核酸化学.

合集下载

5第五章 核酸化学1

5第五章    核酸化学1

鸟嘌呤脱氧核苷
(deoxyguanosine,dG)
胞嘧啶核苷
(cytidine,C)
胞嘧啶脱氧核苷
(deoxycytidine,dC)
尿嘧啶核苷
(uridine,U)
胸腺嘧啶脱氧核苷
(deoxythymidine,dT)

稀有核苷(修饰核苷)
正常碱基与修 饰核糖连接 碱基和核糖以 特殊方式连接
修饰碱基与核糖 或脱氧核糖连接
O NH O
HOCH2
N
HOCH2
C5
O
O
OH
OH
OH
OCH3
5,6-二氢尿苷
2`-O-甲基腺苷
假尿嘧啶核苷

4. 核苷酸(nucleotide)

核苷中戊糖的羟基磷酸酯化就形成核苷酸 核糖核苷酸:2`-、3`-和5`-核苷酸 脱氧核糖核苷酸:3`-和5`-脱氧核苷酸
自然界存在 的核苷酸为 5`-核苷酸
A C T G C T A A C
N
NH2 N C N H H
H OH
5' P
P
P
P
P
P
P
P
P
OH 3'
HO P O O 5' CH2 H H 3' O
O
5' pApCpTpGpCpTpApApC-OH 3'
3'-端
OH
5' ACTGCTAAC 3'

3. DNA的二级结构
Francis Crick (1916- ) Crick trained and worked as a physicist, but switched to biology after the Second World War. After codiscovering the structure of DNA, he went on to crack the genetic code that translates DNA into protein. He now studies consciousness at California's Salk Institute.

核酸化学

核酸化学

2.DNA双螺旋特征
(1)主链:两条平行的多核 苷酸链,以相反的方向,(即 一条由3΄向5΄,另一条由5΄向 3΄),围绕着同一个(想象的) 中心轴,以右手旋转方式构成 一个双螺旋形状。疏水的碱基 位于螺旋的内侧,亲水的磷酸 基和脱氧核糖以磷酸二酯键相 连成的骨架位于外侧。糖环平 面与中心轴平行,碱基平面与 中心轴相垂直。
• DNA三股螺旋结构常出现在 DNA复制、转录、重组的起始位 点或调节位点,如启动子区。 第三股链的存在可能使一些调控 蛋白或RNA聚合酶等难以与该区 段结合,从而阻遏有关遗传信息 的表达。
(3)四股螺旋DNA
•形成条件--串联重复的鸟苷酸 •基本结构单元--鸟嘌呤四联体 •碱基之间靠 Hoogsteen 键连接 •已有实验结果表明--真核细胞端 粒中存在四链结构
第4章 核酸化学
生物大分子
生物大分子是指生命体 内一些组织结构复杂的高分 子,它们是生命活动的主要 物质基础,因而被称为生命 物质。主要类型有蛋白质、 核酸、多糖、脂类。 生物大分子大多数是由 简单的组成结构聚合而成的, 蛋白质的组成单位是氨基酸, 核酸的组成单位是核苷 酸……
第1节 核酸的种类、分布与化学组成
DNA超螺旋的形成
DNA正常的双螺旋结构 处于能量最低状态,双 螺旋中没有张力而处于 松弛状态。如果这种正 常双螺旋额外增加或减 少螺旋圈数,就会使双 螺旋内的原子偏离正常 的位置而产生张力,这 样正常的双螺旋就发生 扭曲而形成超螺旋。超 螺旋总是向着抵消初级 螺旋改变的方向发展。
大多数原核生物 : 1)共价封闭的环状 双螺旋分子 2)超螺旋结构:双 螺旋基础上的螺旋化
Erwin Chargaff (1905-1995)
(二)DNA的一级结构 由4种脱氧核苷酸 dAMP 、 dGMP 、 dCMP 、 dTMP 按 照 一定的排列顺序通 过磷酸二酯键连接 而成的没有分支的 多核苷酸链。

核酸化学PPT课件

核酸化学PPT课件

DNA与RNA结构特点
DNA结构特点
DNA是一种长链生物聚合物,组成单 位为四种脱氧核苷酸,由碱基、脱氧 核糖和磷酸构成。
RNA结构特点
RNA由核糖核苷酸经磷酸二酯键缩合而 成长链状分子。一个核糖核苷酸分子由 一分子磷酸、一分子核糖和一分子含氮 碱基构成。
碱基互补配对原则
碱基互补配对原则是指在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配 对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
多肽。
基因编辑技术
如CRISPR-Cas9等,可对基因组 进行定点编辑,实现基因敲除、
敲入、突变等操作。
05
核酸药物设计与应用
抗病毒药物设 利用病毒基因序列中的特异性区域,设计与之互 补的核酸药物,通过阻断病毒基因复制或表达, 达到抗病毒效果。
靶向病毒关键蛋白的药物设计 针对病毒生命周期中的关键蛋白,设计能够与之 结合的核酸药物,从而阻止病毒的组装、释放等 过程。
RNA转录过程及调控
RNA转录的基本过程 转录起始、链延长、链终止与释放
RNA转录的酶学 RNA聚合酶、转录因子等
RNA转录的特点
模板链的选择性、转录的不对称性、 转录后加工等
RNA转录的调控
转录起始的调控、转录延伸的调控、 转录终止的调控
核酸酶作用及降解产物
核酸酶的种类与特性
01
核酸内切酶、核酸外切酶等
核酸的降解过程
02
核酸酶的切割作用、降解产物的生成与性质
核酸降解产物的应用
03
用于核酸序列分析、核酸检测等
03
核酸性质与功能

核酸化学ppt课件

核酸化学ppt课件
2. 大多数真核mRNA的3´末端有一个多聚腺苷酸(polyA)结构,称为多聚A尾。
1. 大多数真核mRNA的5´末端均在转录后加上一个7-甲基鸟苷,同时第一个核苷酸的C´2也是甲基化,形成帽子结构:m7GpppNm-。
3 编码区:mRNA有编码区和非编码区,编码区是所有mRNA分子的主要结构部分,决定蛋白质分子的 一级结构。非编码区与蛋白质生物合成调控有关。
元素组成 核酸的基本结构单位——核苷酸
第二节 核酸的基本结构单位-核苷酸
核酸的分子组成
元素组成 C、H、O、N、P等 平均磷含量 P含量约为9%~10%。各种核酸中P接近和恒定。 故在测定组织中的核酸含量时常通过测定P的含量计算生物组织中核酸的含量。
核酸的基本结构单位——核苷酸
复性:变性DNA在适当的条件下,两条彼此分开的单链可以重新缔合成为双螺旋结构,这一过程称为~。
(2)核酸的复性
不同来源的DNA、DNA与RNA、RNA和RNA之间都可以发生杂交。
核酸的杂交的应用: 在分子生物学和遗传学的研究中具有重要意义。 临床诊断: 基因诊断:如地中海贫血、分子病等 遗传病的产前诊断:胎儿羊水中收取DNA 基础研究领域: PCR技术、Southern杂交、Northern杂交
—— DNA和 RNA
DNA
RNA
嘌呤(purine)
腺嘌呤(adenine, A)
鸟嘌呤(guanine, G)
嘧啶(pyrimidine)
胞嘧啶(cytosine, C)
尿嘧啶(uracil, U)
胸腺嘧啶(thymine, T)
二、 戊 糖
(构成RNA)





核糖(ribose)

生物化学第三章核酸

生物化学第三章核酸

第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少

碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。

生物化学第二章核酸化学

生物化学第二章核酸化学

核酸分类及命名规则
核酸可分为DNA和RNA两大类,根据来源不同可分为基因组DNA、病毒DNA、mRNA、tRNA、 rRNA等。
核酸的命名通常包括种类、来源和特定序列信息,如人类基因组DNA可命名为hgDNA,mRNA可命 名为信使RNA等。
02
DNA结构与性质
DNA双螺旋结构模型
DNA由两条反向平行的多核苷酸链 组成,形成右手螺旋结构。
长约21nt的双链RNA,可引导RISC复合物识别并切割靶mRNA,实现基因沉默。
其他小分子RNA
如piRNA、snoRNA等,在基因表达调控、RNA修饰等方面发挥作用。
04
核酸理化性质与分离纯化方法
核酸溶解度和沉淀条件
溶解度
核酸在不同溶剂中的溶解度不同,一般易溶于水,难溶于乙醇、乙醚等有机溶 剂。其溶解度受温度、pH、离子强度等因素的影响。
非同源重组
发生在非同源序列之间的重组过程。这种重 组不依赖于序列之间的相似性,而是通过一 些特殊的蛋白质和酶的作用来实现DNA片 段的连接。非同源重组可能导致基因的重排 和染色体的不稳定,进而对生物体产生遗传 影响。
07
总结与展望
核酸化学领域重要成果回顾
核酸结构与功能研

揭示了DNA双螺旋结构和RNA多 种功能,阐明了遗传信息存储、 传递和表达机制。
05
核酸酶及其作用机制
限制性内切酶和外切酶作用方式
限制性内切酶
识别DNA分子中的特定核苷酸序 列,并在该序列内部进行切割, 产生特定的DNA片段。
外切酶
从DNA或RNA链的末端开始,逐 个水解核苷酸,释放单个的核苷 酸或寡核苷酸。
DNA连接酶在基因工程中应用
连接DNA片段

核酸化学ppt课件

核酸化学ppt课件

取代基
取代位置 核苷
m22 N
取代基的数目
取代基用下列小写英文字母表示 :
甲基m 甲硫基ms 异戊烯基i
乙酰基ac 羟基o或h
羧基c
氨基n 硫基s
注意:
含修饰核糖的核苷即2’-O-甲基核苷的表示方法,在 核苷符号的右下方注上一个小写m。
例: 2’-O-甲基腺苷 Am
(二)核苷酸(nucleotide, Nt)
第二节 核酸的组成
一 碱基(base):又称含氮碱
(1)嘧啶碱(pyrimidine, Py)
(2)嘌呤碱(purine, Pu)
其它嘌呤(核酸的代谢产物): 黄嘌呤、次黄嘌呤、尿酸等
(3)修饰碱基(modified base): 也称稀有碱基(minor base)
二、核苷、核苷酸
(一)核苷(nucleoside)
3.螺距为3.4 nm,含10个碱基 对(bp),相邻碱基对平面间 的距离为0.34 nm。螺旋直径为 2 nm。 氢键维持双螺旋的横向稳定。
碱基对平面几乎垂直螺旋轴,
碱基对平面间的疏水堆积力维 持螺旋的纵向稳定。
4.碱基在一条链 上的排列顺序不 受限制。遗传信 息由碱基序所携 带。 5.DNA构象有 多态性。
反向的两条多核苷酸链,右手螺旋。
与B-DNA不同点 :
(1)螺体宽而短,直径2.55nm;11个核苷酸一圈,螺距2.46nm。
(2)碱基的倾角大一些:倾角19º。
A-DNA:RNA分子中的双螺旋区;DNA-RNA杂交分子。 A-DNA和B-DNA之间可以相互转换,推测在转录时,DNA
分子发生B→A的转变。
1.DNA分子中核苷酸的连接方式
RNA
简写方法:线条式、文字式

高三化学核酸知识点总结

高三化学核酸知识点总结

高三化学核酸知识点总结核酸是构成生命体的基本遗传物质,对于高三化学学习来说,掌握核酸的相关知识点是非常重要的。

下面将对高三化学核酸知识点进行总结,帮助你更好地掌握这一部分内容。

一、核酸的基本结构核酸是由核苷酸组成的,核苷酸又由糖、碱基和磷酸组成。

在DNA中,糖为脱氧核糖,碱基包括腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);而在RNA中,糖为核糖,碱基包括腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)。

二、DNA和RNA的区别与功能1. 结构上的区别DNA呈双螺旋结构,RNA呈单链结构。

2. 功能上的区别DNA是存储和传递遗传信息的分子,包含了生物体遗传信息的全部内容;RNA在DNA的指导下,参与到蛋白质的合成过程中,还可以作为调控基因表达的介质。

三、核酸的生物学功能1. DNA复制:是指在细胞分裂过程中生成两条完全相同的DNA分子的过程,确保后代细胞能够遗传与原细胞相同的遗传信息。

2. 转录:是指DNA中的遗传信息被转录成RNA的过程,其中mRNA负责携带信息到核糖体中,参与蛋白质合成。

3. 翻译:是指在核糖体中,通过mRNA的信息,将氨基酸按照规定的顺序连接起来,形成多肽链,最终合成蛋白质。

四、核酸的化学性质1. 碱基间的配对规则在DNA中,腺嘌呤(A)与胸腺嘧啶(T)形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)形成三个氢键。

这种特定的碱基配对规则保证了DNA的稳定性和准确复制。

2. 核苷酸的酸碱性核苷酸是含有磷酸根的酸性物质,可以通过脱去一个或多个磷酸基团,释放出负电荷。

五、与核酸相关的实验技术1. DNA电泳:利用DNA的带电性质,在电场的作用下,将DNA分子按照大小分离出来,以便检测DNA的长度和纯度。

2. PCR技术:聚合酶链式反应是一种体外复制DNA的技术,可以快速扩增少量DNA样品。

3. 基因工程:利用DNA重组技术,将外源基因导入到宿主细胞中,从而改变其基因组,实现基因的修饰和转染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)DNA双螺旋结构模型 1953年由Watson和Crick提出,其特 点为: 1、2条反向平行的互补DNA构成右 手螺旋,磷酸-脱氧核糖位于双螺旋 的外侧,碱基对位于内侧。 2、碱基互补方式是A与T互补,形 成2个氢键,G与C互补,形成3个氢 键。
3、双螺旋的螺距为3. 4nm,直径为 2nm,每个螺旋需10个碱基对,每 个碱基对相隔0.34nm。且碱基对平 面与螺旋轴垂直。 4、稳定因素:碱基对形成的氢键和 碱基堆力。 在体内还有其它形式的DNA双螺旋
The End
第二节
核酸的分子结构
一、核酸的一级结构
(一)核苷酸以3’,5’-磷酸二酯键连接形成核酸
(二)DNA与基因
DNA是指由脱氧核苷酸通过3’,5’-磷 酸二酯键连接而形成的长链分子。 基因是指编码有功能的多肽或RNA 所必需的全部DNA序列.
二、DNA的二级结构
(一)DNA的碱基组成 Chargaff 规则: A+G=C+T,A=T,G=C
2、脱氧核苷——是指嘌呤的N9或嘧啶的N1与 脱氧核糖的C1通过糖苷键连接而成的化合物。
脱氧鸟苷(dG)
脱氧胞苷(dC)
3、核苷酸——是指核苷分子上的羟基与磷 酸分子脱水而成的化合物。
4、脱氧核苷酸——是指脱氧核苷分子上的羟 基与磷酸分子脱水而成的化合物。
三、核苷酸的功能
1、核苷酸是核酸合成的原料 2、核苷酸可直接为机体提供能量 3、核苷酸参与机体的代谢反应 4、核苷酸是部分酶辅因子的组成成 分 5、核苷酸参与代谢调节
热变性过程中变性一半时的温度称为Tm值。
核酸的复性是指变性核酸在去掉变性因素 后又恢复其双螺旋结构的过程。 复性DNA存在减色效应。 减色效应是指变性核酸其A260减小的现象。
三、核酸杂交
核酸杂交是指不同来源的变性核酸 在去掉变性因素后其互补序列形成 双螺旋结构的过程。 在现代科学研究与应用中作用巨大。
第五章 核酸化学
制作人:张波
生物化学教研室
第一节 核酸的结构单位
核苷酸是核酸的结构单位。
一、核苷酸的组成
1、2种戊糖。 2、5种碱基。 3、磷酸。
(A)
(G)
(C)
(U)
(T)
二、核苷酸的结构
1、核苷——是指嘌呤的N9或嘧啶的N1与核糖的 C1通过糖苷键连接而成的化合物。
鸟苷(G)
胞苷Байду номын сангаасC)
第三节
核酸的理化性质
一、核酸的紫外吸收 核酸的特征紫外吸收波长为260nm。
二、核酸的变性与复性
核酸的变性是指在理化因素作用下,核酸 双螺旋结构遭到破坏的过程。包括DNA变 性与RNA变性。
核酸在受热情况下的变性称为热变性。 变性核酸存在增色效应。 增色效应是指变性核酸其 A260增大的现象。
三、DNA的三级结构
DNA的三级结构是指在DNA的二级 结构基础上,DNA双螺旋进一步盘 旋折叠形成更加复杂的构象。
四、RNA的种类与分子结构
RNA的碱基组成是A,G,C,U, 一般为单链,所以没有象DNA一样 从头到尾都是双螺旋结构,但它可 以自身回转形成部分互补的双螺旋, 从而形成发夹结构。
RNA的发夹结构
(一)mRNA
在蛋白质生物合成中作为蛋白质合成的 直接模板。
(二)tRNA 在蛋白质合成过程中将氨基酸搬运到核 蛋白体,为蛋白质合成提供原料。
(三)rRNA
在蛋白质合成过程中与多种蛋白质在一起 构成核蛋白体,为蛋白质合成提供场所。 原核生物含有5S,16S和23S的rRNA 真核生物含有5S,5.8S,18S和28S的rRNA (四)核酶 核酶是指具有催化作用的RNA。 细胞核中还有很多未知功能的RNA。
相关文档
最新文档