第9章 回归分析

合集下载

应用技术回归分析第九章部分完整答案

应用技术回归分析第九章部分完整答案

第9章 非线性回归9.1 在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式, 还要注意误差项的形式。

如:(1) 乘性误差项,模型形式为e y AK L αβε=, (2) 加性误差项,模型形式为y AK L αβε=+。

对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。

一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。

9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。

表9.14生产率x (单位/周) 1000 2000 3000 3500 4000 4500 5000 废品率y (%)5.26.56.88.110.2 10.3 13.0解:先画出散点图如下图:5000.004000.003000.002000.001000.00x12.0010.008.006.00y从散点图大致可以判断出x 和y 之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。

(1)二次曲线 SPSS 输出结果如下:Mode l Sum mary.981.962.942.651R R SquareAdjusted R SquareStd. E rror of the E stim ateThe independent variable is x.ANOVA42.571221.28650.160.0011.6974.42444.2696Regression Residual TotalSum of Squares dfMean SquareF Sig.The independent variable is x.Coe fficients-.001.001-.449-.891.4234.47E -007.0001.4172.812.0485.843 1.3244.414.012x x ** 2(Constant)B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficientstSig.从上表可以得到回归方程为:72ˆ 5.8430.087 4.4710yx x -=-+⨯ 由x 的系数检验P 值大于0.05,得到x 的系数未通过显著性检验。

第9章SPSS线性回归分析

第9章SPSS线性回归分析

第9章SPSS线性回归分析1.线性回归分析概述线性回归分析是一种广泛应用于统计学和数据分析领域的方法,它用于研究自变量与因变量之间的线性关系。

线性回归模型基于一条直线的假设,通过最小化残差平方和来估计各个回归系数,并利用这些系数进行预测和推断。

SPSS是一款强大的统计分析软件,提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。

2.数据准备在进行线性回归分析之前,需要准备好相关的数据。

SPSS可以导入各种类型的数据文件,包括Excel、CSV等格式。

在导入数据之后,可以对数据进行预处理,如缺失值处理、异常值处理等。

3.构建线性回归模型在SPSS中,构建线性回归模型非常简单。

首先选择“回归”菜单下的“线性”选项,然后将所需要的自变量和因变量选择到相应的框中。

SPSS还提供了多种方法来选择自变量,如逐步回归、逐步回归法等。

选择好自变量之后,点击“确定”按钮,即可得到回归模型结果。

4.分析回归模型在得到回归模型结果之后,需要对模型进行分析。

SPSS提供了丰富的结果输出,包括参数估计值、显著性检验、模型拟合度等。

需要注意的是,线性回归模型的可靠性需要通过一系列统计检验进行验证,如F统计量、t统计量、残差分析等。

5.模型诊断6.预测与推断线性回归模型可以用于预测和推断,SPSS也提供了相应的功能。

在SPSS中可以输入自变量的数值,从而得到相应的因变量预测值。

此外,SPSS还可以进行参数估计的推断,包括置信区间和假设检验等。

7.扩展与应用除了简单的线性回归模型,SPSS还支持复杂的线性回归模型,如多重回归分析、多元回归分析等。

此外,SPSS还可以进行模型的改进和优化,如加入交互项、非线性变换等。

这些扩展功能在实际应用中非常有用,可以提高模型的解释力和预测能力。

总结:本章介绍了SPSS中的线性回归分析方法,包括模型构建、结果分析、模型诊断、预测与推断等。

SPSS提供了丰富的功能和工具,使得线性回归分析变得更加简单和高效。

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析

第九章时间序列数据的基本回归分析时间序列数据是指按照时间顺序排列的一系列数据观测值。

在实际应用中,时间序列数据广泛存在于经济学、金融学、气象学等领域,对于了解数据的趋势、季节性等特征具有重要意义。

时间序列数据的基本回归分析是通过建立回归模型,来研究时间序列数据中因变量与自变量之间的关系。

时间序列数据的回归分析可以分为简单回归和多元回归。

其中,简单回归是指只含有一个自变量的回归模型,多元回归是指含有多个自变量的回归模型。

下面将分别介绍这两种回归模型及其应用。

简单回归模型简单回归模型是时间序列数据回归分析中最基础的模型,其形式为:Y_t=α+βX_t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_t表示时间为t时的自变量观测值,α和β分别是回归方程的截距项和斜率项,ε_t是误差项。

简单回归模型常用于分析两个变量之间的关系,并通过计算斜率项β的值来判断两个变量之间的线性相关程度。

如果β的值为正,则表示两个变量之间呈正相关关系;如果β为负,则表示两个变量之间呈负相关关系。

同时,可以通过计算误差项ε_t的方差来评估模型的拟合优度。

多元回归模型当考虑到多个自变量对因变量的影响时,可以使用多元回归模型。

其形式为:Y_t=α+β_1X_1,t+β_2X_2,t+...+β_kX_k,t+ε_t其中,Y_t表示时间为t时的因变量观测值,X_1,t,X_2,t,...,X_k,t表示时间为t时的自变量观测值,α和β_1,β_2,...,β_k分别是回归方程的截距项和各自变量的斜率项,ε_t是误差项。

多元回归模型相较于简单回归模型更能够适用于分析多个自变量与因变量之间的复杂关系。

在建模过程中,可以通过检验回归系数的显著性水平,来判断自变量对因变量的影响是否显著。

此外,还可以通过判断方程残差的波动性来评估模型的拟合优度。

时间序列数据的回归分析在实际应用中具有重要意义。

例如,经济学中常使用时间序列数据回归分析来研究GDP与通货膨胀率之间的关系;金融学中,可以利用时间序列数据回归分析来研究股票收益率与市场因素之间的关系。

第9章-方差分析与线性回归

第9章-方差分析与线性回归
2
Xij X E
s nj
ST s
n
E
j
j 1
i 1
X ij X
j1 i1
s nj
X ij2 nX
j1 i1
X ij 2
2
2
s nj
X
EE(X
)j
s11ninj1jEs1Xinj1ijjE21(Xiinj1)X
1 n
s
nj ( j )
j 1
s nj
E( Xij2 ) nE( X 2 )
X12 X 22
As : N s , 2
X1s X 2s
X n11
X n2 2
X nss
每个总体相互独立. 因此, 可写成如 下的 数学模型:
ij
~
X ij j ij N (0, 2 ), 各ij独立
i 1, 2, , nj,j 1, 2, , s
方差分析的目的就是要比较因素A 的r 个水平下试验指标理论均值的 差异, 问题可归结为比较这r个总体 的均值差异.
i
ij (0, 2 ),各ij独立
1, 2, , nj,j 1, 2, , s
n11 n22 ... nss 0
假设等价于 H0 :1 2 s 0
H1 :1,2,
,
不全为零。
s
为给出上面的检验,主要采用的方法是平方和 分解。即
假设数据总的差异用总离差平方和 ST 分解为
第九章 回归分析和方差分析
关键词: 单因素试验 一元线性回归
方差分析(Analysis of variance, 简 称:ANOVA),是由英国统计学家费歇尔 (Fisher)在20世纪20年代提出的,可用于推 断两个或两个以上总体均值是否有差异 的显著性检验.

9 第九章 回归与相关

9 第九章   回归与相关

估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成

第九章 第四节 相关性、最小二乘估计、回归分析与独立性检验

第九章 第四节  相关性、最小二乘估计、回归分析与独立性检验
第四节 相关性、最小二乘估计、回归
分析与独立性检验
9/30/2013
9/30/2013
1.相关性 (1)散点图:在考虑两个量的关系时,为了对_____之间的关 变量 系有一个大致的了解,人们通常将___________的点描出来, 变量所对应 这些点就组成了变量之间的一个图,通常称这种图为变量之间 的散点图.
1.利用统计量χ 2来判断“两个变量X,Y有关系”计算公式为:

2
(A)ad-bc越小,说明X与Y关系越弱
(B)ad-bc越大,说明X与Y关系越强 (C)(ad-bc)2越大,说明X与Y关系越强 (D)(ad-bc)2越接近于0,说明X与Y关系越强
a b c d a c b d
1 2
9/30/2013
【拓展提升】线性相关关系与函数关系的区别 (1)函数关系中的两个变量间是一种确定性关系.例如,正 方形面积S与边长x之间的关系S=x2就是函数关系.
(2)相关关系是一种非确定性关系,即相关关系是非随机变
量与随机变量之间的关系.例如,商品的销售额与广告费是相
关关系.两个变量具有相关关系是回归分析的前提.
50 13 20-10 7) ( 4.844, 23 27 20 30
2
因为χ 2≥3.841,所以有
答案:95%
9/30/2013
考向 1
相关关系的判断
【典例1】(1)对变量x,y有观测数据(xi,yi)(i=1,2,„,
10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,
9/30/2013
3.独立性检验
(1)2×2列联表
设A,B为两个变量,每一个变量都可以取两个值,变量A:

第九章 相关与回归分析

第九章  相关与回归分析

第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。

本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。

【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。

【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。

第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。

这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。

相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。

例如,商品销售额与流通费用率之间的关系就是一种相关关系。

(二)相关关系的特点1、相关关系表现为数量相互依存关系。

2、相关关系在数量上表现为非确定性的相互依存关系。

二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。

其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。

相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。

第9章 一元线性回归分析

第9章    一元线性回归分析

9.1.2相关关系的类型
从涉及的变量数量看
简单相关 多重相关(复相关)
从变量相关关系的表现形式看
线性相关——散点图接近一条直线(左图) 非线性相关——散点图接近一条曲线(右图)
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2
11
10.8 10.6 10.4 10.2 10
若在定距变量分布不满足正态性的条件,可将定距变 量降级为定序变量
如要研究考试中学生交卷的名次是否与成绩有关,
交卷名次与考试名次之间的关系
交卷名 次
1 2 3 4
5
6
7
8
9
10
11
12
考试成 绩
94 74 74 60 68 86 92 60 78 74
78
64
参阅《统计学在经济和管理中的应用》
2 i i 2 i i
__
^
__
^
2
总离差平方和
回归平方和
残差平方和
判定系数定义:
r
2
(Y Y ) (Y Y )
i i
^
2 2
判定系数的特点
判定系数是非负的统计量; 判定系数取值范围: 0 r 2 在一元线性回归中,判定系数在数值上是
独立性意味着对于一个特定的 x 值,它所对应的ε与其他 x 值所对应的ε不相关 对于一个特定的 x 值,它所对应的 y 值与其他 x 所对应的 y 值也不相关
回归方程
描述因变量y的期望值如何依赖于自变量x的方程称为回归方程。
E( y) b0 b1 x
估计的回归方程
(estimated regression equation)

(09)第9章 一元线性回归(2011年)

(09)第9章 一元线性回归(2011年)

变量之间是否存在关系? 如果存在,它们之间是什么样的关系? 变量之间的关系强度如何? 样本所反映的变量之间的关系能否代表总体 变量之间的关系?

9-9 *
9.1 变量间的关系 9.1.1 变量间是什么样的关系?
统计学 STATIS TICS
函数关系
(第四版) 1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 3. 各观测点落在一条线上
y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素 对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 0 和 1 称为模型的参数

9 - 30 *
统 计 学 数据分析 (方法与案例)
作者 贾俊平
统计学 STATIS TICS
(第四版)
统计名言
不要过于教条地对待研究的结果, 尤其当数据的质量受到怀疑时。
——Damodar N.Gujarati
9-2 *
第 9 章 一元线性回归
9.1 9.2 9.3 9.4 变量间关系的度量 一元线性回归的估计和检验 利用回归方程进行预测 用残差检验模型的假定
9-7
*
第 9 章 一元线性回归
9.1 变量间的关系
9.1.1 变量间是什么样的关系? 9.1.2 用散点图描述相关关系 9.1.3 用相关系数度量关系强度

第九章:回归分析

第九章:回归分析

df
SS
MS
F Significance F
1
2268777 2268777 59.91376 7.51833E-08
23 870949.5 37867.37
24
3139726
Intercept X Variable 1
Coefficients Std Error t Stat P-value 177.12082 161.0043 1.1001 0.28267 1.0651439 0.137608 7.740398 7.52E-08
Correlation Levels
r = 0.05
r = 0.50
6
4
2
0
0
6
12
6
4
2
0
0
6
12
8
6
4
2
0
0
6
12
r = 0.95
10 8 6 4 2 0 0
6
12
r = –0.95
Correlation tells us how much linear association there is between two variables.
Thus, we should not use the equation to predict rent for an apartment whose size is 500 square feet, since this value is not in the range of size values used to create the regression equation.
df
SS
MS
F Significance F

第9章 相关分析与一元回归分析

第9章 相关分析与一元回归分析

郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

应用回归分析,第9章课后习题参考答案

应用回归分析,第9章课后习题参考答案

第9章 含定性变量的回归模型思考与练习参考答案9.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。

出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。

对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。

这就是所谓的“虚拟变量陷井”,应避免。

当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。

称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。

也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。

而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。

9.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα答:原因有两个,以例9.1说明。

一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。

第9章方差分析与一元回归分析

第9章方差分析与一元回归分析

第九章 方差分析与一元线性回归分析
[系统(条件)误差]:
概率统计
在方差分析中,凡是由于试验因素的变异而引起的 试验结果的差异,称为“系统误差”或“条件误差”.
[随机(试验)误差]:
在试验中,当我们把所有能控制的试验条件都控 制在固定的状态下,进行多次重复试验,所得的的试 验结果也不会完全一致,仍存在一定程度的差异.
r ni
ST
( Xij X )2
i1 j1
r ni
SE
( Xij Xi )2
i1 j1
r ni
r
SA
( Xi X )2 ni (Xi X )2
i1 j1
i1
ST反映了样本的总变动幅度. SE反映了为从r个总体中选取一个容量为ni的样本所进行的 重复试验而产生的误差. S A反映了从各不同水平总体中取出的各个样本之间的差异.
r i1
1 ni
(
ni j 1
X ij
)2
1 n
(
r i1
ni
Xij )2
j 1
概率统计
第九章 方差分析与一元线性回归分析
概率统计
(3) 若令Y aX b (a 0),有Y aX b SY2 a2SX2
Y
1 n
n i 1
Yi
1 n
n i 1
(aX i
b)
1 n
n
aX i
i 1
第九章 方差分析与一元线性回归分析
教学要求
1.掌握单因素试验的方差分析 2.掌握一元线性回归分析 学时 4- 6
概率统计
第九章 方差分析与一元线性回归分析
第一节、方差分析
一、方差分析的基本原理 二、单因素方差分析的方法 三、单因素方差分析的步骤 四、双因素方差分析的方法

第9章_SPSS的线性回归分析

第9章_SPSS的线性回归分析

第9章_SPSS的线性回归分析线性回归是一种用于建立两个或更多变量之间关系的统计方法,它能够预测一个因变量(因变量)与一个或多个自变量之间的线性关系。

SPSS是一种功能强大的数据分析软件,可用于执行线性回归分析。

一、线性回归的基本概念在开始进行线性回归分析之前,我们需要了解一些基本概念。

1.因变量(Y):被预测或感兴趣的变量,也称为被解释变量。

2.自变量(X):用于预测因变量的变量,也称为解释变量。

3.回归系数:描述因变量与自变量之间关系的数值。

4.截距:在自变量为0时,因变量的期望值。

5.残差:观测值与回归线之间的差异,用于衡量模型的拟合程度。

SPSS提供了执行线性回归分析的功能。

下面是执行线性回归分析的步骤。

步骤1:打开SPSS软件并导入数据。

你可以使用菜单栏中的“文件”选项来导入数据。

步骤2:选择“回归”选项。

在菜单栏中选择“分析”>“回归”>“线性”。

步骤3:指定因变量和自变量。

将因变量和自变量从可用变量列表中移动到相应的框中。

步骤4:设置模型选项。

在“模型”选项卡中,你可以选择不同的分析方法,例如,输入法或后退法,并设置显著性水平。

步骤5:点击“确定”按钮运行分析。

SPSS将执行线性回归分析,并在输出窗口中显示结果。

三、解释SPSS输出结果SPSS的线性回归分析结果通常由多个表格组成。

下面是一些常见的结果和如何解释它们的示例。

1.相关系数矩阵:显示因变量和自变量之间的关系。

相关系数的值范围从-1到1,接近1表示强正相关,接近-1表示强负相关。

2.模型概括:显示回归方程的参数估计值、标准误差和显著性。

3.回归系数表:显示每个自变量的回归系数、标准误差、t值和显著性。

4.显著性检验:显示自变量是否对因变量有显著影响的统计检验结果。

5.拟合优度统计量:显示模型适合数据的程度。

常用的拟合优度统计量有R平方值和调整的R平方值。

R平方值介于0和1之间,值越接近1表示模型拟合得越好。

四、解释回归方程回归方程用于预测因变量的值。

第九章 回归分析

第九章 回归分析
第九章 一元线性回归
经济与管理学院
教学要求
• 一、教学重点 • 回归分析的基本假设;运用SPSS进行线性 回归分析 • 二、教学难点 • 回归分析的原理 • 三、教学方式 • 课堂教学+实践环节 • 四、课时数 • 12学时
第一节 相关回归分析的基本概念
西藏大学 经济与管理学 院
一、基本概念 (一)现象间的依存关系 函数关系 相关关系
第九章
经济与管理学 院
这样的方程有意义吗?
第九章
第三节 一元回归方程的检验
一、方差的分解
西藏大学 经济与管理学 院
yi y yi i i y y y
第九章
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000
第九章
(二)相关关系的种类
1、直线相关与曲线相关 见图1,图2 2、 单相关与复相关 (1)单相关(一元相关) (2)复相关(多元相关)
西藏大学 经济与管理学 院
农 作 物 产 量 f 气 温, 降 雨 量, 阳 光, 施 肥 量
3、正相关与负相关
第九章
经济与管理学 院
180 160 140 120 100 80 60 40 20 0 0 200000 400000 600000 800000 1000000 1200000
第九章
二、回归分析的类别
一元回归 多元回归 线性回归 非线性回归
西藏大学 经济与管理学 院
回 归 分 析
第九章
三、一元线性回归方程的确定
西藏大学 经济与管理学 院
对于具有线性关系的两个变量,我们可以写成:
yi a b xi
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表9.14 南优3号的颖花数(x ) 和结实率(y )资料
处理
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Tr

x 4.59 4.09 3.94 3.90 3.45 3.48 3.39 3.14 3.34 4.12 4.12 3.84 3.96 3.03 52.39
区组
y 58 65 64 66 71 71 71 72 69 61 63 67 64 75 937
计算其回归截距及其 95%可靠度的置信区 间。
表9.5 广陆矮4号播 种至齐穗天数(x) 和总积温(y)的关 系
x 播种至齐穗的天数
70 67 55 52 51 52 51 60 64
y 总积温(日·度)
1616.3 1610.9 1440.0 1400.7 1423.3 1471.3 1421.8 1547.1 1533.0
表9.1 累积温和一代 三化螟盛发期的关系
x 累积温度
y 盛发期
35.512ຫໍສະໝຸດ 34.1 31.716
20
9
40.3
2
15
36.8 40.2
7
3
10
31.7
13
5
39.2
9
44.2
-1
0
25
30
37.07777778 7.777777778 -5
首先计算6个一级数

n
9
x
x2
y
y2
x i
yi
333.7 12517.49 70 794
表9.3 例9.1资料回归 关系的方差分析
变异来源
DF
回归
1
离回归
7
总变异
8
SS
MS
174.88878 174.88878
74.666779 10.666683
249.55556
例9.6 测定迟熟早籼 广陆矮4号在5月5日 至8月5日播种期(每 隔10天播一期),播
种至齐穗的天数 (x )和播种至齐穗 的总积温(y ,日· 度)的关系列于表 9.5,试
59.5 63.5 64.0 67.5 69.0 71.5 72.5 70.5 69.0 57.5 59.5 64.5 62.0 73.0
F Significance F
5603.333
8.06042E-09
P-value 0.357656 8.06E-09
Lower 95% -0.02021855 0.02262402
下限 上限
Upper 95%
95.0% 95.0%
0.008789978 -0.02022 0.00879
0.024233123 0.022624 0.024233
57
58
59
60
23
26
47
51
1
15
29
48
1 8 1 1 9 1
平均 50.88 58.38 59.5 61.75 51.88 61.75 54.08 60.63
6
6
38
9
3
19
4
6
53
3
1
54
3
1
67
7
8
54
3
1
y = -1.0996x + 48.549 R² = 0.7008
35
40
45
50
F 16.4
F 0.01 12.25
P 0.004876
三种肥料的苹果产量(㎏ / 株) 观察值
53
46
49
63
51
56
64
58
59
67
62
62
46
50
59
54
例9.15 为研究A、B 、C三种肥料对于苹 果的增产效果,选了 24株同龄苹果树,第 一年
记下各树的产量 (x ,㎏),第二年 将每种肥料随机施于 8株苹果树上,再记 下其产量
(y ,㎏)。得结果 于表9.8,试分解其 乘积和、自由度。
肥料
A
x
y
B
x
y
C
x
y
例9.17 表9.14是研究 施肥期和施肥量对杂 交水稻南优3号结实 率影响的部分结果, 共14个
(x 和y 皆以8月31日为0)。试 分析:(1)≤25℃的始日(x) 可否用于预测粘虫 的暴食期;(2)回归方程及其 估计标准误;(3)若某年9月5 日是≤25℃的始日, 则有95%可靠度的粘虫暴食期在 何期间?
年份
54
55
56
x
13
25
27
y
50
55
50
观察值
1
6
5
6
1
3
7
7
6
8
6
6
3
3
5
8
61
70
56 54 66 61 61 63 63 64 57 58 64 69
总和 44 407 50 467 66 476 69 494 53 415 66 494
1298 1455

y 61 62 64 69 67 72 74 69 69 54 56 62 60 71 910
Ti
x 8.91 8.20 8.05 7.47 7.24 6.86 6.42 6.38 6.38 8.88 8.87 7.44 8.46 6.04 105.60
6 0.384571429
Intercept X Variable 1
Coefficients -0.005714286 0.023428571
标准误差 0.005642405 0.000312984
t Stat -1.012739367 74.85541619
第(3)问 25.85365854
习题9.6 测得广东阳江≤25℃的 始日(x )与粘虫暴食高峰期 (y )的关系如下表
x 0 5 10 15 20 25 30
0.80 0.70 0.60 0.50 0.40 0.30
y 0.00 0.11 0.23 0.34 0.46 0.57 0.71
y = 0.0234x - 0.0057 R² = 0.9991
0.30
0.20
0.10
0.00
-0.10 0
10
SUMMARY OUTPUT
处理,2个区组,随 机区组设计。由于在 试验过程中发现单位 面积上的颖花数对结 实率似
有明显的回归关系, 因此将颖花数(x , 万/㎡)和结实率 (y,%)一起测定 。该试验的
表9.8 施用三种肥料的苹果 观察
47
58
54
66
52
53
54
53
44
48
52
58
处理效应为固定型, 故按因果关系资料回 归模型做协方差分析 。
2436.4
再计算5个二级数据 x 的平方和 y 的平方和
x 和y 的乘积和 x 的平均数 y 的平均数
144.6355556 249.5555556 -159.0444444 37.07777778 7.777777778
b
-1.099622039
a
48.54931936
例9.4 试用F 检验法 测验例9.1资料回归 关系的显著性。

x 4.32 4.11 4.11 3.57 3.79 3.38 3.03 3.24 3.04 4.76 4.75 3.60 4.50 3.01 53.21
习题9.5 测得不同浓 度的葡萄糖溶液 (x ,㎎/L)在某光 电比色计上的消光度 (y )
如下表,试计算: (1)直线回归方程 y =a +bx ,并作图; (2)对该回归方程 作假设 测验;(3)测得某 样品的消光度为 0.60,试估算该样品 的葡萄糖浓度。
组别 第一组 第二组 第三组
变数 X Y X Y X Y
7
7
5
9
9
8
9
9
1
1
9
9
例9.1 一些夏季害虫 盛发期的早迟和春季 温度高低有关。江苏 武进连续9年测定3月
下旬至4月中旬旬平 均温度累积值(x , 旬·度)和水稻一代 三化螟盛发期(y , 以5月10日为0) 的关系,得结果于表 9.1。试计算其直线 回归方程。
y
119 127 128 135 138 143 145 141 138 115 119 129 124 146 1847
xiˉ
4.455 4.100 4.025 3.735 3.620 3.430 3.210 3.190 3.190 4.440 4.435 3.720 4.230 3.020
y i ˉ y i ˉ (x =x ˉ )
Multiple R R Square Adjusted R Square 标准误差 观测值
回归统计
方差分析
回归分析 残差 总计
20
30
40
0.999554135 0.99910847 0.998930163 0.008280787
7
df
SS
MS
1 0.384228571 0.384228571
5 0.000342857 6.85714E-05
相关文档
最新文档