了原子间结合力,从宏观上看,即随缺陷数目增加,强度下降。
2) 随着缺陷数目的增加,金属的强度增加。原因是晶体缺陷相互作用(点缺陷钉扎位错、位错交割缠结等),使位错运动的阻力增加,强度增加。
3) 由此可见,强化金属的方向有两个:一是制备无缺陷的理想晶体,其强度最高,但实际上很难;另一种是制备缺陷数目多的晶体,例如:纳米晶体,非晶态晶体等。
二、点缺陷
3、点缺陷:缺陷尺寸在三维方向上都很小且与原子尺寸相当的缺陷(或者在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷),称为点缺陷或零维缺陷。分类:空位、间隙原子、杂质原子、溶质原子。
4、肖特基空位:原子迁移到晶体表面或内表面正常结点位置使晶体内形成的空位。
5、弗仑克尔空位:原子离开平衡位置挤入点阵间隙形成数目相等的空位和间隙原子,该空位叫做弗仑克尔空位。
6、空位形成能EV:在晶体中取出一个原子放在晶体表面上(不改变晶体表面积和表面能)所需的能量。间隙原子形成能远大于空位形成能,所以间隙原子浓度远小于空位浓度。
7、点缺陷为热平衡缺陷,淬火、冷变形加工、高能粒子辐照可得到过饱和点缺陷。
8、复合:间隙原子和空位相遇,间隙原子占据空位导致两者同时消失,此过程成为复合。
9、点缺陷对性能的影响:点缺陷使得金属的电阻增加,体积膨胀,密度减小;使离子晶体的导电性改善。过饱和点缺陷,如淬火空位、辐照缺陷,还可以提高金属的屈服强度。
三、线缺陷
10、线缺陷:线缺陷在两个方向上尺寸很小,另外一个方向上延伸较长,也称为一维缺陷。主要为各类位错。
11、位错:位错是晶体原子排列的一种特殊组态;位错是晶体的一部分沿一定晶面与晶向发生某种有规律的错排现象;位错是已滑移区和未滑移区的分界线;位错是伯氏矢量不为零的晶体缺陷。分类:刃位错、螺位错、混合型位错。
12、刃型位错特点:a) 刃型位错有一个多余半原子面。正刃型位错和负刃型位错只有相对意义,无本质区别。
b) 位错线不一定为直线,但滑移面必定是位错线和滑移矢量确定的平面,滑移面唯一。
c) 刃型位错周围点阵发生弹性畸变,既有切应变,又有正应变。能引起材料体积变化。
d) 刃型位错位错线垂直于柏氏矢量,垂直于滑移方向,垂直于滑移矢量。位错线移动方向平行于晶体滑移方向。
e) 刃型位错属于线缺陷,位错线可以理解为晶体中已滑移区与未滑移区的边界线。
f) 刃型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。
13、螺型位错特点:
a) 螺型位错无额外半个原子面,原子错排是呈轴对称的。右螺型位错和左螺型位错有本质区别。
b) 螺型位错线一定是直线,但滑移面不唯一,凡是包含螺型位错线的(原子密排)平面都可以作为他的滑移面。
c) 螺型位错周围点阵发生弹性畸变,只有平行于位错线的切应变,没有正应变。不会引起材料体积变化。
d) 螺型位错位错线平行于柏氏矢量,平行于滑移方向,平行于滑移矢量,位错线的移动方向垂直于晶体滑移方向。
e) 刃型位错属于线缺陷,位错线可以理解为晶体中已滑移区与未滑移区的边界线。
f) 螺型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。
14、混合型位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度,这种位错称为混合位错。特点:a) 混合型位错位错线既不平行也不垂直于滑移矢量,每一段混合型位错均包含刃型位错分量和螺型位错分量(可以有纯刃型位错环,没有纯螺型位错环)。
b) 混合型位错是已滑移区和未滑移区的分界线。
c) 混合型位错位错线不能终止于晶体内部,只能露头晶体表面或晶界。
15、柏氏矢量的确定:
1) 首先选定位错线的正向,一般选择出纸面方向为正向。
2) 在实际晶体中,从任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路MNOPQ(称为柏氏回路)。
3) 在完整晶体中按同样的方向和步数作相同的回路,该回路并不封闭,由终点Q向起点M引一矢量b,使该回路闭合,这个矢量b就是实际晶体中位错的柏氏矢量。
16、右手法则:右手的拇指、食指、中指构成直角
坐标体系,食指指向位错线方向,中指指向柏氏矢量方向,则拇指指向多余半原子面方向,规定若拇指向上为正刃型位错,反之为负刃型位错。
17、规定柏氏矢量b与位错线同向平行者为右螺型位错,反向平行者为左螺型位错;通常用拇指代表螺旋的前进方向,而以其余四指代表螺旋的旋转方向。凡符合右手法则的称为右螺型位错,符合左手法则的称为左螺型位错。
19、柏氏矢量性质:1) 一条位错线只有一个柏氏矢量,一个位错环只有一个柏氏矢量(柏氏矢量守恒性)。2) 多个位错相遇时指向同一结点或离开同一结点,他们的b之和为零。3) 晶体中的位错或自由封闭或终止于晶体表面或晶界处,不能在晶体中中断(称为位错的连续性)。
20、刃位错运动:1) 滑移:刃位错滑移方向与外加切应力τ及柏氏矢量b的方向一致,正刃负刃方向相反。滑移只涉及靠近位错的一部分原子,故刃位错滑移所需的切应力很小。位错沿滑移面滑过整个晶体时会在晶体表面沿柏氏矢量方向产生一个宽度为柏氏矢量大小的台阶。
2)攀移:刃位错在垂直于滑移面方向上的运动成为攀移。多余半原子面向上运动称为正攀移,多余半原子面向下运动称为负攀移。
21、螺位错运动:1) 滑移:螺型位错的滑移方向与外加切应力τ及柏氏矢量b的方向垂直,左螺右螺方向相反。其他特点同刃位错滑移。
2) 交滑移:对于螺位错,所有包含位错线的晶面都可能成为其滑移面,当螺位错在某一晶面上运动受阻时就可能原滑移面上转移到与之相交的另一滑移面上继续滑移,此过程称为交滑移。如交滑移后的位错再转回和原滑移面平行的晶面上继续滑移,则称为双交滑移(交滑移滑移面改变,滑移方向不变!!!)。
22、混合型位错的滑移:方向与外加切应力τ及柏氏矢量b呈一定角度,晶体的滑移方向外加切应力τ及柏氏矢量b的方向一致。
23、林位错:当一位错在某一滑移面上运动时,会与穿过滑移面的其他位错交割,其他位错就是称为林位错。
24、位错很难全长同时运动,尤其在遇到阻碍的情况下,可能其中一部分首先滑移,若由此位错线上形成的曲折线段在位错的滑移面上,则称该曲折线段为扭折,若该曲折线段垂直于位错的滑移面,则称为割阶。位错间交割也可形成割阶或扭折,刃型位错攀移可产生割阶。
25、小结:
1) 运动位错交割后,每根位错线上都可能产生一个扭折或割阶,其大小和方向取决于另一位错的伯氏矢量,但是具有原位错线的柏氏矢量。
2) 所有的割阶都是刃型位错,而扭折可能是刃型也可能是螺型。
3) 扭折与原位错线在同一滑移面上,可随主位错线一道运动,几乎不产生阻力,而且在线张力作用下易于消失。
4) 割阶与原位错线不在同一滑移面,故除非割阶产生攀移,否则割阶就不能随主位错线一道运动,成为位错运动的障碍,通常称此为割阶硬化。
5) 刃型位错运动时,割阶滑移方向与原位错滑移方向相同,能与原位错一起运动,但割阶的滑移面并不一定是晶体的最密排面,割阶段所受到的晶格阻力较大。相比较而言,而螺型位错的割阶阻力则小的多
26、带割阶螺型位错的运动:(位错交割产生许多割阶,异号割阶反向运动相互抵消,最后剩下同号割阶,同号割阶相互排斥保持一定距离,最后在位错线上留下许多不可动割阶)按割阶高度的不同可分为三种情况:①割阶高度为1~2个原子间距,位错可以把割阶拖着走,留下一排点缺陷(空位或间隙原子);②割阶高度约在二十个原子间距以上,它们可以各自独立的在各自的滑移面上滑移,并以割阶为轴,在滑移面上旋转(单边弗朗克-瑞德位错源);③割阶高度介于上述两种时,位错与割阶连接点被拉长,形成两条符号相反的刃型位错线(称为位错偶),位错偶长度达到一定值时会与原位错脱离形成位错环。原位错恢复到带割阶的原来状态。
28、单位为错:柏氏矢量等于单位点阵矢量的位错。全位错:柏氏矢量等于点阵矢量或其整数倍的位错。全位错滑移后晶体原子排列方式不变。
面心立方晶体典型单位位错:a2<110>
29、不全位错:柏氏矢量不等于点阵矢量或其整数倍的位错。不全位错滑移后原子排列方式改变。
面心立方晶体中典型不全位错:肖克莱不全位错、弗兰克不全位错、压杆位错等。
若堆垛层错只在原子面部分区域存在,则层错与完整晶体的交界处就存在不全位错。
原子面上抽去或插入半个原子面,靠近半原子面处点阵畸变较大,远离半原子面处由于原子是垂直升高或落下,仍处于密排位置,故没有畸变,畸变处原子组成不全位错。不全位错特点:
1) 不全位错四周不全是完整结构,有一部分层错;
2) 不全位错的柏氏回路必须从层错开始,最后穿过回路;
3) 不全位错的柏氏矢量不是完整的最小点阵矢量;
4) 不全位错的柏氏矢量也有守恒性。
27、位错增殖:弗朗克-瑞德位错源、单边弗朗克-瑞德位错源、双交滑移增殖机制、空位片塌陷增殖机制、位错攀移增殖机制、绕过机制。