辽宁省沈阳市于洪区2018_2019学年九年级数学上学期期末试卷-
2018-2019学年辽宁省沈阳市沈河区九年级上学期期末数学试卷与答案
2018-2019学年辽宁省沈阳市沈河区九年级上学期期末数学试卷一、选择题(每小题2分,共20分)1.(2分)若,则的值为()A.B.C.D.2.(2分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.(2分)若反比例函数y=﹣的图象上有三个点(﹣1,y1),(﹣,y2),(,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2≤y1<y3 4.(2分)如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3B.6C.D.105.(2分)下表记录了一名设计运动员在同一条件下的射击成绩,这名射击运动员射击一次,射击中9环的概率约是()6.(2分)若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A.B.C.D.7.(2分)下列命题正确的是()A.对角线互相平分的四边形是平行四边形B.对角线互相垂直的四边形是菱形89A.9.6cm B.10cm C.20cm D.12cm10.(2分)如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A的值是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=.12.(3分)如图,已知路灯离的面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.(3分)在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为.14.(3分)如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.15.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是.16.(3分)在矩形ABCD中,AB=9,tan∠ADB=,点E在射线DA上,连接BE,将线段BE绕点E旋转90°后,点B恰好落在射线DB上(此时点B的对应点为点F),则线段DF的长为.三、解答题17.(6分)解方程:(x﹣3)2=7x﹣21.18.(8分)节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩于参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩予中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.19.(8分)如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD=30°,连接AE交BD于点F、连接CF.(1)求证:四边形BECO是菱形;(2)填空:若AC=8,则线段CF的长为.四、(每小题8分,共16分)20.(8分)我市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房的产的新政策出台后,购房者持币观望,房的产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米12150元的均价开盘销售(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米250元.试问哪种方案更优惠?优惠多少元?(不考虑其他因素)21.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC 的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到的面的距离.(结果保留根号)五、(本题10分)22.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.六、(本题10分)23.(10分)一租赁公司拥有某种型号的汽车10辆,公司在经营中发现每辆汽车每天的租赁价为120元时可全部出租,租赁价每涨3元就少出租1辆,公司决定采取涨价措施.(1)填空:每天租出的汽车数y(辆)与每辆汽车的租赁价x(元)之间的关系式为.(2)已知租出的汽车每辆每天需要维护费30元,求租出汽车每天的实际收入w(元)与每辆汽车的租赁价x(元)之间的关系式;(租出汽车每天的实际收入=租出收入﹣租出汽车维护费)(3)若未租出的汽车每辆每天需要维护费12元,则每辆汽车每天的租赁价x(元)定为多少元时,才能使公司获得日收益z(元)最大?并求出公司的最大日收益.八、(本题12分)24.(12分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.25.(12分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.2018-2019学年辽宁省沈阳市沈河区九年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.【解答】解:因为,所以b=,把b=代入则=,故选:B.2.【解答】解:如图所示:它的俯视图是:.故选:C.3.【解答】解:∵y=﹣中k=﹣3<0,∴图象在第二、四象限,在每个象限内,y随x的增大而增大,∵反比例函数y=﹣的图象上有三个点(﹣1,y1),(﹣,y2),(,y3),∴点(﹣1,y1)和(﹣,y2)在第二象限,点(,y3)在第四象限,﹣1<﹣,∴0<y1<y2,y3<0,即y3<y1<y2,故选:C.4.【解答】解:∵AD∥BC,∴△CBE∽△AED,∴BE:AE=CE:ED=3:5,∵CD=16.CE+ED=CD,∴DE=,故选:D.5.【解答】解:从频率的波动情况可以发现频率稳定在0.7附近,所以这名运动员射击一次时“射中9环以上”的概率是0.7,故选:C.6.【解答】解:∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:D.7.【解答】解:A、对角线互相平分的四边形是平行四边形,说法正确;B、对角线互相垂直的四边形是菱形,说法错误,应为对角线互相垂直且平分的四边形是菱形;C、对角线相等的四边形是矩形,说法错误,应为对角线相等且平分的四边形是矩形;D、对角线互相垂直且相等的四边形是正方形,说法错误,应为对角线互相垂直且相等的平行四边形是正方形;故选:A.8.【解答】解:由表格可得,该函数的对称轴是直线x==2,故选项B正确,该函数的顶点坐标是(2,7),有最大值,开口向下,故选项A正确,该函数与x轴有两个交点,故b2﹣4ac>0,故选项C正确,当1<x<3时,6<y≤7,故选项D错误,故选:D.9.【解答】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故选:B.10.【解答】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC=BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sin A===,故选:A.二、填空题(每小题3分,共18分)11.【解答】解:原式=()2+﹣1﹣2×+1=+﹣1﹣+1=.故答案为:.12.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.13.【解答】解:画树状图为:共有6种等可能的结果数,其中甲乙两名同学恰好抽中相邻赛道的结果数为4,所以甲乙两名同学恰好抽中相邻赛道的概率==.故答案为.14.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).15.【解答】解:∵一元二次方程(k﹣1)x2+4x+1=0有实数根,∴k﹣1≠0,且b2﹣4ac=16﹣4(k﹣1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.16.【解答】解:如图1,∵四边形ABCD是矩形,∴∠A=90°,∵AB=9,tan∠ADB=,∴AD=12,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF(AAS),∴AE=HF=3x,EH=AB=9,∴AE+DH=AD﹣EH=3x+4x=12﹣9=3,∴x=,∴DF=5x=;如图2,∵四边形ABCD是矩形,∴∠BAD=90°,∵AB=9,tan∠ADB=,∴AD=12,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF,∴AE=HF=3x,EH=AB=9,∴DH﹣AE=AD+EH=4x﹣3x=12+9=21,∴x=21,∴DF=5x=105,综上所述,线段DF的长为或105.故答案为:或105.三、解答题17.【解答】解:∵(x﹣3)2﹣7(x﹣3)=0,∴(x﹣3)(x﹣10)=0,则x﹣3=0或x﹣10=0,解得:x1=3,x2=10.18.【解答】解:(1)∵有三位孩子,分别是a,b,c,∴家长A恰好选中孩子的概率是;故答案为:.(2)画树状图如下:∵共有9种等情况数,恰好是同一家庭成员的有3种情况数,∴被选中的恰好是同一家庭成员的概率是=.19.【解答】解:(1)∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴平行四边形OBEC是菱形;(2)∵BE∥AC,∴∠OAF=∠BEF,∵AO=BO=BE,在△AOF与△EBF中,,∴△AOF≌△EBF(AAS),∴OF=BF,∵AC=8,∴BD=8,∴OC=OB=4,∵∠ABD=30°,∴∠OBC=60°,∴△OBC是等边三角形,∴CF⊥OB,∴CF=OC=2.故答案为:2.四、(每小题8分,共16分)20.【解答】解:(1)设平均每次下调的百分率为x,根据题意得:15000(1﹣x)2=12150,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次下调的百分率为10%,(2)方案①购房优惠:12150×100×(1﹣0.98)=24300,方案②可优惠:250×100=25000,25000﹣24300=700,答:选择方案②更优惠,优惠700元.21.【解答】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠F AN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到的面的距离是(+)米.五、(本题10分)22.【解答】解:(1)把A(﹣1,n)代入y=﹣2x,可得n=2,∴A(﹣1,2),把A(﹣1,2)代入y=,可得k=﹣2,∴反比例函数的表达式为y=﹣,∵点B与点A关于原点对称,∴B(1,﹣2).(2)∵A(﹣1,2),∴y≤2的取值范围是x<﹣1或x>0;(3)作BM⊥x轴于M,PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,﹣),则(2+)(m﹣1)=1或(2+)(1﹣m)=1整理得,m2﹣m﹣1=0或m2+m+1=0,解得m=或m=,∴P点的横坐标为.六、(本题10分)23.【解答】解:(1)根据题意得,y与x满足一次函数关系,设y=kx+b,则,解得:,即每天租出的汽车数y(辆)与每辆汽车的租赁价x(元)之间的关系式为:y=﹣x+50;故答案为:y=﹣x+50;(2)设公司获得的日收益为w,则w=(x﹣30)(﹣x+50)=﹣x2+60x﹣1500;(3)z=w﹣12(10﹣y)=﹣x2+56x﹣1020=﹣(x﹣84)2+1332(x≥120),∵当x>84时,z随x的增大而减小,∴当x=120时,z取得最大值,最大值=﹣(120﹣84)2+1332=900,答:将每辆汽车的日租金定为120元,才能使公司获得最大日收益,公司的最大日收益是900元.八、(本题12分)24.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=•AH•AG=AC2=×(4)2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.25.【解答】解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m,m﹣3),N(m,m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB 上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y =x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH⊥AB交直线AB于点H,则h=NH=NP sinα=,作N′P′⊥x轴,交x轴于点P′,则:∠ON′P′=α,ON ′==(2+2),S四边形OBPN=BP•h =×=6,则:S四边形OBP′N′=S△OP′N′+S△OBP′=6+6,同理:S四边形OBN″P″=6﹣6,故:点O,B,N,P构成的四边形的面积为:6或6+6或6﹣6.surferteacherdiver writerinspector(检查员)wash——washingpack——packing(包装)hikingShopping第页(共22页)21第页(共22页)22。
辽宁省鞍山市2018-2019学年九年级(上)期末数学试卷
2018-2019学年九年级(上)期末数学试卷一.选择题(共8小题)1.一元二次方程x2﹣x=0的根是()A.x=1 B.x1=1,x2=﹣1 C.x1=1,x2=0 D.x1=﹣1,x2=0 2.下列图形不是轴对称图形的是()A.等边三角形B.平行四边形C.矩形D.正方形3.已知,如图,在△ABC中,∠ADE=∠C,则下列等式成立的是()A.=B.=C.=D.=4.抛物线y=2x2﹣3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上5.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.6.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,则下列说法中正确的是()A.AD=2OB B.点B是劣弧CD的中点C.OE=EB D.点D是AB弧中点7.如图,OA⊥OB,△CDE是等腰直角三角形,点C、D分别在OB、OA上,∠CED=90°,将△CDE绕点C顺时针旋转75°,点E的对应点M恰好落在OB上,则值为()A.B.C.D.8.如图,抛物线y=ax2+bx+c与x轴的一个交点为A(﹣1,0),与y轴的交点B在点(0,﹣2)与点(0,﹣3)之间(包含端点),顶点D的坐标为(1,n).则下列结论:其中结论正确的个数为()①3a+c=0;②<a<1;③对于任意实数m,a+b≤am2+bm总成立;④关于x的方程ax2+bx+c=n+1没有实数根.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.反比例函数图象经过点(3,﹣2),则它的函数关系式为.10.将二次函数y=﹣2x2向右平移3个单位,向上平移1个单位后,所得的函数解析式为.11.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为m.12.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.13.如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为.14.如图,在⊙O中,∠AOB=120°,P为劣弧AB上的一点,则∠APB的度数是.15.如图,在正方形ABCD中,BE=EC,将正方形ABCD的边CD沿DE折叠到DF,连接EF、FC、FB,若△DFC的面积为16,则△BEF的面积为.16.已知,在平面直角从标系中,A点坐标为(0,4),B点坐标为(2,0),点C(m,6)为反比例函数y=图象上一点,将△AOB绕B点旋转得到△A'O'B'(设旋转角为α,0°<α<360°),则点C到直线A'O'距离的最大值为.三.解答题(共10小题)17.用适当的方法解一元二次方程:(1)x2+4x﹣12=0(2)5x2﹣4x+1=018.已知关于x的一元二次方程x2+2(m+1)x+m2﹣8=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足(x1﹣x2)2=24﹣2x1x2,求实数m的值.19.如图,每个小方格都是边长为1个单位长度的小正方形,△ABC的三个顶点都在小正方形的格点上,按照下列要求作图:(1)将△ABC绕点O顺时针旋转90°,画出旋转后的的△A'B'C';(2)以点O为位似中心,作出△ABC的位似图形△A''B''C'',使它们分别位于点O的两侧,且位似比为1:2.20.如图,平行四边形ABCD的对角线AC、BD相交于点O,点E是边BC的延长线上一点,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:.21.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,(1)求反比例函数的解析式;(2)点P是x轴上一点,若△BDP是等腰三角形,直接写出点P坐标.22.随着“网购”的增多,快递业务发展迅速.我市某快递公司今年八月份与十月份完成投递的快递总件数分别为10万件和12.1万件,假定该公司每月的投递总件数的增长率相同.(1)求该快递公司每月的投递总件数的月平均增长率;(2)由于“双十一”购买量激增,预计11月需投递的快递总件数的增长率将是原来3倍,如果每人每月最多可投递快递0.6万件,该公司现有21名业务员,是否能完成当月投递任务?如果不能,需临时招聘几名业务员?23.已知,AB是⊙O的直径,E、F是⊙O上的点,连接AE、AF、EF,BC是⊙O的切线,过点A作AD∥BC.(1)如图1,求证:∠DAF=∠AEF;(2)如图2,若AD=BC=AB,连接CD,延长AF交CD于G,连接CF,若FC=BC=4,求AG的长.24.某公司推销一种产品,公司付给推销员的月报酬有两种方案如图所示:方案一所示图形是顶点在原点的抛物线的一部分,方案二所示图形是射线.其中x(件)表示推销员推销产品的数量,y(元)表示付给推销员的月报酬.(1)分别求两种方案中y关于x的函数关系式;(2)当推销员推销产品的数量达到多少件时,两种方案月报酬差额将达到7125元?25.如图,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作等腰直角三角形CMN.使∠CMN=90°,连接BN,射线NM交BC于点D.(1)如图1,若点A,M,N在一条直线上,①求证:BN+CM=AM;②若AM=4,BN=,求BD的长;(2)如图2,若AB=4,CN=2,将△CMN绕点C顺时针旋转一周,在旋转过程中射线NM 交AB于点H,当三角形DBH是直角三角形时,请你直接写出CD的长.26.如图,已知直线y=﹣x+2与x轴,y轴交于B,A两点,抛物线y=﹣x2+bx+c经过点A,B.(1)求这个抛物线的解析式;(2)点P为线段OB上一个动点,过点P作垂直于x轴的直线交抛物线于点N,交直线AB于点M.①点C是直线AB上方抛物线上一点,当△MNC∽△BPM相似时,求出点C的坐标.②若∠NAB=60°,求点P的坐标.。
2018-2019学年辽宁省沈阳市于洪区九年级(上)期末数学试卷-普通用卷
2018-2019学年辽宁省沈阳市于洪区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共20.0分)1.如图所示几何体的左视图是()A.B.C.D.2.红丝带是关注艾滋病防治问题的国际性标志,如图,红丝带重叠部分形成的图形是()A. 正方形B. 等腰梯形C. 菱形D. 矩形3.在一次酒会上,每两人都只碰一次杯,若一共碰杯55次,则参加酒会的人数为()A. 9人B. 10人C. 11人D. 12人4.若=,则的值为()A. 1B.C.D.5.若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是()A. B. C. D.6.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A. 米B. 米C. 米D. 米7.如图,在△ABC中,DE∥BC,DE分别与AB,AC相交于点D,E,若AD=4,DB=2,则DE:BC的值为()A.B.C.D.8.对于反比例函数y=,下列说法不正确的是()A. 点在它的图象上B. 它的图象在第一、三象限C. 当时,y随x的增大而增大D. 当时,y随x的增大而减小9.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=()A. B. C. D.10.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A. B. C.D.二、填空题(本大题共6小题,共18.0分)11.若关于x的一元二次方程x2+mx+m2-19=0的一个根是-3,则m的值是______.12.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是______.13.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,AA′═50cm,这个三角尺的周长与它在墙上形成影子的周长比是______.14.如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为______.15.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).如果曲线APB 表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+4x+>,那么圆形水池的半径至少为______米时,才能使喷出的水流不至于落在池外.16.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=______.三、解答题(本大题共9小题,共82.0分)17.计算:(π-)0+|1-|+()-1-2sin45°.18.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为______;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).19.如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部.已知王华同学的身高是1.6m,两个路灯的高度都是9.6m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?20.如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.7m(参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05).(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为______m(计算结果精确到0.1m);(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)21.如图,一次函数y=kx+b的图象与反比例函数y=>的图象交于A(2,-1)、B,两点,点C坐标为(0,2),过点C的直线l与x轴平行.(1)求一次函数与反比例函数的表达式;(2)求△ABC的面积.22.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.23.如图1,在正方形ABCD中,AB=4m,点P从点D出发,沿DA向点A匀速运动,速度是1cm/s,同时,点Q从点A出发,沿AB方向,向点B匀速运动,速度是2cm/s,连接PQ、CP、CQ,设运动时间为t(s)(0<t<2).(1)是否存在某一时刻,使得PQ∥BD若存在,求出t的值;若不存在,说明理由;(2)设△PQC的面积为S(cm2),求S与t之间的函数关系式;(3)如图2,连接AC,与线段PQ相交于点M,是否存在某一时刻t,使S△QCM:S△PCM=4:5?若存在,直接写t的值;若不存在,说明理由.24.【探索发现】(1)如图1,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为______.【拓展应用】(2)如图2,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N 分别在边AB、AC上,顶点Q、M在边BC上,求出矩形PQMN面积的最大值(用含a、h的代数式表示);【灵活应用】(3)如图3,有一块“缺角矩形”ABCDE,AB=28,BC=36,AE=18,CD=14,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),直接写出该矩形的面积.25.如图,已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=-1,图象经过B(-3,0)、C(0,3)两点,且与x轴交于点A.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)在抛物线的对称轴上找一点M,使△ACM周长最短,求出点M的坐标;(3)若点P为抛物线对称轴上的一个动点,直接写出使△BPC为直角三角形时点P 的坐标.答案和解析1.【答案】B【解析】解:观察发现:其左视图应该为矩形,为了表示中间凹的部分,应该用虚线,故选:B.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.2.【答案】C【解析】解:如图所示:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S=BC•AE=CD•AF.又AE=AF.▱ABCD∴BC=CD,∴四边形ABCD是菱形.故选:C.首先可判断重叠部分为平行四边形,且两条彩带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.本题考查了平行四边形的判定,菱形的判定,一组邻边相等的平行四边形是菱形.3.【答案】C【解析】解:设参加酒会的人数为x人,根据题意得:x(x-1)=55,整理,得:x2-x-110=0,解得:x1=11,x2=-10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.【答案】D【解析】解:∵=,∴==.故选:D.根据合分比性质求解.考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.5.【答案】D【解析】解:∵方程x2-2x+m=0有两个不相同的实数根,∴△=(-2)2-4m>0,解得:m<1.故选:D.根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.【答案】C【解析】解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.根据正切函数可求小河宽PA的长度.考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.【答案】A【解析】解:∵DE∥BC,∴△ADE∽△ABC,∴===.故选:A.根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例解则可.本题考查了相似三角形的判定和相似三角形的性质,对应边不要搞错.8.【答案】C【解析】解:A、把点(-2,-1)代入反比例函数y=得-1=-1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.故选:C.根据反比例函数的性质用排除法解答.本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9.【答案】D【解析】解:由于D为线段AB=2的黄金分割点,且AD>BD,则AD=×2=(-1)cm.∴BD=AB-AD=2-(-1)=3-.故选:D.根据黄金分割点的定义和AD>BD得出AD=AB,代入数据即可得出BP的长度.本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.10.【答案】D【解析】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(-1,3);可设新抛物线的解析式为y=(x-h)2+k,代入得:y=2(x+1)2+3,故选:D.易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.11.【答案】-2或5【解析】解:将x=-3代入方程可得:9-3m+m2-19=0,即m2-3m-10=0,解得:m=-2或m=5,故答案为:-2或5.将x=-3代入方程可得m2-3m-10=0,解之即可.本题主要考查方程的解和解方程的能力,熟练掌握方程的解的定义是解题的关键.12.【答案】100【解析】解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.13.【答案】2:7【解析】解:如图,∵OA=20cm,AA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比=AB:A′B′=2:7.故答案为2:7.先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.14.【答案】y=【解析】解:设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15.【答案】【解析】解:在y=-x2+4x+中,当y=0时,-x2+4x+=0,解得x1=-,x2=,∵x>0,∴x=,即OB=,∴圆形水池的半径至少为米时,才能使喷出的水流不至于落在池外,故答案为:.求出函数解析式中y=0时x的值,结合x>0可得最终的x的值,从而得出OB 的长.本题主要考查二次函数的应用,解题的关键是明确函数解析式中两个变量的实际意义.16.【答案】【解析】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD-AP=2,GD=GC-CD=4-2=2∴GP==2∴GH=GP=故答案为:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.17.【答案】解:原式=1+-1+2-2×=+2-=2.【解析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】【解析】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.(1)由标有数字1、2、3的3个转盘中,奇数的有1、3这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况数,得出这两个数字之和是3的倍数的情况数,再根据概率公式即可得出答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】解:(1)由对称性可知AP=BQ,设AP=BQ=xm∵MP∥BD∴△APM∽△ABD∴∴∴x=3经检验x=3是原方程的根,并且符合题意.∴AB=2x+12=2×3+12=18(m)答:两个路灯之间的距离为18米.(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此时他在路灯AC的影子长,设BF=ym∵BE∥AC∴△EBF∽△CAF∴,即解得y=3.6,经检验y=3.6是分式方程的解.答:当王华同学走到路灯BD处时,他在路灯AC下的影子长是3.6米.【解析】(1)依题意得到△APM∽△ABD,∴再由它可以求出AB;(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F则BF即为此时他在路灯AC的影子长,容易知道△EBF∽△CAF,再利用它们对应边成比例求出现在的影子.两个问题都主要利用了相似三角形的性质:对应边成比例.20.【答案】11.4【解析】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=≈5÷0.44≈11.4(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.7m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.7=19.7(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.7m.(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.21.【答案】解:(1)∵A(2,-1)、B,两点在反比例函数y=>的图象上,∴m=2×(-1)=-2,m=×n,∴n=-4∴B(,-4),反比例函数解析式为:y=,∵A(2,-1)、B(,-4),两点在一次函数y=kx+b的图象上,∴解得:k=2,b=-5∴一次函数解析式为:y=2x-5(2)∵一次函数y=2x-5与y轴相交∴交点坐标为(0,-5)∴S△ABC==【解析】(1)将点A,点B坐标代入解析式可求一次函数与反比例函数的表达式;(2)先求出一次函数与y轴的交点坐标,由三角形的面积公式可求△ABC的面积.本题考查了反比例函数与一次函数的交点问题,熟练掌握两个图象的交点坐标满足两个图象的解析式是本题的关键.22.【答案】解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22-15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25-x-15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25-5=20(万元),答:每辆汽车的售价为20万元.【解析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.23.【答案】解:(1)如图1,连接BD,∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,由运动知,DP=t,AQ=2t,∴AP=4-t,BQ=4-2t,∵AB=AD,∴∠ABD=∠ADB,∵PQ∥BD,∴∠ABD=∠AQP,∠APQ=∠ADB,∴∠APQ=∠AQP,∴AQ=AP,∴2t=4-t,∴t=;(2)S=S正方形ABCD-S△APQ-S△BCQ-S△CDP=AB2-AQ×AP-BQ×BC-DP×CD=16-×2t×(4-t)-×(4-2t)×4-t×4=16+t2-4t-8+4t-2t=t2-2t+8(0<t<2);(3)如图2,过点C作CN⊥PQ于N,∴S△MCQ=MQ×CN,S△MCP=MP×CN,∵S△QCM:S△PCM=4:5,∴=,∴△=,△过点M作MG⊥AB于G,MH⊥AD于H,∵点M是正方形ABCD的对角线AC上的一点,∴MG=MH,∴S△AMQ=AQ×MG,S△APM=AP×MH,∴=,∴=,∴t=1.【解析】(1)由运动知,DP=t,AQ=2t,得出AP=4-t,BQ=4-2t,判断出AQ=AP,得出2t=4-t,即可;(2)直接利用面积的和差即可得出结论;(3)先判断出=,进而得出=,再判断出=,即可得出=,解方程即可得出结论.此题是四边形综合题,主要考查了正方形的性质,平行线的性质,同高的两三角形的面积比是底的比,方程思想,解本题的关键是用方程的思想解决问题.24.【答案】【解析】解:(1)∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则==,故答案为:;(2)∵PN∥BC,∴△APN∽△ABC,∴=,可得PN=a-PQ,=PQ•PN=-(x-)2+,设PQ=x,由S矩形PQMN∴当PQ=时,S最大值为.矩形PQMN(3)如图,过DE上的点P作PG⊥BC于点G,延长GP交AE延长线于点I,过点P作PH⊥AB于点H,则四边形AHPI和四边形BGPH均为矩形,设PG=x,则PI=28-x,∵AB=28,CD=14,BC=36,AE=18,∴DK=14,EK=18,由△EIP∽△EKD知=,即=,得EI=36-x,∴PH=AI=AE+EI=18+36-x=54-x,则矩形BGPH的面积S=x(54-x)=-(x-21)2+567,∴当x=21时,矩形BGPH的面积取得最大值,最大值为567.(1)由中位线知EF=BC、ED=AB、由=可得;(2)由△APN∽△ABC知=,可得PN=a-PQ,设PQ=x,由S矩形=PQ•PN=-(x-)2+,据此可得;PQMN(3)结合图形过DE上的点P作PG⊥BC于点G,延长GP交AE延长线于点I,过点P作PH⊥AB,设PG=x,知PI=28-x,由△EIP∽△EKD知=,据此求得EI=36-x,PH=54-x,再根据矩形BGPH的面积S=x(54-x)=-(x-21)2+567可得答案.本题是四边形的综合问题,解题的关键是掌握三角形中位线定理、相似三角形的判定与性质、矩形的判定与性质等知识点.25.【答案】解:(1)∵二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=-1,点B的坐标为(-3,0),∴点A的坐标为(1,0).将A(1,0),B(-3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴二次函数的表达式为y=-x2-2x+3.(2)连接BC,交直线x=-1于点M,如图1所示.∵点A,B关于直线x=-1对称,∴AM=BM.∵点B,C,M三点共线,∴此时AM+CM取最小值,最小值为BC.设直线BC的函数表达式为y=kx+d(k≠0),将B(-3,0),C(0,3)代入y=kx+d,得:,解得:,∴直线BC的函数表达式为y=x+3.当x=-1时,y=x+3=2,∴当点M的坐标为(-1,2)时,△ACM周长最短.(3)设点P的坐标为(-1,m),∵点B的坐标为(-3,0),点C的坐标为(0,3),∴PB2=[-3-(-1)]2+(0-m)2=m2+4,PC2=[0-(-1)]2+(3-m)2=m2-6m+10,BC2=[0-(-3)]2+(3-0)2=18.分三种情况考虑(如图2):①当∠BCP=90°时,BC2+PC2=PB2,∴18+m2-6m+10=m2+4,解得:m=4,∴点P的坐标为(-1,4);②当∠CBP=90°时,BC2+PB2=PC2,∴18+m2+4=m2-6m+10,解得:m=-2,∴点P的坐标为(-1,-2);③当∠BPC=90°时,PB2+PC2=BC2,∴m2+4+m2-6m+10=18,整理得:m2-3m-2=0,解得:m1=,m2=,∴点P的坐标为(-1,)或(-1,).(-1,)或(-1,(-1,),综上所述:使△BPC为直角三角形时点P的坐标为(-1,-2),4).【解析】(1)由抛物线的对称轴及点B的坐标可求出点A的坐标,由点A,B,C的坐标,利用待定系数法即可求出二次函数的表达式;(2)连接BC,交直线x=-1于点M,此时△ACM周长最短,由点B,C的坐标,利用待定系数法可求出直线BC的函数表达式,再利用一次函数图象上点的坐标特征即可求出点M的坐标;(3)设点P的坐标为(-1,m),结合点B,C的坐标可得出PB2,PC2,BC2的值,分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况考虑,①当∠BCP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;②当∠CBP=90°时,利用勾股定理可得出关于m的一元一次方程,解之可得出m的值,进而可得出点P的坐标;③当∠BPC=90°时,利用勾股定理可得出关于m的一元二次方程,解之可得出m的值,进而可得出点P的坐标.综上,此题得解.本题考查了二次函数的性质、待定系数法求二次函数解析式、三角形的三边关系、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、两点间的距离公式、勾股定理以及解一元一次(二次)方程,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数的对称性及三角形的三边关系,找出点M所在的位置;(3)分∠BCP=90°,∠CBP=90°,∠BPC=90°三种情况,找出关于m的方程.。
辽宁省沈阳市和平区2018-2019学年九年级(上)期末数学期末数学模拟试卷(含答案)
辽宁省沈阳市和平区2018-2019学年九年级(上)期末数学模拟试卷一.选择题(共10小题,满分20分,每小题2分)1.若一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A.k>1B.k<1C.k<1且k≠0D.k≥12.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.3.矩形具有而菱形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.邻边相等4.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b5.以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是6.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=108B.168(1﹣x)2=108C.168(1﹣2x)=108D.168(1﹣x2)=1087.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+58.在平面直角坐标系中,△OAB各顶点的坐标分别为:O(0,0),A(1,2),B(0,3),以O为位似中心,△OA′B′与△OAB位似,若B点的对应点B′的坐标为(0,﹣6),则A点的对应点A′坐标为()A.(﹣2,﹣4)B.(﹣4,﹣2)C.(﹣1,﹣4)D.(1,﹣4)9.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内10.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m二.填空题(共6小题,满分18分,每小题3分)11.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.12.如图,AC是正方形ABCD的对角线,∠DCA的平分线交BA的延长线于点E,若AB=3,则AE=13.如图,一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2.按图中要求加工成一个正方形桌面,则桌面的边长为m.14.已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是.15.某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有家商家参加了交易会.16.抛物线y=x2﹣2x﹣3的顶点坐标是.三.解答题(共3小题,满分22分)17.(6分)解方程:(1)x2﹣2x﹣4=0(2)用配方法解方程:2x2+1=3x18.(8分)如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD于点G.求证:四边形ACGF是菱形.19.(8分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.四.解答题(共2小题,满分16分,每小题8分)20.(8分)如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x的值.21.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P 的坐标.五.解答题(共2小题,满分20分,每小题10分)22.(10分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E在BC 上,AE交BD于F.(1)若E是靠近点B的三等分点,求;①的值;②△BEF与△DAF的面积比;(2)当时,求的值.23.(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)12 2.535y A(万元)0.40.81 1.22信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?六.解答题(共2小题,满分24分,每小题12分)24.(12分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC 相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:由题意知,△=4﹣4k>0,解得:k<1.故选:B.2.解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.3.解:∵矩形具有的性质:对角线相等,对角线互相平分;菱形具有的性质:邻边相等,对角线互相平分,对角线互相垂直;∴矩形具有而菱形不一定具有的性质是:对角线相等.故选:B.4.解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.5.解:小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是是错误的,3次试验不能总结出概率,故选项A错误,某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,但不一定有5张中奖,故选项B错误,某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是不正确,中靶与不中靶不是等可能事件,一般情况下,脱靶的概率大于中靶的概率,故选项C错误,小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的可能性是,故选项D正确,故选:D.6.解:设每次降价的百分率为x,根据题意得:168(1﹣x)2=108.故选:B.7.解:抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.8.解:∵△OA′B′与△OAB关于O(0,0)成位似图形,且若B(0,3)的对应点B′的坐标为(0,﹣6),∴OB:OB'=1:2=OA:OA'∵A(1,2),∴A'(﹣2,﹣4)故选:A.9.解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、当x≤5时,函数关系式为y=2x,y=2时,x=1;当x>15时,函数关系式为y=,y=2时,x=60;60﹣1=59,故当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内,正确.不符合题意,故选:C.10.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.12.解:∵AC是正方形ABCD的对角线,AB=3,∴AC=3,∵正方形ABCD,∠DCA的平分线交BA的延长线于点E,∴∠DCE=∠ECA,DC∥EB,∴∠CEA=∠DCE,∴∠E=∠ECA,∴AE=AC=3,故答案为:313.解:∵一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2,∴另一直角边长为:=2(m),则斜边长为:=2.5,设点C到AB的距离为h,=×2.5h=1.5,则S△ABC解得:h=1.2,∵正方形GFDE的边DE∥GF,∴△ACB∽△DCE,=,即=,解得:x=,故答案为:.14.解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.15.解:设有x家商家参加交易会,根据题意列出方程得,x(x﹣1)=36,解得x=9或﹣8(舍去)则x=9,答:共有9家商家参加了交易会.16.解:∵原抛物线可化为:y=(x﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).三.解答题(共3小题,满分22分)17.解:(1)∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,则x﹣1=±,∴x=1±;(2)∵2x2﹣3x=﹣1,∴x2﹣x=﹣,∴x2﹣x+=﹣+,即(x﹣)2=,则x﹣=±,解得:x1=1、x2=.18.证明:∵AF∥CD,FG∥AC,∴四边形ACGF是平行四边形,∠2=∠3,∵CE平分∠ACD,∴∠1=∠2,∴∠1=∠3,∴AC=AF,∴四边形ACGF是菱形.19.解:(1)所有可能出现的结果如下:乘积567 8156782101214 1631518212442024 2832共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.∴P(两数乘积是2的倍数)=(4分)P(两数乘积是3的倍数)=;(5分)(2)游戏不公平.(6分)∵甲每次游戏的平均得分为:(分)乙每次游戏的平均得分为:(分)(7分)∵∴游戏不公平.(8分)修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分),若得到的积是3的倍数,则乙得12分.(10分)四.解答题(共2小题,满分16分,每小题8分)20.解:正方体的左面、右面标注的代数式分别为x2、3x﹣2,由题意,x2=3x﹣2.解得x1=1,x2=2.(5分)21.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).五.解答题(共2小题,满分20分,每小题10分)22.解:(1)①∵四边形ABCD是平行四边形,∴BC=AD,BC∥AD,∵BE:BC=1:3,∴==.②∵BE∥AD,∴△BEF∽△DAF,∴=()2=.(2)∵四边形ABCD是平行四边形,∴OB=OD,BC∥AD,BC=AD,∵BF:OF=n:m,∴BF:DF=n:(2m+n),∴BE:AD=BF:DF=n:(2m+n),∴=.23.解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.六.解答题(共2小题,满分24分,每小题12分)24.解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BF A,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BF A,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠BAF=45°,∴△CEA∽△BF A,∴y====(0<x<2),(3)由(2)知,△CEA∽△BF A,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠F QD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+),F4(,6﹣).。
2018—2019学年度九年级(上)期末数学试卷(附参考答案解析)
2018—2019学年度xxx学校九年级(上)期末试卷数学试题命题人:xxx 审题人:xxx 考试时间:120分钟满卷分值:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.下列方程中,是关于x的一元二次方程的是()A.x2﹣2018B.x﹣2018=0C.﹣2018=0D.x2﹣2018=02.已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°3.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.4.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.5.二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左1个单位,再向上3个单位B.向右1个单位,再向上3个单位C.向左1个单位,再向下3个单位D.向右1个单位,再向下3个单位6.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)7.已知=3,则的值为.8.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是.9.两个相似三角形周长之比为9:5,则面积比为.10.如图,在菱形ABCD中,BE⊥AB交对角线AC于点E,若∠D=120°,BE=1,则AC=.11.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若、是抛物线上的两点,则y1<y2;⑤(其中m≠).其中说法正确的是.三、(本大题共5小题,每小题6分,共30分)13.(1).计算:sin245°+cos30°•tan60°(2).如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求:的值.14.如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形15.为响应吉安市中心城区创建全国文明城市的号召,某校从甲、乙、丙3名老师中随机抽取文明行为劝导志愿者,求下列事件的概率.(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.(请用画树状图或列表的方法求)16.已知关于x的一元二次方程kx2﹣2x﹣1=0(1)若方程有实数根,求k的取值范围.(2)选取一个你喜欢的正整数值作为k的值,使方程有实数根,并解方程.17.如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.四、(本大题3小题,每小题8分,共24分)18.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:甜甜:2017年六一,我们共收到484元微信红包.妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?19.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.20.博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)五、(本大题2小题,每小题9分,共18分)21.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.22.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.六、(本大题共12分)23.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.参考答案与试题解析一、(本大题共6小题,每小题3分,共18分)1.下列方程中,是关于x的一元二次方程的是()A.x2﹣2018B.x﹣2018=0C.﹣2018=0D.x2﹣2018=0【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A、不是等式,不符合题意;B、为一元一次方程,不符合题意;C、为分式方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选:D.【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【分析】根据特殊角的三角函数值求解.【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:D.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看不见的部分用虚线表示.4.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到每个路口都是绿灯的情况数是解决本题的关键.5.二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左1个单位,再向上3个单位B.向右1个单位,再向上3个单位C.向左1个单位,再向下3个单位D.向右1个单位,再向下3个单位【分析】根据配方法,可得顶点式解析式,根据右移减,上移加,可得答案.【解答】解:二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),只需将函数y=﹣2x2+4x+1的图象向左移动1个单位,向下移动3个单位即可.故选:C.【点评】本题考查函数的图象变换,讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.6.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4【分析】由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF= EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°∵△AEF是等边三角形∴AE=AF=EF,∠EAF=∠AEF=60°∵AD=AB,AF=AE∴△ABF≌△ADE∴BF=DE∴BC﹣BF=CD﹣DE∴CE=CF故①正确∵CE=CF,∠C=90°∴EF=CE,∠CEF=45°∴AF=CE,∵∠AED=180°﹣∠CEF﹣∠AEF∴∠AED=75°故②③正确∵AE=AF,CE=CF∴AC垂直平分EF故④正确故选:D.【点评】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.二、(本大题共6小题,每小题3分,共18分)7.已知=3,则的值为.【分析】由已知比例式得到a=3b,将其代入所求的代数式,进行约分求值.【解答】解:由=3,得a=3b,所以==.故答案是:.【点评】考查了比例的性质.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.8.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是3.【分析】根据一元二次方程的解及根与系数的关系,可得出a2﹣2a=1、a+b=2,将其代入a2﹣a+b中即可求出结论.【解答】解:∵a、b是方程x2﹣2x﹣1=0的两个根,∴a2﹣2a=1,a+b=2,∴a2﹣a+b=a2﹣2a+(a+b)=1+2=3.故答案为:3.【点评】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.9.两个相似三角形周长之比为9:5,则面积比为81:25.【分析】根据相似三角形的周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵两个相似三角形周长之比为9:5,∴它们的相似比是9:5:∴它们的面积的比是81:25.故答案为:81:25【点评】本题考查了相似三角形的性质,熟记性质并求出两三角形的相似比是解题的关键.10.如图,在菱形ABCD中,BE⊥AB交对角线AC于点E,若∠D=120°,BE=1,则AC= 3.【分析】分别求出AE、EC即可解决问题;【解答】解:∵四边形ABCD是菱形,∠D=120°,∴CD∥AB,∠ABC=∠D=120°,∴∠DAB=180°﹣120°=60°,∴∠BAE=∠DAB=30°,∵BE⊥AB,∴∠ABE=90°,∠EBC=∠ECB=30°,∴EB=EC=1,在Rt△ABE中,∵∠EAB=30°,∴AE=2BE=2,∴AC=AE+EC=2+1=3,故答案为3.【点评】本题考查菱形的性质、解直角三角形、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是﹣6.=S△CAB=3,再根据反比例函数【分析】连结OA,如图,利用三角形面积公式得到S△OAB的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S=S△CAB=3,△OAB=|k|,而S△OAB∴|k|=3,∵k<0,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若、是抛物线上的两点,则y1<y2;⑤(其中m≠).其中说法正确的是①②④⑤.【分析】根据二次函数的性质即可求出答案.【解答】解:①由抛物线的开口可知:a<0,又抛物线与y轴的交点可知:c>0,对称轴>0,∴b>0,∴abc<0,故①正确;②将(2,0)代入y=ax2+bx+c(a≠0),∴4a+2b+c=0,∵=,∴a=﹣b,∴﹣4b+2b+c=0,∴﹣2b+c=0,故②正确;③由②可知:4a+2b+c=0,故③错误;④由于抛物线的对称轴为x=,∴(,y1)与(,y1)关于x=对称,由于x>时,y随着x的增大而减小,∵>,∴y1<y2,故④正确;⑤由图象可知:x=时,y可取得最大值,且最大值为a+b,∴m≠∴a+b+c>am2+bm+c,∴,故⑤正确;故答案为:①②④⑤;【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三、(本大题共5小题,每小题6分,共30分)13.(1).计算:sin245°+cos30°•tan60°【分析】根据特殊胶,可得答案.【解答】解:sin245°+cos30°•tan60°=()2+×=+=2.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.(2).如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求:的值.【分析】由于DE∥BC,由平行线分线段成比例即可求出答案.【解答】解:∵DE∥BC,∴∵AD=3,AB=5,∴=.【点评】本题考查平行线的性质,解题的关键是熟练运用平行线分线段成比例的性质,本题属于基础题型.14.如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形【分析】(1)可沿平行四边形的高剪切即可;(2)沿对角线剪开,拼接即可.【解答】解:(1)如图所示:,(2)如图所示:,【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.15.为响应吉安市中心城区创建全国文明城市的号召,某校从甲、乙、丙3名老师中随机抽取文明行为劝导志愿者,求下列事件的概率.(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.(请用画树状图或列表的方法求)【分析】(1)由从甲、乙、丙3名同学中随机抽取文明行为劝导志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:(1))∵从甲、乙、丙3名同学中随机抽取文明行为劝导志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.【点评】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.已知关于x的一元二次方程kx2﹣2x﹣1=0(1)若方程有实数根,求k的取值范围.(2)选取一个你喜欢的正整数值作为k的值,使方程有实数根,并解方程.【分析】(1)根据二次项系数非零及根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)取k=3,再利用因式分解法解方程.【解答】解:(1)∵关于x的一元二次方程kx2﹣2x﹣1=0有实数根,∴,解得:k≥﹣1且k≠0.(2)取k=3,此时原方程为3x2﹣2x﹣1=0,即(3x+1)(x﹣1)=0,解得:x1=﹣,x2=1.【点评】本题考查了根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)根据二次项系数非零及根的判别式△≥0,找出关于k的一元一次不等式;(2)熟练掌握一元二次方程的各种解法.17.如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.【分析】(1)由条件可得出∠BED+∠EDB=∠EDB+∠FDC=120°,可得到∠BED=∠FDC,且∠B=∠C,可证得结论;(2)利用(1)结论可得出,且CD=BC﹣BD=5,代入可求得BE.【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°,∵∠EDF=60°,∴∠BED+∠EDB=∠EDB+∠FDC=120°,∴∠BED=∠FDC,∴△BDE∽△CFD;(2)由(1)知△BDE∽△CFD,∴,∵BC=6,BD=1,∴CD=BC﹣BD=5,∴,解得BE=.【点评】本题主要考查相似三角形的判定和性质,利用条件得到∠BED=∠FDC是解题的关键,注意等边三角形性质的应用.四、(本大题共3小题,每小题8分,共24分)18.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:甜甜:2017年六一,我们共收到484元微信红包.妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2016年收到微信红包金额400(1+x)万元,在2016年的基础上再增长x,就是2017年收到微信红包金额400(1+x)(1+x),由此可列出方程400(1+x)2=484,求解即可.(2)设甜甜在2017年六一收到微信红包为y元,则她妹妹收到微信红包为(2y+34)元,根据她们共收到微信红包484元列出方程并解答.【解答】解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在2017年六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150所以484﹣150=334(元).答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.【点评】本题考查了一元一次方程的应用,一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.19.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.【分析】(1)把A(1,m)、B(n,1)两点的坐标代入一次函数的解析式即可求出m、n的值,再把B的坐标代入反比例函数的解析式即可求出k的值;(2)根据函数的图象和A、B的坐标即可得出答案;(3)先根据一次函数的解析式求出N的坐标,再利用三角形面积公式即可求出△AON 的面积.【解答】解:(1)把A(1,m)、B(n,1)两点的坐标代入y1=﹣x+4,得m=﹣1+4=3,﹣n+4=1,n=3,则A(1,3)、B(3,1).把B(3,1)代入y2=,得k=3×1=3;(2)∵A(1,3)、B(3,1),∴由函数图象可知,y1>y2时,x的取值范围是1<x<3;(3)∵一次函数y1=﹣x+4的图象与x轴交于点N,∴N(4,0),ON=4,∵A(1,3),∴△AON的面积=×4×3=6.【点评】本题考查了反比例函数与一次函数的交点问题,函数图象上点的坐标特征,三角形面积的计算;求出反比例函数的解析式是解决问题的关键.20.博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【分析】(1)由题意知ED=1.6 m,BD=2 m,利用勾股定理得出DF=求出即可;(2)首先分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=,以及cos∠EDH=,求出EH,HN即可得出答案.【解答】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=2 m,DF==2.答:DF长为2m.(2)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=2•sin35°≈1.14.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.31.∴EN=EH+HN=1.31+1.14=2.45≈2.5m.答:E点离墙面AB的最远距离为2.5 m.【点评】此题主要考查了解直角三角形的应用,根据已知构造角三角形得出EH,HN的长度是解题关键.五、(本大题共2小题,每小题9分,共18分)21.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC于M,根据AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,利用三角形面积解答即可.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴△AEH≌△DHG.∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于M,则∠FMG=90°.∴∠A=∠FMG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF.∴FM=AH=2.=,∵S△FCG∴CG=2.【点评】本题考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.22.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.【分析】(1)根据配方法,可得顶点式解析式,根据顶点式解析式,可得抛物线的顶点;(2)根据函数值为0,可得B点坐标,根据自变量为0,可得C点坐标,根据勾股定理,可得BC的长,根据正弦的意义,可得答案;(3)根据图象上的点的坐标满足函数解析式,可得一元二次方程,根据解一元二次方程,可得答案.【解答】解:(1)∵,∴抛物线的顶点坐标为(,);(2)令x2﹣x﹣6=0,解得x1=﹣2,x2=3,∴点B的坐标为(3,0),又点C的坐标为(0,﹣6),∴,∴;(3)∵点P(m,m)在这个二次函数的图象上,∴m2﹣m﹣6=m,即m2﹣2m﹣6=0,解得,.【点评】本题考查了二次函数的性质,配方法可把一般式转化成顶点式,图象上点的坐标满足函数解析式.六、(本大题共12分)23.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【分析】(1)根据PQ∥BC,得出△APQ∽△ABC,根据相似三角形对应边成比例,列出比例式,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,据此得出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分;(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8﹣t)2+(6﹣t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP面积的2倍,进行计算即可.【解答】解:(1)由题意知:BP=2t,AP=10﹣2t,AQ=2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得:t=,∴当t=时,PQ∥BC;(2)如图1所示,过P点作PD⊥AC于点D,∴PD∥BC,∴=,即=,解得,∴△AQP的面积,假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,=S△ABC,则有S△AQP∵△ABC中,AB=10cm,AC=8cm,BC=6cm,∴△ABC是直角三角形,且∠C=90°,=AC•BC=24,∴S△ABC=12,∴S△AQP而S=,△AQP∴,化简得:t2﹣5t+10=0,∵△=(﹣5)2﹣4×1×10=﹣15<0,∴此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分;(3)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.如图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴==,即==,解得:PD=6﹣t,AD=8﹣t,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t,在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵当t=5时,AQ=10cm>AC,不合题意,舍去,∴t=,==6×﹣×()2=cm2,∵当t=时,S△AQP∴S=2S△AQP=2×=cm2.菱形AQPQ′故存在时刻t=s,使四边形AQPQ′为菱形,此时菱形的面积为cm2.【点评】本题属于四边形综合题,主要考查了菱形的性质,三角形的面积计算,勾股定理的逆定理,解一元二次方程以及相似三角形的性质和判定的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。
辽宁省沈阳市于洪区2018-2019学年七年级上学期期末语文试题(含答案)
辽宁省沈阳市于洪区2018-2019学年七年级上学期期末语文试题学校:___________姓名:___________班级:___________考号:___________一、字词书写1.写一手漂亮的字是令人骄傲的,请选择正确的诗句,用正楷字抄写在下面。
(1)夜阑卧听风吹雨(2)山入潼关不解平(3)正是江南好风景二、选择题2.下列词语中加点字的字音、字形完全正确的一项是()A.原谅(liàng)奥密(mì)祷告(diǎo)人迹罕至(hǎn)B.愚蠢(yǔ)瘫痪(huàn)参差(cān)畏罪潜逃(qián)C.闪烁(shuò)伫立(zhù)帐篷(péng)见异思迁(yì)D.气概(gài)笠临(lì)朗润(lǎng)大相径廷(tíng)3.依次填入下面句子横线处的词语最恰当的一项是()中华民族优秀的文化,积淀着久远的岁月印痕。
它_______在春节缤纷的花炮中,闪烁在京剧斑斓的脸谱中,跳动在二胡凄美的弓弦上,传扬在诗词浪漫的_______里……传统文化承载着民族的记忆,五彩纷呈的形式令人_______。
了解并_______我们的传统文化,是每个中国人义不容辞的责任。
我们也会在文化的熏陶下变得厚重而雅致。
A.绽放意味欢欣鼓舞爱护B.飘散意境赏心悦目保护C.绽放意境赏心悦目保护D.飘散意味欢欣鼓舞爱护4.下列句子没有语病的一项是()A.各地纷纷采取封锁、扑杀、无害化处理、消毒等处置措施,防止非洲猪瘟疫情不再扩散。
B.七年级五班的语文成绩是全校最好的一个班级。
C.熊火中,一位遇难者向人们呼救。
D.我们要养成爱读书的好习惯,特别是读经典,读名著,让书香溢满美丽的校园。
5.下列各项中分析正确的一项是()经过半个学期的语文旅行,我们渐渐变得成熟了。
蓦然回首,我们会发现,语文给我们太多太多的感悟和体验。
辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版)
辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版) 1 / 16辽宁省沈阳市皇姑区2018-2019学年九年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分)1. 在Rt △ABC 中,∠C =90∘,BC =4,AC =3,则cosA 的值是( )A. 45B. 35C. 54D. 43 【答案】B【解析】解:∵∠C =90∘,BC =4,AC =3,∴AB =√42+32=5,∴cosA =35, 故选:B .首先利用勾股定理计算出斜边长,再根据锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦,记作cosA 进行计算即可,此题主要考查了锐角三角函数,关键是掌握余弦定义.2. 如图所示的工件,其俯视图是( )A.B.C.D.【答案】B【解析】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 如图,下列条件不能判定△ADB∽△ABC 的是( )A. ∠ABD =∠ACBB. ∠ADB =∠ABCC. AB2=AD⋅ACD. ADAB =ABBC【答案】D【解析】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD⋅AC,∴ACAB =ABAD,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、ADAB =ABBC不能判定△ADB∽△ABC,故此选项符合题意.故选:D.根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.4.若锐角三角函数tan55∘=a,则a的范围是()A. 0<a<1B. 1<a<2C. 2<a<3D. 3<a<4【答案】B【解析】解:∵tan45∘=1,tan60∘=√3,且锐角范围内tanα随∠α的增大而增大,∴tan45∘<tan55∘<tan60∘,即1<a<√3,则1<a<2,故选:B.由tan45∘=1,tan60∘=√3且锐角范围内tanα随∠α的增大而增大,知tan45∘<tan55∘< tan60∘,即1<a<√3,从而得出答案.本题主要考查锐角三角函数的增减性,解题的关键是掌握特殊锐角的三角函数值及tanα随∠α的增大而增大.5.已知点C是线段AB的黄金分割点(AC<BC),若AB=4,则AC的长为()A. (6−2√5)B. (2√5−2)C. (√5−1)D. (3−√5)【答案】A【解析】解:∵点C是线段AB的黄金分割点,且AC<BC,∴BC=√5−12AB=2(√5−1)cm,则AC=4−2(√5−1)=6−2√5,故选:A.根据黄金比值是√5−12计算即可.本题考查的是黄金分割,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割.6.抛物线y=2(x+3)2+5的顶点坐标是()A. (3,5)B. (−3,5)C. (3,−5)D. (−3,−5)【答案】B【解析】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(−3,5),辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版)故选:B.由抛物线的解析式可求得答案.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).7.下列一元二次方程中,没有实数根的是()A. x2−2x−3=0B. x2−x+1=0C. x2+2x+1=0D. x2=1【答案】B【解析】解:A、a=1,b=−2,c=−3,b2−4ac=4+12=16>0,有两个不相等的实数根,故此选项错误;B、a=1,b=−1,c=1,b2−4ac=1−4=−3<0,没有实数根,故此选项正确;C、a=1,b=2,c=1,b2−4ac=4−4=0,有两个相等的实数根,故此选项错误;D、a=1,b=0,c=−1,b2−4ac=4>0,有两个不相等的实数根,故此选项错误;故选:B.分别找出一元二次方程中的二次项系数a,一次项系数b、常数项c,再利用一元二次方程根的判别式(△=b2−4ac)判断方程的根的情况.此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.如果x2+x−1=0,那么代数式x3+2x2−7的值为()A. 6B. 8C. −6D. −8【答案】C【解析】解:由x2+x−1=0得x2+x=1,∴x3+2x2−7=x3+x2+x2−7,=x(x2+x)+x2−7,=x+x2−7,=1−7,=−6.故选:C.由x2+x−1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.9.如图,有一块锐角三角形材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使其一边在BC上,其余两个顶点分别在AB、AC上,则这个正方形零件的边长为()A. 40mmB. 45mmC. 48mmD. 60mm【答案】C【解析】解:设正方形的边长为xmm,则AK=AD−x=80−x,3 / 16∵EFGH是正方形,∴EH//FG,∴△AEH∽△ABC,∴EHBC =AKAD,即x120=80−x80,解得x=48mm,故选:C.设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.本题主要考查了相似三角形的应用,主要利用了相似三角形对应高的比等于对应边的比,表示出AI的长度,然后列出比例式是解题的关键.10.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 300(1+x)=450B. 300(1+2x)=450C. 300(1+x)2=450D. 450(1−x)2=300【答案】C【解析】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(本大题共6小题,共18.0分)11.方程x2=9两根的积为______.【答案】−9【解析】解:∵x2=9,∴x=±3,∴两根的积−9.故答案为:−9首先根据一元二次方程求出x的两个值,将他们乘积即可.本题主要考查了一元二次方程的解法,熟记解方程的方法是解答本题的关键.12.若xy =13,则x+yx−y=______.【答案】−2【解析】解:∵x y=13,∴设x=k、y=3k,则x+yx−y =k+3kk−3k=4k−2k=−2,故答案为:−2.辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版) 5 / 16 由x y =13可设x =k 、y =3k ,代入所求代数式消去k 即可得.本题主要考查比例的性质,解题的关键是熟练掌握设k 法求比例式的值.13. 如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是______.【答案】4√3【解析】解:设圆锥的底面圆的半径为r ,则πr 2=4π,解得r =2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高=√42−22=2√3,所以左视图的面积为12×4×2√3=4√3.故答案为4√3.先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14. 如图,在直角坐标系中,有两点A(6,3)、B(6,0),以原点O 为位似中心,相似比为3:1,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为______.【答案】(2,1)【解析】解:∵以原点O 为位似中心,相似比为3:1,在第一象限内把线段AB 缩小后得到线段CD ,A(6,3)、∴点C 的坐标为(6×13,3×13),∴点C 的坐标为(2,1),故答案为:(2,1).根据位似变换的性质计算即可.本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或−k .15. 已知△ABC 的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,以此类推,则第2019个三角形周长为______.【答案】122018【解析】解:由题意可得,第1个三角形的周长是1,第2个三角形的周长是12,第3个三角形的周长是12×12=122,第4个三角形的周长是122×12=123,则第2019个三角形的周长是122018,故答案为:122018.根据题意可以写出前几个三角形的周长,从而可以发现三角形周长的变化规律,进而写出第2019个三角形周长.本题考查图形的变化类,解答本题的关键是明确题意,发现题目中三角形周长的变化规律.16.如图,在Rt△ABC中,∠C=90∘,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为______.【答案】54或5【解析】解:如图,若点B1在BC左侧,∵∠C=90∘,AC=3,BC=4,∴AB=√AC2+BC2=5∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90∘∴B1D//AC∴BDAB=BEBC=DEAC=12∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D−DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2−BP)2,∴BP=5 4辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版)7 / 16如图,若点B 1在BC 右侧,∵B 1E =DE +B 1D =32+52,∴B 1E =4在Rt △EB 1P 中,B 1P 2=B 1E 2+EP 2,∴BP 2=16+(BP −2)2,∴BP =5故答案为:54或5分点B 1在BC 左侧,点B 1在BC 右侧两种情况讨论,由勾股定理可AB =5,由平行线分线段成比例可得BD AB =BE BC =DE AC =12,可求BE ,DE 的长,由勾股定理可求PB 的长. 本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.三、计算题(本大题共2小题,共14.0分)17. 计算:4cos30∘−3tan60∘+2sin45∘⋅cos45∘.【答案】解:原式=4×√32−3×√3+2×√22×√22=1−√3. 【解析】原式利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 解方程:x(x −2)+x −2=0.【答案】解:x(x −2)+x −2=0,(x −2)(x +1)=0,x −2=0,x +1=0,∴x 1=2,x 2=−1.【解析】把方程的左边分解因式得到(x −2)(x +1)=0,推出方程x −2=0,x +1=0,求出方程的解即可本题主要考查对解一元二次方程,解一元一次方程,等式的选择等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.四、解答题(本大题共7小题,共68.0分)19. 如图,矩形ABCD 的对角线AC 的中点为O ,过点O 作EF ⊥AC ,交BC 边于点E ,交AD 边于点F ,分别连接AE 、CF .(1)求证:四边形AECF 是菱形;(2)若AB =6,BC =8,请直接写出EF 的长为______.【答案】152【解析】证明:(1)∵四边形ABCD是矩形∴AD//BC ∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,{∠ACB=∠DAC AO=CO∠AOF=∠COE∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO ∵AB2+BE2=AE2,∴36+(8−CE)2=CE2,∴CE=25 4∵AB=6,BC=8,∴AC=√AB2+BC2=10∴AO=CO=5∵EO=√CE2−CO2=154∴EF=2EO=15 2故答案为:152(1)由矩形的性质可得∠ACB=∠DAC,然后利用“角角边”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得AE=EC,AO=CO,EO=FO,由勾股定理可求CE、EO的长,即可求EF的长.本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g,小明妈妈从货架上随机取下两个苹果,请用列表法或画树状图的方法求取下的两个苹果总重量超过223g的概率.辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版) 9 / 16 【答案】解:画树状图为:共有12种等可能的结果数,其中它们总重量超过223g 的结果数为8,所以它们总重量超过223g 的概率为812=23.【解析】画树状图展示所有12种等可能的结果数,再找出它们总重量超过223g 的结果数,然后根据概率公式计算.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.21. 如图是某路灯在铅垂面内是示意图,灯柱AC 的高为12米,灯杆AB 与灯柱AC 的夹角∠A =120∘,路灯采用锥形灯罩,在地面上的照射区域DE 长为21米,从D ,E 两处测得路灯B 的仰角分别为α和β,且tanα=6,tanβ=34,求灯杆AB 的长度.【答案】解:过点B 作BF ⊥CE ,交CE 于点F ,过点A 作AG ⊥AF ,交BF 于点G ,则FG =AC =12.由题意得∠BDE =α,tan∠β=34.设BF =3x ,则EF =4x在Rt △BDF 中,∵tan∠BDF =BF DF ,∴DF =BF tan∠BDF =3x 6=12x , ∵DE =21,∴12x +4x =21.∴x =143.∴BF =14,∴BG =BF −GF =14−12=2,∵∠BAC=120∘,∴∠BAG=∠BAC−∠CAG=120∘−90∘=30∘.∴AB=2BG=4,答:灯杆AB的长度为4米.【解析】过点B作BF⊥CE,交CE于点F,过点A作AG⊥AF,交BF于点G,则FG= AC=12.设BF=3x知EF=4x、DF=BFtan∠BDF,由DE=21求得x,据此知BG=BF−GF,再求得∠BAG=∠BAC−∠CAG=30∘可得AB=2BG.本题主要考查解直角三角形−仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.22.如图,在平面直角坐标系中,点A(√3,1)在反比例函数y=kx的图象上,OA⊥OB,AB⊥x轴于点C.(1)求反比例函数y=kx的表达式;(2)求△AOB的面积;(3)若将△BOA绕点B按逆时针方向旋转60∘得到△BO1A1(点O、A的对应点分别为O1、A1),点A1是否在反比例函数y=kx的图象上?若在请直接写出该点坐标,若不在请说明理由.【答案】解:(1)∵点A(√3,1),在反比例函数y=kx的图象上,∴k=√3×1=√3∴反比例函数的表达式为y=√3x(2)∵点A(√3,1),AB⊥x轴于点,∴OC=√3,AC=1,由射影定理得OC2=AC⋅BC,可得BC=3,点B(√3,−3),∴S△AOB=12×(1+3)×√3=2√3故△AOB的面积为2√3(3)点E在该反比例函数的图象上.理由如下:∵OA⊥OB,OA=2,OB=2√3,AB=4∴sin∠ABO=OAAB =24=12,∴∠ABO=30∘辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版)11 / 16 ∵将△BOA 绕点B 按逆时针方向旋转60∘得到△BDE ,如图 ∴△BOA≌△BDE ,∠OBD =60∘∴BO =BD =2√3,OA =DE =2,∠BOA =∠BDE =90∘∠ABD =30∘+60∘=90∘,而BD −OC =√3,BC −DE =1,∴点E 的坐标为(−√3,−1)∵−√3×(−1)=√3∴点E 在该反比例函数的图象上【解析】(1)将点A(√3,1)代入y =k x ,利用待定系数法即可求出反比例函数的表达式(2)先由射影定理求出BC =3,那么B(√3,−3),计算出S △AOB =12×(1+3)×√3=2√3(3)先解△AOB ,得出∠ABO =30∘,再根据旋转的性质求出E 点坐标为(−√3,−1),即可求解.此题考查的是反比例函数的图象求函数解析式,此类题型相对容易,但要注意反比例函数的性质.第(3)题中,判断点是否在函数图象上,只要该点满足该函数解析式即可.23. 某饭店推出一种早点套餐,试销一段时间后发现,每份套餐的成本为5元,若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份,该店每天固定支出费用为600元(不含套餐成本).为了便于结算,每份套餐的售价取整数,设每份套餐的售价为x(x >5)元,该店日销售利润为y 元.(日销售利润=每天的销售额−套餐成本−每天固定支出)(1)求y 与x 的函数关系式并写出自变量的取值范围.(2)该店要想获得最大日销售利润,又要吸引顾客,使每天销售量较大,按此要求,每份套餐的售价应定为多少元?此时日销售利润为多少元?【答案】解:(1)由题意,得当5<x ≤10时,y =400(x −5)−600=400x −2600;当x >10时,y =[400−40(x −10)](x −5)−600=−40x 2+1000x −4600;(2)当5<x ≤10时,y =400x −2600,当x =10时,y 最大=1400元,当x >10时y =−40x 2+1000x −4600=−40(x −12.5)2+1650,当x =12时,y =1640,当x =13时,y =1640,∵要吸引顾客,使每天销售量较大,又要有较高的日纯收入,∴每份套餐的售价应定为12元,日纯收入为1640元.【解析】(1)根据日销售利润=每天的销售额−套餐成本−每天固定支出,得出y 与x 的函数关系式;(2)分别求出当不超过10元时的最大利润和超过10元时的最大利润,再结合题意选择方案.本题考查了一次函数的运用、二次函数的运用,方案设计的运用,解答时求出函数的解析式是关键.24.在矩形ABCD中,AB=2,BC=1,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为α(0∘<α<180∘),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G.(1)如图①,当点E落在DC边上时,直写出线段EC的长度为______;(2)如图②,当点E落在线段CF上时,AE与DC相交于点H,连接AC,①求证:△ACD≌△CAE;②直接写出线段DH的长度为______.(3)如图③设点P为边FG的中点,连接PB,PE,在矩形ABCD旋转过程中,△BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.【答案】2−√334【解析】(1)解:如图①中,∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90∘,∵矩形AEFG是由矩形ABCD旋转得到,∴AE=AB=2,在Rt△ADE中,DE=√22−12=√3,∴CE=2−√3,故答案为2−√3.(2)①证明:如图②中,辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版) 13 / 16∵当点E 落在线段CF 上,∴∠AEC =∠ADC =90∘,在Rt △ADC 和Rt △AEC 中, {CD =AE AC=CA,∴Rt △ACD≌Rt △CAE(HL);②解:如图②中,∵△ACD≌△CAE ,∴∠ACD =∠CAE ,∴AH =HC ,设AH =HC =m ,在Rt △ADH 中,∵AD 2+DH 2=AH 2,∴12+(2−m)2=m 2,∴m =54∴DH =2−54=34, 故答案为34.(3)解:存在.理由:如图③中,连接PA ,作BM ⊥PE 交PE 的延长线于M .由题意:PF =PC =1,∵AG =EF =1,∠G =∠F =90∘,∴PA =PE =√2,∴S △PBE =12⋅PE ⋅BM =√22BM , ∴当BM 的值最大时,△PBE 的面积最大,∵BM ≤PB ,PB ≤AB +PA ,∴PB ≤2+√2,∴BM ≤2+√2, ∴BM 的最大值为2+√2,∴△PBE 的面积的最大值为√2+1.(1)如图①中,在Rt △ADE 中,利用勾股定理即可解决问题;(2)①证明:如图②中,根据HL 即可证明△ACD≌△CAE ;②如图②中,由△ACD≌△CAE ,推出∠ACD =∠CAE ,推出AH =HC ,设AH =HC =m ,在Rt △ADH 中,根据AD 2+DH 2=AH 2,构建方程即可解决问题;(3)存在.如图③中,连接PA ,作BM ⊥PE 交PE 的延长线于M.由题意:PF =PC =1,由AG =EF =1,∠G =∠F =90∘,推出PA =PE =√2,推出S △PBE =12⋅PE ⋅BM =√22BM ,推出当BM 的值最大时,△PBE 的面积最大,求出BM 的最大值即可解决问题;本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,勾股定理,三角形的面积,三角形的三边关系等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25. 如图①,抛物线C 1:y =12x 2+bx +c 经过原点(0,0),与x 轴的另一个交点为(2,0),将抛物线C 1向右平移m(m >0)个单位得到抛物线C 2,C 2交x 轴于A 、B 两点(点A 在点B 的左边),交y 轴于点C .(1)求抛物线C 1的解析式.(2)如图②,当m =2时,连接AC ,过点A 做AD ⊥AC 交抛物线C 2于点D ,连接CD .①求抛物线C 2的解析式.②直接写出点D 的坐标为______.(3)若抛物线C 2的对称轴上存在点P ,使△PAC 为等边三角形,请直接写出此时m 的值.【答案】(5,32)【解析】解:(1)∵抛物线C 1:y =12x 2+bx +c 经过原点(0,0),与x 轴的另一个交点为(2,0),∴{2+2b +c =0c=0,解得{c =0b=−1,∴抛物线C 1的解析式为:y =12x 2−x ,(2)①∵y =12x 2−x =12(x −1)2−12,辽宁省沈阳市皇姑区2018-2019年九年级(上)期末数学试卷(解析版) 15 / 16 当m =2时,抛物线C 2的解析式为:y =12(x −3)2−12, ②当x =0时,y =4,当y =0时,x =2或x =4,∴C(0,4),A(2,0),B(4,0),如图,作DH ⊥x 轴于点H ,设点D(x,12(x −2)(x −4)),∵AD ⊥AC ,∴∠DAH =90∘−∠CAO =∠ACO ,∵∠DHA =∠AOC =90∘,∴△DHA∽△AOC∴DHAH =OA OC ,即12(x−2)(x−4)x−2=24, 解得x =5,此时y═12×3×1=32,∴点D 的坐标为(5,32),故答案为:(5,32),(3)由题意,抛物线C 2的解析式为:y =12(x −m)(x −m −2),A(m,0),B(m +2,0).C(0,12m 2+m),对称轴为直线x =m +1,延长AP 至K ,使PK =AP ,连接KC ,作KG ⊥y 轴于G ,∵△PAC 为等边三角形,∴∠PKC =∠PCK =12∠APC =30∘, ∴∠ACK =60∘+30∘=90∘,同理可证△AOC∽△CGK ,∴OC KG =AC GK =√33, ∴GK =√3(12m 2+m),即点K 的横坐标为:√3(12m 2+m),∴点P 的横坐标为:√3(12m 2+m)+m 2, ∴√3(12m 2+m)+m2=m +1,化简,得√3m 2+(2√3−2)m −4=0,(m +2)(√3m −2)=0,∴m =2√33或m =−2(舍去),∴存在点P ,使△PAC 为等边三角形,此时m 的值为2√33,(1)把原点(0,0)与(2,0)代入抛物线C 1:y =12x 2+bx +c ,解方程组求得b ,c 的值,即可得出抛物线C 1的解析式;(2)①根据抛物线的平移规律可得抛物线C 2的解析式;②由抛物线C 2的解析式,求得点C(0,4),A(2,0),B(4,0),作DH ⊥x 轴于点H ,设点D(x,12(x −2)(x −4)),证明△DHA∽△AOC ,得DH AH =OA OC ,求得点D 的横坐标,再代入抛物线求得纵坐标,即可得出点D 的坐标;(3)设抛物线C 2的解析式为:y =12(x −m)(x −m −2),可得A(m,0),B(m +2,0).C(0,12m 2+m),对称轴为直线x =m +1,延长AP 至K ,使PK =AP ,连接KC ,作KG ⊥y 轴于G ,证明△AOC∽△CGK ,可得GK =√3(12m 2+m),利用中点坐标公式得出点P 的横坐标为:√3(12m 2+m)+m 2,所以√3(12m 2+m)+m 2=m +1,解方程即可得出m 的值. 本题考查用待定系数法求二次函数解析式,相似三角形的判定和性质.解决(3)问的关键是构造三角形相似得出点K 的横坐标.。
辽宁沈阳于洪区2019-2020学年度上学期期末学业水平测试九年级数学试题及答案
五、(本题 10 分)
22.解:(1) 16 ,4,8;…3 分 3
(2)x< 3 或 0<x<4;…5 分 2
(3)四边形 OCBD 是菱形. …6 分
∵BD//OC,OD//BC,∴四边形 OCBD 是平行四边形. …7 分
当 y=0 时,即 0= 4 x- 10 ,解得 x=2.5, 33
…4 分
∵∠DCE=∠BCA, ∴∠DCB=∠ECA …5 分
∴△BCD∽△ACE …7 分
∴ AE AC 2 5 5 …8 分 BD BC 2
(3) 5 或 3 5 …12 分 5
八、(本题 12 分)
25. (1)由 OA=2,OC=4 得 A(-2,0),C(0,4),
∵抛物线
y=
1 4
过 E 作 EF⊥AC 于点 F, …2 分
则 AF=DE=500 米,
∴BF=100 米. …3 分 在 Rt△ CEF 中,tan53°≈ CF ,即 CF = 4
EF EF 3 ∴CF=800 米. …7 分
…5 分
∴BC=CF-BF=800-100=700 米. …8 分
∴隧道 BC 长为 700 米.
3 2 …10 分
七、(本题 12 分)
24.(1)① 5 ; ② 5 …2 分 (2)当 0°≤a<360°时, AE 的大小没有变化. …3 分
BD 在 Rt△ ABC 中,∠B=90°,AB=4,BC=2,∴AC= 2 5 ,
点 D、E 分别是边 BC、AC 的中点,
∴ CD CE CB CA
九年级数学试卷参考答案
一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题 2 分,共 20 分)
2018-2019学年辽宁省沈阳市沈河区九年级(上)期末数学试卷-普通用卷
2018-2019学年辽宁省沈阳市沈河区九年级(上)期末数学试卷副标题一、选择题(本大题共10小题,共20.0分)1.若,则的值为()A. B. C. D.2.如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.3.若反比例函数y=-的图象上有三个点(-1,y1),(-,y2),(,y3),则y1,y2,y3的大小关系是()A. B. C. D.4.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A. 3B. 6C.D. 105.下表记录了一名设计运动员在同一条件下的射击成绩,这名射击运动员射击一次,射击中9环的概率约是()6.若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.7.下列命题正确的是()A. 对角线互相平分的四边形是平行四边形B. 对角线互相垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形8.2A. 图象开口向下B. 抛物线的对称轴是直线C. D. 当时,9.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为()A. B. 10cm C. 20cm D. 12cm10.如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A的值是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.计算:cos230°+|1-|-2sin45°+(π-3.14)0=______.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为______m.13.在某校运动会4×400m接力赛中,甲乙两名同学都是第一棒,他们随机从三个赛道中抽取两个不同赛道,则甲乙两名同学恰好抽中相邻赛道的概率为______.14.如图,在平面直角坐标系中,已知点A(-2,4),B(-4,-2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是______.15.若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.16.在矩形ABCD中,AB=9,tan∠ADB=,点E在射线DA上,连接BE,将线段BE绕点E旋转90°后,点B恰好落在射线DB上(此时点B的对应点为点F),则线段DF的长为______.三、计算题(本大题共1小题,共6.0分)17.解方程:(x-3)2=7x-21.四、解答题(本大题共8小题,共76.0分)18.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩于参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩予中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是______.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.19.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD=30°,连接AE交BD于点F、连接CF.(1)求证:四边形BECO是茭形;(2)填空:若AC=8,则线段CF的长为______.20.我市某楼盘准备以每平方米15000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米12150元的均价开盘销售(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米250元.试问哪种方案更优惠?优惠多少元?(不考虑其他因素)21.如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)22.如图,在平面直角坐标系xOy中,已知正比例函数y1=-2x的图象与反比例函数y2=的图象交于A(-1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.23.一租赁公司拥有某种型号的汽车10辆,公司在经营中发现每辆汽车每天的租赁价为120元时可全部出租,租赁价每涨3元就少出租1辆,公司决定采取涨价措施.(1)填空:每天租出的汽车数y(辆)与每辆汽车的租赁价x(元)之间的关系式为______.(2)已知租出的汽车每辆每天需要维护费30元,求租出汽车每天的实际收入w(元)与每辆汽车的租赁价x(元)之间的关系式;(租出汽车每天的实际收入=租出收入-租出汽车维护费)(3)若未租出的汽车每辆每天需要维护费12元,则每辆汽车每天的租赁价x(元)定为多少元时,才能使公司获得日收益z(元)最大?并求出公司的最大日收益.24.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC______∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.25.如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB及抛物线于点P,N.(1)填空:点B的坐标为______,抛物线的解析式为______;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.答案和解析1.【答案】B【解析】解:因为,所以b=,把b=代入则=,故选:B.根据比例的性质解答即可.此题考查比例的性质,关键是根据比例的性质代入解答.2.【答案】C【解析】解:如图所示:它的俯视图是:.故选:C.俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.此题主要考查了三视图的知识,关键是掌握三视图的几种看法.3.【答案】C【解析】解:∵y=-中k=-3<0,∴图象在第二、四象限,在每个象限内,y随x的增大而增大,∵反比例函数y=-的图象上有三个点(-1,y1),(-,y2),(,y3),∴点(-1,y1)和(-,y2)在第二象限,点(,y3)在第四象限,-1<-,∴0<y1<y2,y3<0,即y3<y1<y2,故选:C.根据反比例函数的图象和性质比较即可.本题考查了反比例函数图象上点的坐标特征、反比例函数的图象和性质等知识点,能熟记反比例函数的性质是解此题的关键.4.【答案】D【解析】解:∵AD∥BC,∴△CBE∽△AED,∴BE:AE=CE:ED=3:5,∵CD=16.CE+ED=CD,∴DE=,故选:D.根据平行于三角形一边的直线截另两边或另两边的延长线所得三角形与原三角形相似,即可求得△CBE∽△AED,根据相似三角形的对应边成比例,即可求得DE的长.此题考查了相似三角形的判定与性质.注意数形结合思想的应用.5.【答案】C【解析】解:从频率的波动情况可以发现频率稳定在0.7附近,所以这名运动员射击一次时“射中9环以上”的概率是0.7,故选:C.根据大量的试验结果稳定在0.7左右即可得出结论.本题考查的是利用频率估计概率,熟知大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.6.【答案】D【解析】解:∵△ABC∽△DEF,△ABC与△DEF的面积比是,∴△ABC与△DEF的相似比为,∴△ABC与△DEF对应中线的比为,故选:D.根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.【答案】A【解析】解:A、对角线互相平分的四边形是平行四边形,说法正确;B、对角线互相垂直的四边形是菱形,说法错误,应为对角线互相垂直且平分的四边形是菱形;C、对角线相等的四边形是矩形,说法错误,应为对角线相等且平分的四边形是矩形;D、对角线互相垂直且相等的四边形是正方形,说法错误,应为对角线互相垂直且相等的平行四边形是正方形;故选:A.根据平行四边形的判定方法可得A说法正确;根据菱形的判定方法对角线互相垂直且平分的四边形是菱形可得B说法错误;根据对角线相等且平分的四边形是矩形可得C说法错误;根据正方形的判定方法:对角线互相垂直且相等的平行四边形是正方形可得D说法错误.此题主要考查了命题与定理,关键是熟练掌握平行四边形和特殊的平行四边形的判定方法.8.【答案】D【解析】解:由表格可得,该函数的对称轴是直线x==2,故选项B正确,该函数的顶点坐标是(2,7),有最大值,开口向下,故选项A正确,该函数与x轴有两个交点,故b2-4ac>0,故选项C正确,当1<x<3时,6<y≤7,故选项D错误,故选:D.根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】B【解析】解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,∴AB==10(cm),故选:B.作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.10.【答案】A【解析】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC=BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sinA===,故选:A.根据勾股定理,可得AC的长,根据正弦等于对边比斜边,可得答案.本题考查了勾股定理的运用以及锐角三角函数的定义,构造∠A所在的直角三角形是解题的关键.11.【答案】【解析】解:原式=()2+-1-2×+1=+-1-+1=.故答案为:.直接利用绝对值的性质以及零指数幂的性质、绝对值的性质分别化简,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】4【解析】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC-CD=6-2=4(m).故答案为4.利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC-CD即可.本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.【答案】【解析】解:画树状图为:共有6种等可能的结果数,其中甲乙两名同学恰好抽中相邻赛道的结果数为4,所以甲乙两名同学恰好抽中相邻赛道的概率==.故答案为.画树状图展示所有6种等可能的结果数,再找出甲乙两名同学恰好抽中相邻赛道的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.14.【答案】(-1,2)或(1,-2)【解析】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(-2×,4×)或[-2×(-),4×(-)],即点A′的坐标为:(-1,2)或(1,-2).故答案为:(-1,2)或(1,-2).利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,把A点的横纵坐标分别乘以或-即可得到点A′的坐标.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.15.【答案】k≤5且k≠1解:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1,故答案为:k≤5且k≠1.根据一元二次方程有实数根可得k-1≠0,且b2-4ac=16-4(k-1)≥0,解之即可.本题主要考查一元二次方程根的判别式和定义,熟练掌握根的判别式与方程的根之间的关系是解题的关键.16.【答案】或105【解析】解:如图1,∵四边形ABCD是矩形,∴∠A=90°,∵AB=9,tan∠ADB=,∴AD=12,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF(AAS),∴AE=HF=3x,EH=AB=9,∴AE+DH=AD-EH=3x+4x=12-9=3,∴x=,∴DF=5x=;如图2,∵四边形ABCD是矩形,∴∠BAD=90°,∵AB=9,tan∠ADB=,过F作FH⊥AD于H,∵tan∠ADB=,∴设DH=4x,FH=3x,∴DF=5x,∵∠BEF=90°,∴∠ABE+∠AEB=∠AEB+∠HEF=90°,∴∠ABE=∠HEF,在△ABE与△HEF中,,∴△ABE≌△HEF,∴AE=HF=3x,EH=AB=9,∴DH-AE=AD+EH=4x-3x=12+9=21,∴x=21,∴DF=5x=105,综上所述,线段DF的长为或105.故答案为:或105.解直角三角形得到AD=12,过F作FH⊥AD于H,设DH=4x,FH=3x,根据勾股定理得到DF=5x,根据余角的性质得到∠ABE=∠HEF,根据全等三角形的性质得到AE=HF=3x,EH=AB=9,列方程即可得到结论.本题考查了旋转的性质,矩形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.17.【答案】解:∵(x-3)2-7(x-3)=0,∴(x-3)(x-10)=0,则x-3=0或x-10=0,解得:x1=3,x2=10.【解析】利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)∵有三位孩子,分别是a,b,c,∴家长A恰好选中孩子的概率是;故答案为:.(2)画树状图如下:∵共有9种等情况数,恰好是同一家庭成员的有3种情况数,∴被选中的恰好是同一家庭成员的概率是=.(1)根据概率公式直接得出答案即可;(2)先画出树状图,得出所有等情况数和恰好是同一家庭成员的情况数,然后根据概率公式即可得出答案.主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比,根据题意画出树状图是解题的关键.19.【答案】2【解析】解:(1)∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴平行四边形OBEC是菱形;(2)∵BE∥AC,∴∠OAF=∠BEF,∵AO=BO=BE,在△AOF与△EBF中,,∴△AOF≌△EBF(AAS),∴OF=BF,∵AC=8,∴BD=8,∴OC=OB=4,∴∠OBC=60°,∴△OBC是等边三角形,∴CF⊥OB,∴CF=OC=2.故答案为:2.(1)根据平行四边形的判定定理得到四边形OBEC是平行四边形,根据矩形的性质得到AC=BD,OB=BD,OC=AC,根据菱形的判定定理即可得到结论;(2)根据平行线的性质得到∠OAF=∠BEF,根据全等三角形的性质得到OF=BF,推出△OBC是等边三角形,根据等边三角形的性质得到CF⊥OB,解直角三角形即可得到结论.本题考查了菱形的判定和性质,矩形的性质,全等三角形的判定和性质,等边三角形的性质,熟练掌握矩形的性质定理是解题的关键.20.【答案】解:(1)设平均每次下调的百分率为x,根据题意得:15000(1-x)2=12150,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次下调的百分率为10%,(2)方案①购房优惠:12150×100×(1-0.98)=24300,方案②可优惠:250×100=25000,25000-24300=700,答:选择方案②更优惠,优惠700元.【解析】(1)设平均每次下调的百分率为x,根据“我市某楼盘准备以每平方米15000元的均价对外销售,对价格经过两次下调后,决定以每平方米12150元的均价开盘销售”,列出关于x的一元二次方程,解之即可,(2)根据“某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米250元”分别计算方案①和方案②优惠的价格,比较后即可得到答案.本题考查了一元二次方程的应用,解题的关键:①正确找出等量关系,列出一元二次方程,②正确根据优惠政策列式计算.21.【答案】解:(1)在Rt△EFH中,cos∠FHE==,∴∠FHE=45°,答:篮板底部支架HE与支架AF所成的角∠FHE的度数为45°;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.【解析】(1)由cos∠FHE==可得答案;(2)延长FE交CB的延长线于M,过点A作AG⊥FM于G,过点H作HN⊥AG于N,据此知GM=AB,HN=EG,Rt△ABC中,求得AB=BCtan60°=;Rt△ANH中,求得HN=AHsin45°=;根据EM=EG+GM可得答案.本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义,属于中考常考题型.22.【答案】解:(1)把A(-1,n)代入y=-2x,可得n=2,∴A(-1,2),把A(-1,2)代入y=,可得k=-2,∴反比例函数的表达式为y=-,∵点B与点A关于原点对称,∴B(1,-2).(2)∵A(-1,2),∴y≤2的取值范围是x<-1或x>0;(3)作BM⊥x轴于M,PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,-),则(2+)(m-1)=1或(2+)(1-m)=1整理得,m2-m-1=0或m2+m+1=0,解得m=或m=,∴P点的横坐标为.【解析】(1)把A(-1,n)代入y=-2x,可得A(-1,2),把A(-1,2)代入y=,可得反比例函数的表达式为y=-,再根据点B与点A关于原点对称,即可得到B的坐标;(2)观察函数图象即可求解;=S△POB=1,可得方程(2+)(m-1)=1或(3)设P(m,-),根据S梯形MBPN(2+)(1-m)=1,求得m的值,即可得到点P的横坐标.本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.23.【答案】y=-x+50【解析】解:(1)根据题意得,y与x满足一次函数关系,设y=kx+b,则,解得:,即每天租出的汽车数y(辆)与每辆汽车的租赁价x(元)之间的关系式为:y=-x+50;故答案为:y=-x+50;(2)设公司获得的日收益为w,则w=(x-30)(-x+50)=-x2+60x-1500;(3)z=w-12(10-y)=-x2+56x-1020=-(x-84)2+1332(x≥120),∵当x>84时,z随x的增大而减小,∴当x=120时,z取得最大值,最大值=-(120-84)2+1332=900,答:将每辆汽车的日租金定为120元,才能使公司获得最大日收益,公司的最大日收益是900元.(1)判断出y与x的函数关系为一次函数关系,再根据待定系数法求出函数解析式;(2)根据租出汽车每天的实际收入=租出收入-租出汽车维护费即可得到结论;(3)租出的车的利润减去未租出车的维护费,即为公司月收益,再利用二次函数的性质求解可得.本题主要考查二次函数的应用,解题的关键是掌握待定系数法求一次函数解析式,理解题意确定相等关系,并据此列出函数解析式.24.【答案】=【解析】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=•AH•AG=AC2=×(4)2=16.∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(-1),∴AE=4-4(-1)=8-4,综上所述,满足条件的m的值为或2或8-4.(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题;本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】(0,-3)y=x2-x-3【解析】解:(1)把点A坐标代入直线表达式y=x+a,解得:a=-3,则:直线表达式为:y═x-3,令x=0,则:y=-3,则点B坐标为(0,-3),将点B的坐标代入二次函数表达式得:c=-3,把点A的坐标代入二次函数表达式得:×16+4b-3=0,解得:b=-,故:抛物线的解析式为:y=x2-x-3,故:答案为:(0,-3),y=x2-x-3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m,m-3),N(m,m2-m-3),∴PN=m-3-(m2-m-3)=-(m-2)2+3,∵a=-<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为-3,把y=-3代入抛物线的表达式得:-3=m2-m-3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为-1,设:直线BN的表达式为:y=-x+n,把点B的坐标代入上式,解得:n=-3,则:直线BN的表达式为:y=-x-3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2-m-3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n-m),将抛物线的表达式与上式联立并整理得:3x2-12x-12+3m-4n=0,△=144-3×4×(0=-12+3m-4n)=0,将n=m2-m-3代入上式并整理得:m2-4m+4=0,解得:m=2,则点N的坐标为(2,-),则:点P坐标为(2,-),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2-4x-4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2-2,作NH⊥AB交直线AB于点H,则h=NH=NPsinα=,作N′P′⊥x轴,交x轴于点P′,则:∠ON′P′=α,ON′==(2+2),=BP•h=×=6,S四边形OBPN=S△OP′N′+S△OBP′=6+6,则:S四边形OBP′N′″=6-6,同理:S四边形OBN″P故:点O,B,N,P构成的四边形的面积为:6或6+6或6-6.(1)把点A坐标代入直线表达式y=x+a,求出a=-3,把点A、B的坐标代入二次函数表达式,即可求解;(2)①设:点P(m,m-3),N(m,m2-m-3)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB 直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.。
辽宁省沈阳市于洪区于洪区教育研究中心教师进修学校2023-2024学年九年级上学期期中数学试题
辽宁省沈阳市于洪区于洪区教育研究中心教师进修学校2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.一个螺母如图放置,则它的左视图是()A.B.C.D.2.一元二次方程22140+-=的一次项系数是()x xA.2B.1C.4-D.43.如图,某同学下晚自习后经过一路灯回寝室,他从A处背着灯柱方向走到B处,在这一过程中他在该路灯灯光下的影子()A.由长逐渐变短B.由短逐渐变长C.先变长后变短D.先变短后变长4.如图,平面直角坐标系中有M,N、P,Q四个点,其中的三个点在同一反比例函数的图象上,则不在这个图象上的点是()A .8B .126.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子.球试验发现,摸到黄球的频率稳定在A .21B .247.下列一元二次方程中,没有实数根的是(A .27x x =B .(x x -8.在数学活动课上,老师让同学们判断一个由四根木条组成的四边形是否为矩形,下面是一个学习小组拟定的方案,其中正确的方案是(A .测量四边形的三个角是否为直角C .测量四边形的对角线是否相等9.若0ab <,则一次函数y ax =致可能是()..C.D..如图,正方形ABCD和正方形CEFG,点G在CD上,H是AF的中点.若3,1CE=,则CH的长为()A.2.5B.5C.10D.2二、填空题11.已知13a cb d==(其中b d≠),则a cb d-=-.12.如图,AD BE FC∥∥,它们依次交直线12,l l于点4,5,3AB BC DE===,则DF的长为.14.如图,矩形绿地的长为地面积增加了218m ,则绿地的长、宽增加的长度为15.如图,在平面直角坐标系中,点连接,,OA OB AB ,则AOB 的面积为16.如图,在ABC 中,AB =重合),过点D 作射线DE 交则BD 的长为cm .三、作图题17.小亮同学利用所学知识测量操场旁边一棵杨树的高度.(1)如图,请你根据小亮()AB在阳光下的投影()BE,画出此时杨树()CD在阳光下的投影.(2)已知小亮的身高为1.7m,在同一时刻测得小亮和杨树的投影长分别为0.5m和2m,求杨树的高度.四、问答题(1)求密度ρ关于体积V 的函数解析式;(2)若39V ≤≤,求二氧化碳密度ρ的变化范围.五、应用题21.【学科融合】如图1,在光的反射现象中,反射光线、入射光线和法线都在同一个平面内,反射光线和入射光线分别位于法线两侧,反射角r 等于入射角i .这就是光的反射定律.【问题解决】如图2,林舒同学正在使用手电筒进行物理光学实验,地面上从左往右依次是墙,木板和平面镜,手电筒的灯泡在点G 处,手电筒的光从平面镜上点B 处反射后,恰好经过木板的边缘点F ,落在墙上的点E 处,点G 到地面的高度 1.2m GA =,点F 到地面的高度 1.5m FC =,灯泡到木板的水平距离 5.4m AC =,木板到墙的水平距离为4m CD =.图中,,,A B C D 在同一条直线上.(1)求平面镜与木板的水平距离BC 的长;(2)求点E 到地面的高度ED 的长.六、问答题22.如图,在四边形ABCD 中,AB CD BC AD ==,,E F ,分别是边CD BC ,上的点,连接BE DF ,交于点G ,BE DF =.添加下列条件之一使四边形ABCD 成为菱形:①CE CF =;②BE CD DF BC ⊥⊥,.(1)你添加的条件是______(填序号)(2)在(1)的条件下,连接积.七、应用题23.某景区六月份的游客人数为50万人,七、八两月游客人数持续增加,八月份的人数达到72万.(1)求该景区七、八月游客人数的月平均增长率;(2)景区内某商店销售一种纪念品,已知每件纪念品的成本是30元.如果销售价定为每件40元,那么日销售量将达到100件.八月份库存不足的情况下,店主提价销售,若销售价每提高5元,日销售量将减少10件.要使每天销售这种纪念品盈利1600元,同时又利于游客,那么该纪念品的销售价应定为多少元?八、问答题24.如图,在平面直角坐标系中,AOB 的顶点O 是坐标原点,点A 的坐标为()18,24,点B 的坐标为()50,0,动点P 从点B 出发以每秒4个单位长度的速度沿x 轴向终点O 运动,过点P 作PC x ⊥轴交直线AB 于点C ,过点C 作CD y ⊥轴于点D ,设动点P 的运动时间为t 秒.(1)填空:AO 的长为______,AB 的长为______;(2)当1t =时,求点C 的坐标;(3)当点C 在AOB ∠的平分线上时,求动点P 的运动时间t 的值;(4)当OA 平分四边形OPCD 的一边时,请直接写出运动时间t 的值.九、计算题(1)填空:点A到BC的距离为(2)判断线段CE与AF的数量关系,并说明理由;(3)当DF AB⊥时,求线段。
2018—2019学年度九年级数学第一学期期末质量检测试卷及答案
2018—2019学年度九年级数学第一学期期末质量检测试卷一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个 1.已知∠A 为锐角,且sin A =12,那么∠A 等于 A .15° B .30° C .45° D .60° 2.如图,⊙O 是△ABC 的外接圆,∠A =50︒,则∠BOC 的大小为A .40°B .30°C .80°D .100°3.已知△ABC ∽△'''A B C ,如果它们的相似比为2∶3,那么它们的面积比是A .3:2B . 2:3C .4:9D .9:4 4.下面是一个反比例函数的图象,它的表达式可能是 A .2y x = B .4y x=C .3y x =-D . 12y x =5.正方形ABCD 内接于O ,若OA .1B .2CD.6.如图,线段BD ,CE 相交于点A ,DE ∥BC .若BC =3,DE =1.5,AD =2,则AB 的长为 A .2 B .3 C .4 D .522D EC BA第6题图第8题图 第2题图第4题图第5题图A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度8. 如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(-2,-3),(1,-3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为 A.-1 B.-3 C.-5 D.-7 二、填空题(本题共16分,每小题2分)9.二次函数241y x x =++-2图象的开口方向是__________. 10.Rt△ABC 中,∠C=90°,AC=4,BC=3,则tanA 的值为 .11. 如图,为了测量某棵树的高度,小颖用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点. 此时竹竿与这一点距离相距6m ,与树相距15m ,那么这棵树的高度为 .12.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是 . 13.如图所示的网格是正方形网格,则sin ∠BAC 与sin ∠DAE 的大小关系是 .14.写出抛物线y=2(x-1)2图象上一对对称点的坐标,这对对称点的坐标 可以是 和 .15.如图,为测量河内小岛B 到河边公路l 的距离,在l 上顺次取A ,C ,D 三点,在A 点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=50米,则小岛B 到公路l 的距离为 米.16.在平面直角坐标系xOy 内有三点:(0,-2),(1,-1),(2.17,0.37).则过这三个点 (填“能”或“不能”)画一个圆,理由是 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.已知:53a b =. 求:a bb+.18.计算:2cos30-4sin 45︒︒211题图13题图CB A(1)将y = x 2-2x -3化成y = a (x -h )2 + k 的形式; (2)求该二次函数图象的顶点坐标.20.如图,在△ABC 中,∠B 为锐角, AB=BC =7,sin 2B =,求AC 的长.21. 如图,在四边形ABCD 中,AD ∥BC ,AB ⊥BC ,点E 在AB 上,AD =1,AE =2,BC =3,BE =1.5. 求证:∠DEC =90°.22.下面是小东设计的“在三角形一边上求作一个点,使这点和三角形的两个顶点构成的三角形与原三角形相似”的尺规作图过程. 已知: △ABC .求作: 在BC 边上求作一点P , 使得△P AC ∽△ABC .作法:如图,①作线段AC 的垂直平分线GH ;②作线段AB 的垂直平分线EF,交GH 于点O ;E DCBA ABC④以点C为圆心,CA为半径画弧,交⊙O于点D(与点A不重合);⑤连接线段AD交BC于点P.所以点P就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明: ∵CD=AC,∴CD= .∴∠=∠.又∵∠=∠,∴△P AC∽△ABC ( )(填推理的依据).23.在平面直角坐标系xOy中,直线y=x+2与双曲线kyx相交于点A(m,3).(1)求反比例函数的表达式;(2)画出直线和双曲线的示意图;(3)若P是坐标轴上一点,当OA=P A时.直接写出点P的坐标.24. 如图,AB是O的直径,过点B作O的切线BM,点A,C,D分别为O的三等分点,连接AC,AD,DC,延长AD交BM于点E,CD交AB于点F.(1)求证://CD BM;(2)连接OE,若DE=m,求△OBE的周长.B25. 在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为x cm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y,y与x的几组对应值;(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为cm.26. 在平面直角坐标系xOy 中,抛物线22y ax ax c =++(其中a 、c 为常数,且a <0)与x 轴交于点A ()3,0-,与y 轴交于点B ,此抛物线顶点C 到x 轴的距离为4. (1)求抛物线的表达式; (2)求CAB ∠的正切值;(3)如果点P 是x 轴上的一点,且ABP CAO ∠=∠,直接写出点P27. 在菱形ABCD 中,∠ADC=60°,BD 是一条对角线,点P 在边CD 上(与点C ,D 不重合),连接AP ,平移ADP ∆,使点D 移动到点C ,得到BCQ ∆,在BD 上取一点H ,使HQ=HD ,连接HQ ,AH ,PH . (1) 依题意补全图1;(2)判断AH 与PH 的数量关系及∠AHP 的度数,并加以证明;(3)若141AHQ ∠=︒,菱形ABCD 的边长为1,请写出求DP 长的思路. (可以不写出计算结果.........) A BDP图1A BCD备用图28.在平面直角坐标系xOy中,点A(x,0),B(x,y),若线段AB上存在一点Q满足12QAQB=,则称点Q是线段AB的“倍分点”.(1)若点A(1,0),AB=3,点Q是线段AB的“倍分点”.①求点Q的坐标;②若点A关于直线y= x的对称点为A′,当点B在第一象限时,求' QA QB;(2)⊙T的圆心T(0,t),半径为2,点Q在直线y x=上,⊙T上存在点B,使点Q是线段AB的“倍分点”,直接写出t的取值范围.评分标准一、选择题(本题共16分,每小题2分)下列各题均有四个选项,符合题意的选项只有..一个9.下10.3411. m712.32π13.sin∠BAC>sin∠DAE14.(2,2),(0,2)(答案不唯一)15.能,因为这三点不在一条直线上.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:∵53ab=,∴1a b ab b+=+=53+1=83.………………………5分=22⨯18.解:原式………………………3分4分5分19.解:(1)y=x2-2x-3=x2-2x+1-1-3……………………………2分=(x-1)2-4.……………………3分(2)∵y=(x-1)2-4,∴该二次函数图象的顶点坐标是(1,-4).………………………5分20.解:作AD⊥BC于点D,∴∠ADB=∠ADC=90°.∵sin2B=∴∠B=∠BAD=45°.………………2分∵AB=∴AD=BD=3.…………………………3分∵BC=7,∴DC=4.∴在Rt△ACD中,5AC=.…………………………5分21.(1)证明:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=90°.∴∠A=∠B.………………2分∵AD=1,AE=2,BC=3,BE=1.5,∴121.53=.∴AD AEBE BC=∴△ADE∽△BEC.∴∠3=∠2.………………3分∵∠1+∠3=90°,∴∠1+∠2=90°.∴∠DEC=90°.………………5分22.(1)补全图形如图所示:………………2分B(2)AC ,∠CAP=∠B ,∠A CP=∠A CB ,有两组角对应相等的两个三角形相似.………………5分23.解:(1)∵直线y=x+2与双曲线ky x=相交于点A (m ,3). ∴3=m+2,解得m=1.∴A (1,3)……………………………………1分 把A (1,3)代入ky x=解得k=3, 3y x=……………………………………2分(2)如图……………………………………4分(3)P (0,6)或P (2,0) ……………………………………6分 24.证明:(1)∵点A 、C 、D 为O 的三等分点,∴AD DC AC == , ∴AD=DC=AC. ∵AB 是O 的直径,∴AB ⊥CD.∵过点B 作O 的切线BM , ∴BE ⊥AB.∴//CD BM .…………………………3分(2) 连接DB.①由双垂直图形容易得出∠DBE=30°,在Rt △DBE 中,由DE=m ,解得BE=2m ,②在Rt △ADB 中利用30°角,解得,…………………4分 ③在Rt △OBE 中,由勾股定理得出………………………………5分 ④计算出△OB E 周长为2………………………………6分25.(1)3.00…………………………………1分∴(2)…………………………………………4分 (3)1.50或4.50……………………………2分26.解:(1)由题意得,抛物线22y ax ax c =++的对称轴是直线212ax a=-=-.………1分 ∵a <0,抛物线开口向下,又与x 轴有交点,∴抛物线的顶点C 在x 轴的上方.由于抛物线顶点C 到x 轴的距离为4,因此顶点C 的坐标是()1,4-. 可设此抛物线的表达式是()214y a x =++,由于此抛物线与x 轴的交点A 的坐标是()3,0-,可得1a =-. 因此,抛物线的表达式是223y x x =--+.………………………2分 (2)点B 的坐标是()0,3.联结BC .∵218AB =,22BC =,220AC =,得222AB BC AC +=. ∴△ABC 为直角三角形,90ABC ∠=.所以1tan 3BC CAB AB ∠==. 即CAB ∠的正切值等于13.………………4分(3)点p 的坐标是(1,0).………………6分 27.(1)补全图形,如图所示.………………2分 (2)AH 与PH 的数量关系:AH =PH ,∠AHP =120°. 证明:如图,由平移可知,PQ=DC. ∵四边形ABCD 是菱形,∠ADC=60°, ∴AD=DC ,∠ADB =∠BDQ =30°.∴AD=PQ.∵HQ=HD ,∴∠HQD =∠HDQ =30°.∴∠ADB =∠DQH ,∠D HQ=120°.∴△ADH ≌△PQH.∴AH =PH ,∠A HD =∠P HQ .∴∠A HD+∠DHP =∠P HQ+∠DHP . ∴∠A HP=∠D HQ . ∵∠D HQ=120°,∴∠A HP=120°.………………5分 (3)求解思路如下:A BCDP HQa.在△ABH中,由∠A HB=81°,∠A BD=30°,解得∠BA H=69°.b.在△AHP中,由∠A HP=120°,AH=PH,解得∠PA H=30°.c.在△ADB中,由∠A DB=∠A BD= 30°,解得∠BAD=120°.由a、b、c可得∠DAP=21°.在△DAP中,由∠A DP= 60°,∠DAP=21°,AD=1,可解△DAP,从而求得DP长.…………………………………7分28.解:(1)∵A(1,0),AB=3∴B(1,3)或B(1,-3)∵12 QA QB=∴Q(1,1)或Q(1,-1)………………3分(2)点A(1,0)关于直线y= x的对称点为A′(0,1)∴Q A =Q A′∴QBA Q'21=………………5分(3)-4≤t≤4………………7分x。
2018-2019学年九年级(上)期末数学试卷(有答案和解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题4分,共40分)1.下列图形是我们日常生活中经常看到的一些标志,则其中是中心对称图形的是()A.B.C.D.2.若关于x的一元二次方程x2﹣ax=0的一个解是﹣1,则a的值为()A.1B.﹣2C.﹣1D.23.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.任意一个六边形的外角和等于720°C.同时掷两枚质地均匀的骰子,两个骰子的点数相同D.367个同学参加一个集会,他们中至少有两个同学的生日是同月同日4.如图,在⊙O中,M是弦CD的中点,EM⊥CD,若CD=4cm,EM=6cm,则⊙O的半径为()A.5B.3C.D.45.抛物线y=x2﹣4x+6的顶点坐标是()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)6.已知方程x2+2018x﹣3=0的两根分别为α和β,则代数式α2+αβ+2018α的值为()A.1B.0C.2018D.﹣20187.如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于()A.30°B.25°C.15°D.10°8.如图,在⊙O的内接四边形ABCD中,∠A=80°,∠OBC=60°,则∠ODC的度数为()A.40°B.50°C.60°D.30°9.已知a、b是等腰三角形的两边,且a、b满足a2+b2+29=10a+4b,则△ABC的周长为()A.14B.12C.9或12D.10或1410.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴为直线l,则下列结论:①abc>0;②a+b+c >0;③a+c>0;④a+b>0,正确的是()A.①②④B.②④C.①③D.①④二、填空题(8小题,每小题4分,共32分)11.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是.12.抛物线y=x2的对称轴是直线.13.一元二次方程x(x﹣2)=x﹣2的根是.14.小明和他的哥哥、姐姐共3人站成一排,小明与哥哥相邻的概率是.15.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为cm.16.已知关于x的方程x2+x﹣m=0有实数解,则m的取值范围是.17.某校规划在一个长16m,宽9m的矩形场地ABCD上修建同样宽度的三条小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,如果草坪部分的总面积为112m2,设小路的宽为xm,那么x满足的方程是.18.已知二次函数y=ax2+bx﹣2自变量x的部分取值和对应的函数值y如下表,则在实数范围内能使得y﹣1>0成立的x的取值范围是.三、解答题:(7个小题,共78分)19.(8分)解方程(1)x2﹣2x﹣48=0.(2)2x2﹣4x=﹣1.20.(10分)将抛物线y1=2x2先向下平移2个单位,再向右平移3个单位得到抛物线y2.(1)直接写出平移后的抛物线y2的解析式;(2)求出y2与x轴的交点坐标;(3)当y2<0时,写出x的取值范围.21.(12分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(3,4)、B(1,2)、C(5,3)(1)将△ABC平移,使得点A的对应点A1的坐标为(﹣2,4),在如图的坐标系中画出平移后的△A1B1C1;(2)将△A1B1C1绕点C1逆时针旋转90°,画出旋转后的△A2B2C1并直接写出A2、B2的坐标;(3)求△A2B2C1的面积.22.(12分)传统节日“元宵节”时,小丽的妈妈为小丽盛了一碗汤圆,其中一个汤圆是花生馅,一个汤圆是黑芝麻馅,两个汤圆草莓馅,这4个汤圆除了内部馅料不同外,其他均相同.(1)若小丽随意吃一个汤圆,刚好吃到黑芝麻馅的概率是多少?(2)小丽喜欢草莓馅的汤圆,妈妈在盛了4个汤圆后,又为小丽多盛了2个草莓馅的汤圆,若小丽吃2个汤圆,都是草莓馅的概率是多少?23.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于点D,E为BC 的中点,连接DE并延长交AC的延长线于点E.(1)求证:DF是⊙O的切线;(2)若CF=2,DF=4,求⊙O的半径.24.(12分)一年一度的“春节”即将到来,某超市购进一批价格为每千克3元的桔子,根据市场预测,该种桔子每千克售价4元时,每天能售出500千克,并且售价每上涨0.1元,其销售量将减少10千克,物价部门规定,该种桔子的售价不能超过进价的200%,请你利用所学知识帮助超市给这种桔子定价,使得超市每天销售这种桔子的利润为800元.25.(12分)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】根据中心对称的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,结合选项即可得出答案.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】此题考查了中心对称的知识,解答本题一定要熟练中心对称的定义,关键是寻找中心对称点,要注意和轴对称区分开来.2.【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解关于a的方程即可.【解答】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件;B、任意一个六边形的外角和等于720°是不可能事件;C、任同时掷两枚质地均匀的骰子,两个骰子的点数相同是随机事件;D、367个同学参加一个集会,他们中至少有两个同学的生日是同月同日是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】如图,连接OC.设⊙O的半径为r.首先证明EN经过圆心O,利用勾股定理构建方程即可解决问题.【解答】解:如图,连接OC.设⊙O的半径为r.∵CM=DM=2cm,EM⊥CD,∵EM经过圆心O,在Rt△COM中,∵OC2=OM2+CM2,∴r2=22+(6﹣r)2,∴r=,故选:C.【点评】本题考查垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5.【分析】已知抛物线的一般式,利用配方法转化为顶点式,直接写成顶点坐标.【解答】解:∵y=x2﹣4x+6=x2﹣4x+4+2=(x﹣2)2+2,∴抛物线y=x2﹣4x+6的顶点坐标为(2,2).故选:C.【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k);此题还考查了配方法求顶点式.6.【分析】由根与系数的关系得到α+β=﹣2018,将其代入整理后的代数式求值.【解答】解:依题意得:αβ=﹣3,α+β=﹣2018,α2+2018α﹣3=0,所以α2+αβ+2018α=α(α+β)+2018α=﹣2018α+2018α=0.故选:B.【点评】考查了根与系数的关系,一元二次方程的解的定义,解题的巧妙之处在于将所求的代数式转化为α(α+β)+2018α的形式,然后代入求值.7.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.【解答】解:∵C′C∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A旋转到△AB'C'的位置,∴AC=AC′,∠CAC′=∠BAB′,∴∠ACC′=∠AC′C=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴∠BAB′=40°,∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.故选:A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.8.【分析】在四边形OBCD中,利用四边形内角和定理即可解决问题.【解答】解:∵∠A=80°,∴∠C=180°﹣80°=100°,∠BOD=2∠A=160°,∴∠ODC=360°﹣160°﹣60°﹣100°=40°,故选:A.【点评】本题考查圆内接四边形的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【分析】利用配方法分别求出a、b,根据三角形三边关系、等腰三角形的概念计算.【解答】解:a2+b2+29=10a+4b,a2﹣10a+25+b2﹣4b+4=0,(a﹣5)2+(b﹣2)2=0,a﹣5=0,b﹣2=0,解得,a=5,b=2,∵2、2、5不能组成三角形,∴这个等腰三角形的周长为:5+5+2=12,故选:B.【点评】本题考查的是配方法、非负数的性质、等腰三角形的性质以及三角形三边关系,掌握配方法、完全平方公式是解题的关键.10.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴进行推理,进而对所得结论进行判断.【解答】解:①抛物线的对称轴位于y轴的右侧,则a、b异号,即ab<0.抛物线与y轴交于负半轴,则c<0.所以abc>0.故正确;②如图所示,当x=1时,y<0,即a+b+c<0,故错误;③由图可知,当x=﹣1时,y=0,即a﹣b+c=0,x=1时,y<0,即a+b+c<0,所以a+a+c+c<0.所以2a+2c<0.所以a+c<0.故错误;④由图可知,当x=﹣1时,y=0,即a﹣b+c=0.当x=2时,y>0,即4a+2b+c>0,所以4a+2b+b﹣a>0,所以3a+3b>0.所以a+b>0.故正确.故选:D.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.二、填空题(8小题,每小题4分,共32分)11.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【分析】直接利用y=ax2图象的性质得出其对称轴.【解答】解:抛物线y=x2的对称轴是直线y轴或(x=0).故答案为:y轴或(x=0).【点评】此题主要考查了二次函数的性质,正确掌握简单二次函数的图象是解题关键.13.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.14.【分析】根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:设小明为A,哥哥为B,姐姐为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的哥哥相邻的概率是=,故答案为:.【点评】此题考查的是用树状图法求概率的知识.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.15.【分析】根据圆锥的底面周长等于侧面展开图的扇形弧长是16π,列出方程求解即可求得半径,然后利用勾股定理求得高即可.【解答】解:半径为24cm、圆心角为120°的扇形弧长是:=16π,设圆锥的底面半径是r,则2πr=16π,解得:r=8cm.所以帽子的高为=16故答案为:16.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.【分析】方程有解时△≥0,把a、b、c的值代入计算即可.【解答】解:依题意得:△=12﹣4×1×(﹣m)≥0.解得m≥﹣.故答案是:m≥﹣.【点评】本题考查了根的判别式,解题的关键是注意:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.17.【分析】设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,根据矩形的面积公式结合草坪部分的总面积为112m2,即可得出关于x的一元二次方程,此题得解.【解答】解:设小路的宽为xm,则草坪部分可合成长为(16﹣x)m,宽为(9﹣2x)m的矩形,依题意,得:(16﹣x)(9﹣2x)=112.整理,得:2x2﹣41x+32=0.故答案为:2x2﹣41x+32=0.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.18.【分析】根据图表求出函数对称轴,再根据图表信息和二次函数的对称性得出y=1的自变量x 的值即可.【解答】解:∵x=0,x=2的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=1,∵x=﹣1时,y=1,∴x=3时,y=1,根据表格得,自变量x<1时,函数值逐点减小,当x=1时,达到最小,当x>1时,函数值逐点增大,∴抛物线的开口向上,∴y﹣1>0成立的x取值范围是x<﹣1或x>3,故答案为:x<﹣1或x>3.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.此题也可以确定出抛物线的解析式,再解不等式或利用函数图形来确定.三、解答题:(7个小题,共78分)19.【分析】(1)直接利用十字相乘法分解因式解方程即可;(2)直接利用配方法将原式变形,进而解方程即可.【解答】解:(1)x2﹣2x﹣48=0(x+6)(x﹣8)=0,解得:x1=﹣6,x2=8;(2)2x2﹣4x=﹣1(x2﹣2x)=﹣(x﹣1)2=,则x﹣1=±,解得:x1=1+,x2=1﹣.【点评】此题主要考查了十字相乘法、配方法解方程,正确分解因式是解题关键.20.【分析】(1)利用点平移规律写出平移后的顶点坐标为(3,﹣2),然后利用顶点式写出抛物线y2的解析式;(2)通过解方程2(x﹣3)2﹣2=0得y2与x轴的交点坐标;(3)利用函数图象写出抛物线在x轴上方对应的自变量的范围即可.【解答】解:(1)平移后的抛物线y2的解析式为y2=2(x﹣3)2﹣2;(2)当y2=0时,2(x﹣3)2﹣2=0,解得x1=2,x2=4,所以y2与x轴的交点坐标为(2,0),(4,0);(3)当2<x<4时,y2<0.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.21.【分析】(1)由点A及其对应点A1的位置得出平移方向和距离,再将点B和点C分别按此方式平移得出其对应点,继而首尾顺次连接即可得;(2)由旋转的性质作出变换后的对应点,再首尾顺次连接即可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C1即为所求,其中A2的坐标为(﹣1,1)、B2的坐标为(1,﹣1);(3)△A2B2C1的面积为2×4﹣×2×2﹣×1×2﹣×1×4=3.【点评】本题主要考查作图﹣旋转变换和平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得出变换后的对应点.22.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)所有等可能结果中,满足吃一个汤圆,吃到黑芝麻馅的结果只有1种,∴吃到黑芝麻馅的概率为;(2)列表如下:由表知,共有30种等可能结果,2个都是草莓馅的结果有12种,所以都是草莓馅的概率是.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.【解答】解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的半径为3.【点评】本题主要考查切线的判定与圆周角定理、直角三角形的性质及勾股定理,熟练掌握切线的判定与圆周角定理是解题的关键.24.【分析】设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出x的值,再结合售价不能超过进价的200%即可确定x的值,此题得解.【解答】解:设每千克桔子的定价为x元时,每天的利润为800元,则每天可售出(500﹣10×)千克桔子,依题意,得:(x﹣3)(500﹣10×)=800,整理,得:x2﹣12x+35=0,解得:x1=5,x2=7.∵售价不能超过进价的200%,∴x≤3×200%,即x≤6,∴x=5.答:每千克桔子的定价为5元时,每天的利润为800元.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【解答】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得解得∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入解得∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±,∵x>0∴x=1+.∴P(1+,﹣2)【点评】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P的横坐标.。
2018-2019学年九年级上学期期末数学试题(解析版)
2018—2019学年度上学期期末教学质量监测试题九年级数学温馨提示:1.本试题共4页,考试时间120分钟.2.答题前务必将自己的姓名、考号、座位号涂写在答题卡上;选择题答案选出后,请用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色签字笔笔直接答在答题卡上.试卷上作答无效.3.请将名字与考号填写在本卷相应位置上.一、选择题(共12小题,下列各题的四个选项中只有一个正确)1. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的定义求解.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项错误;B.是轴对称图形,不是中心对称图形,故该选项错误;C.既是轴对称图形又是中心对称图形,故该选项正确;D.既不轴对称图形,又不是中心对称图形,故该选项错误.故选C.【点睛】本题主要考查了轴对称图形与中心对称图形的定义. 轴对称图形的关键是找对称轴,图形两部分折叠后可完全重合,中心对称图形是要找对称中心,旋转180°后两部分能够完全重合.2. 下列方程中是关于x的一元二次方程的是( )A. x2+3x=0 B. y2-2x+1=0C. x2-5x=2D. x2-2=(x+1)2【答案】C【解析】【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,即可进行判定,【详解】A选项,x2+3x=0,因为未知数出现在分母上,是分式方程,不符合题意,B选项,y2-2x+1=0,因为方程中含有2个未知数,不是一元二次方程,不符合题意,C选项,x2-5x=2,符合一元二次方程的定义,符合题意,D选项,将方程x2-2=(x+1)2整理后可得:-2x-3=0,是一元一次方程,不符合题意,故选C.【点睛】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.3. “明天降水概率是30%”,对此消息下列说法中正确的是()A. 明天降水的可能性较小B. 明天将有30%的时间降水C. 明天将有30%的地区降水D. 明天肯定不降水【答案】A【解析】【分析】根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.【详解】解:A. 明天降水概率是30%,降水的可能性较小,故选项正确;B. 明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 明天降水概率是30%,并不是有30%的地区降水,故选项错误;D. 明天降水概率是30%,明天有可能降水,故选项错误.故选:A.【点睛】本题考查概率的意义,随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.4. 如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°【答案】C【解析】【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22+=16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C .【点睛】考点:勾股定理逆定理.5. 圆外一点P 到圆上最远的距离是7,最近距离是3,则圆的半径是( ) A. 4 B. 5C. 2或5D. 2【答案】C 【解析】【分析】分两种情况:点在圆外,直径等于两个距离的差;点在圆内,直径等于两个距离的和. 【详解】解:∵点P 到⊙O 的最近距离为3,最远距离为7,则: 当点在圆外时,则⊙O 的直径为7-3=4,半径是2; 当点在圆内时,则⊙O 直径是7+3=10,半径为5, 故选:C .【点睛】本题考查了点与圆的位置关系,注意此题的两种情况.从过该点和圆心的直线中,即可找到该点到圆的最小距离和最大距离.6. 关于x 的方程kx 2+2x -1=0有实数根,则k 的取值范围是( ) A. k >-1且k≠0 B. k≥-1且k≠0C. k >-1D. k ≥-1【答案】D 【解析】【分析】由于k 的取值范围不能确定,故应分0k =和0k ≠两种情况进行解答. 【详解】解:(1)当0k =时,原方程为:210x -=,此时12x =有解,符合题意; (2)当0k ≠时,此时方程式一元二次方程∵关于x 的一元二次方程2210kx x +-=有实数根, ∴()2242410b ac k =-=--≥即44k ≥- 解得1k ≥-综合上述两种情况可知k 的取值范围是1k ≥- 故选D .【点睛】本题考查了根的判别式,解答此题时要注意分0k =和0k ≠两种情况进行分类讨论解答. 7. 如图,AB 是⊙O 的弦,半径OC⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A. 2B. 3C. 4D. 5【答案】A 【解析】【详解】试题分析:已知AB 是⊙O 的弦,半径OC⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt△ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A. 考点:垂径定理;勾股定理.8. 用配方法解一元二次方程x 2﹣6x ﹣4=0,下列变形正确的是( ) A. (x ﹣6)2=﹣4+36 B. (x ﹣6)2=4+36C. (x ﹣3)2=﹣4+9D. (x ﹣3)2=4+9【答案】D 【解析】【分析】配方时,首先将常数项移到方程的右边,然后在方程的左右两边同时加上一次项系数一半的平方,据此进行求解即可. 【详解】x 2﹣6x ﹣4=0, x 2﹣6x=4, x 2﹣6x+9=4+9,(x ﹣3)2=4+9, 故选D.9. 抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2=--y x D. 23(1)2y x =-+【答案】C 【解析】【分析】根据二次函数的图象平移判断即可;【详解】23y x =向右平移1个单位得到()231y x =-,再向下平移2个单位得到()2312x y =--; 故答案选C .【点睛】本题主要考查了二次函数的图像平移,准确分析判断是解题的根据.10. 在一个不透明的布袋中,红色、黑色、白色的小球共50个,除颜色不同外其他完全相同,通过多次摸球实验后,摸到红色球、黑色球的频率分别稳定在26%和44%,则口袋中白色球的个数可能是( ) A. 20 B. 15C. 10D. 5【答案】B 【解析】【分析】利用频率估计概率得到摸到红色球、黑色球的概率分别为0.26和0.44,则摸到白球的概率为0.3,然后根据概率公式求解.【详解】解:∵多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.26和0.44, ∴摸到红色球、黑色球的概率分别为0.26和0.44, ∴摸到白球的概率为1-0.26-0.44=0.3, ∴口袋中白色球的个数可能为0.3×50=15. 故选:B .【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 11.()A. 2B. 1C. 3D.3 【答案】B 【解析】【分析】根据题意可以求得半径,进而解答即可. 【详解】因为圆内接正三角形的面积为3, 所以圆的半径为23, 所以该圆的内接正六边形的边心距23×sin60°=23×3=1, 故选B .【点睛】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距.12. 如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确;故选C .【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(共6小题)13. 在平面直角坐标系中,点P(-2,3)关于原点对称点的坐标为________. 【答案】(2,-3) 【解析】【分析】直接利用点关于原点对称点的性质,平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),从而可得出答案.得出答案.【详解】解:点P (-2,3),关于原点对称点坐标是:(2,-3). 故答案为:(2,-3).【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键. 14. 如图,在⊙O 中,点C 是弧AB 的中点,∠A =50°,则∠BOC 等于_____度.【答案】40. 【解析】【分析】由于点C 是弧AB 的中点,根据等弧对等角可知:∠BOC 是∠BOA 的一半;在等腰△AOB 中,根据三角形内角和定理即可求出∠BOA 的度数,由此得解. 【详解】△OAB 中,OA =OB , ∴∠BOA =180°﹣2∠A =80°, ∵点C 是弧AB 的中点, ∴AC BC =, ∴∠BOC =12∠BOA =40°, 故答案为40.【点睛】本题考查了圆心角、弧的关系,熟练掌握在同圆或等圆中,等弧所对的圆心角相等是解题的关键. 15. 方程的()()121x x x +-=+解是______.【答案】11x =-,23x = 【解析】【分析】先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可. 【详解】解:()()121x x x +-=+,()()12(1)0x x x +--+=, ()()1210x x +--=,即10x +=或210x --=,解得121,3x x =-=, 故填:121,3x x =-=.【点睛】本题考查因式分解法解一元二次方程,解决本题时需注意:用因式分解法解方程时,含有未知数的式子可能为零,所以在解方程时,不能在两边同时除以含有未知数的式子,以免丢根. 需通过移项,将方程右边化为0.16. 已知扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_____cm 2. 【答案】3π 【解析】【分析】根据扇形的面积公式即可求解.【详解】解:扇形的面积=21203360π⨯=3πcm 2.故答案是:3π.【点睛】本题考查了扇形的面积公式,正确理解公式是解题的关键.17. 分别写有-1,0,-3,2.5,4的五张卡片,除数字不同,其它均相同,从中任抽一张,则抽出负数的概率是___ 【答案】25【解析】【分析】根据概率的计算公式直接得到答案.【详解】解:-1,0,-3,2.5,4五张卡片中是负数的有:-1,-3, ∴P (抽出负数)=25,故答案为:25. 【点睛】此题考查概率的计算公式,负数的定义,熟记概率的计算公式是解题的关键. 18. 正方形边长3,若边长增加x ,则面积增加y ,y 与x 的函数关系式为______. 【答案】y=x 2+6x 【解析】【详解】解:22(3)3y x =+-=26x x +,故答案为26y x x =+.三、解答题(共7小题)19. 解方程:x 2-4x -7=0.【答案】12211211x x ,=+=- 【解析】【详解】x²-4x -7=0, ∵a=1,b=-4,c=-7, ∴△=(-4)²-4×1×(-7)=44>0, ∴x=--4444211211±±==±() , ∴12211,211x x =+=-.20. 如图,P A 、PB 是⊙O 的切线,A 、B 为切点,AC 是⊙O 的直径,∠P =50º,求∠BAC 的度数.【答案】25° 【解析】【分析】由PA ,PB 分别为圆O 的切线,根据切线长定理得到PA=PB ,再利用等边对等角得到一对角相等,由顶角∠P 的度数,求出底角∠PAB 的度数,又AC 为圆O 的直径,根据切线的性质得到PA 与AC 垂直,可得出∠PAC 为直角,用∠PAC-∠PAB 即可求出∠BAC 的度数. 【详解】解:∵P A ,PB 分别切⊙O 于A ,B 点,AC 是⊙O 的直径, ∴∠P AC =90°,P A =PB , 又∵∠P =50°,∴∠PAB =∠PBA =180502︒︒-=65°,∴∠BAC =∠P AC ﹣∠P AB =90°﹣65°=25°.【点睛】此题考查了切线的性质,切线长定理,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.21. 某种商品每件的进价为30元,在某段时向内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?最大利润是多少?【答案】当定价为65元时,才能获得最大利润,最大利润是1225元 【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值. 【详解】解:设最大利润为y 元, y=(100-x)(x -30)=-(x -65)2+1225 ∵-1<0,0<x <100,∴当x=65时,y 有最大值,最大值是1225∴当定价为65元时,才能获得最大利润,最大利润是1225元.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.22. 一个不透明的袋子中装有大小、质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字. (1)从袋中随机摸出一只小球,求小球上所标数字为奇数的概率;(2)从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,求两次摸出的小球上所标数字之和为5的概率. 【答案】(1)12;(2)13. 【解析】【详解】试题分析:(1)用奇数的个数除以总数即可求出小球上所标数字为奇数的概率;(2)首先根据题意画出表格,然后由表格求得所有等可能的结果与两次摸出的小球上所标数字之和为5的情况数即可求出其概率.试题解析:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率=24=12;(2)列表得:∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率=412=13.考点:列表法与树状图法;概率公式.23. 如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.【答案】(1)证明见解析(22【解析】【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以22BD=BE﹣DE求解.【详解】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ACF≌△ABE∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴∴BD=BE﹣1.考点:1.旋转的性质;2.勾股定理;3.菱形的性质.24. 有一条长40m的篱笆如何围成一个面积为275m的矩形场地?能围成一个面积为2101m的矩形场地吗?如能,说明围法;如不能,说明理由.【答案】能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由见解析【解析】【分析】设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,根据矩形场地的面积为75m2,即可得出关于x的一元二次方程,解之即可得出结论;不能围成一个面积为101m2的矩形场地,设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,根据矩形长度的面积为101m2,即可得出关于y 的一元二次方程,由根的判别式△=-4<0,可得出不能围成一个面积为101m2的矩形场地.【详解】解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20-x)m,依题意得:x(20-x)=75,整理得:x2-20x+75=0,解得:x1=5,x2=15,当x=5时,20-x=15;当x=15时,20-x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20-y)m,依题意得:y(20-y)=101,整理得:y2-20y+101=0,∵△=(-20)2-4×1×101=-4<0,∴不能围成一个面积为101m2的矩形场地.【点睛】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.25. 如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.【答案】(1)见解析(2)6【解析】【详解】分析:(1)连接OD,由BD为角平分线得到一对角相等,根据OB=OD,等边对等角得到一对角相等,等量代换得到一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODC 为直角,即可得证;(2)过O作OM垂直于BE,可得出四边形ODCM为矩形,在直角三角形OBM中,利用勾股定理求出BM的长,由垂径定理可得BE=2BM.详解:(1)连接OD.∵OD=OB,∴∠OBD=∠ODB.∵BD是∠ABC的角平分线,∴∠OBD=∠CBD.∵∠CBD=∠ODB,∴OD∥BC.∵∠C=90º,∴∠ODC=90º,∴OD⊥AC.∵点D在⊙O上,∴AC是⊙O的切线.(2)过圆心O作OM⊥BC交BC于M.∵BE为⊙O的弦,且OM⊥BE,∴BM=EM,∵∠ODC=∠C=∠OMC= 90°,∴四边形ODCM为矩形,则OM=DC=4.∵OB=5,∴BM =22-=3=EM,54∴BE=BM+EM=6.点睛:本题考查了切线的判定,平行线的判定与性质,以及等腰三角形的性质,熟练掌握切线的判定方法是解答本题的关键.26. 已知,二次函数y=x2+bx+c 的图象经过A(-2,0)和B(0,4).(1)求二次函数解析式;(2)求AOB S;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P点坐标;若不存在,请说明理由.【答案】(1)y=x2+4x+4;(2)4;(3)x=-2;(4)存在,(﹣2,4)或(﹣2,﹣4)【解析】【分析】(1)由待定系数法,把点A、B代入解析式,即可求出答案;(2)由题意,求出OA=2,OB=4,即可求出答案;(3)由2bxa=-,即可求出答案; (4)由题意,可分为两种情况进行讨论:①当点P 在点A 的上方时;②当点P 在点A 的下方时;分别求出点P 的坐标,即可得到答案.【详解】解:(1)∵y=x 2+bx+c 的图象经过A (-2,0)和B (0,4)∴42b 04c c +=⎧⎨=⎩- 解得:b 44c =⎧⎨=⎩;∴二次函数解析式为:y=x 2+4x+4; (2)∵A (﹣2,0),B (0,4), ∴OA=2,OB=4, ∴S △AOB =12OA•OB=12×2×4=4; (3)对称轴方程为直线为:4221x =-=-⨯; (4)∵以P ,A ,O ,B 为顶点的四边形为平行四边形, ∴AP=OB=4,当点P 在点A 的上方时,点P 的坐标为(﹣2,4), 当点P 在点A 的下方时,点P 的坐标为(﹣2,﹣4),综上所述,点P 的坐标为(﹣2,4)或(﹣2,﹣4)时,以P ,A ,O ,B 为顶点的四边形为平行四边形. 【点睛】本题考查了二次函数的性质,平行四边形的性质,待定系数法求二次函数的解析式,解题的关键是熟练掌握二次函数的性质进行解题,注意运用分类讨论的思想进行分析.新人教部编版初中数学“活力课堂”精编试题。
2018-2019学年九年级(上)期末数学试卷(含解析)
2018-2019学年九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,=×2×5=5.∴S△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A,B的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C,D的坐标,进而可得出0<m<4,由点P的横坐标为m可得出点P,E的坐标,进而可得出PE=﹣m2+m+2,再利用二次函数的性质即可解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P,C,D的坐标可求出点Q的坐标,此题得解.【解答】解:(1)将A(﹣1,0),B(5,0)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+4x+5.(2)∵直线y=﹣x+3与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,3),点D的坐标为(4,0),∴0<m<4.∵点P的横坐标为m,∴点P的坐标为(m,﹣m2+4m+5),点E的坐标为(m,﹣m+3),∴PE=﹣m2+4m+5﹣(﹣m+3)=﹣m2+m+2=﹣(m﹣)2+.∵﹣1<0,0<<4,∴当m=时,PE最长.(3)由(2)可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。
2019年沈阳市九年级数学上期末试卷及答案
2019年沈阳市九年级数学上期末试卷及答案一、选择题1.下列图形中既是轴对称图形又是中心对称图形的是( ) A .正三角形B .平行四边形C .正五边形D .正六边形2.已知m 、n 是方程2210x x --=的两根,且22(714)(367)8m m a n n -+--=,则a 的值等于A .5-B .5C .9-D .93.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >44.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .1126.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070 B .x(x +1)=2070 C .2x(x +1)=2070D .(1)2x x -=2070 7.方程x 2=4x 的解是( ) A .x =0B .x 1=4,x 2=0C .x =4D .x =28.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b ;④2a+b=0;⑤∆=b 2-4ac<0中,成立的式子有( )A .②④⑤B .②③⑤C .①②④D .①③④9.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .310.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形B .矩形C .正八边形D .正六边形11.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .4512.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( ) A .﹣3B .﹣1C .1D .3二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.15.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 16.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.17.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).18.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.19.如图,Rt △OAB 的顶点A (﹣2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为_____.20.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.三、解答题21.如图,PA ,PB 是圆O 的切线,A,B 是切点,AC 是圆O 的直径,∠BAC=25°,求∠P 的度数.22.如图,以△ABC 的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为BE 的下半圆弧的中点,连接AD 交BC 于F ,AC=FC . (1)求证:AC 是⊙O 的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.23.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x…1-12- 0 1 2 3 …y (3)540 1- 0 m …(1)直接写出此二次函数的对称轴 ; (2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象. 24.解下列方程3(x -2)2=x (x -2).25.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%. (1)求该广场绿化区域的面积;(2)求广场中间小路的宽.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.2.C解析:C【解析】试题解析:∵m,n是方程x2﹣2x﹣1=0的两根∴m2﹣2m=1,n2﹣2n=1∴7m2﹣14m=7(m2﹣2m)=7,3n2﹣6n=3(n2﹣2n)=3∵(7m2﹣14m+a)(3n2﹣6n﹣7)=8∴(7+a)×(﹣4)=8∴a=﹣9.故选C.3.D解析:D【解析】【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.7.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.8.D解析:D【解析】【分析】根据二次函数的性质,利用数形结合的思想一一判断即可.【详解】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴a,b异号,∴b<0,∵抛物线交y轴于负半轴,∴c<0,∴abc>0,故①正确,∵x=1时,y<0,∴a+b+c<0,故②错误,∵x=-1时,y>0,∴a-b+c>0,∴a+c>b,故③正确,∵对称轴x=1,∴-b2a=1,∴2a+b=0,故④正确,∵抛物线与x轴有两个交点,∴△=b2-4ac>0,故⑤错误,故选D.【点睛】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题,属于中考常考题型.9.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD⊥AB,CD=8,∴PC=12CD=12×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP-OA=8-x,∴OC2=PC2+OP2,即x2=42+(8-x)2,解得x=5,∴⊙O的直径为10.故选A.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.C解析:C【解析】因为正八边形的每个内角为135 ,不能整除360度,故选C.11.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.12.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.15.【解析】【分析】由关于x轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x轴对称的抛物线解析式【详解】∵∴关于x轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何解析:()21243y x =-+- 【解析】 【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式.【详解】∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.16.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π 【解析】 【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可. 【详解】 解:如图.2+2=4,恒星的面积=4×4-4π=16-4π. 故答案为16-4π. 【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.17.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c 是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数. 【解析】 【分析】 【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <, ∵125x x +=,120x x c =>,c 是整数, ∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数. 【点睛】本题考查根的判别式;根与系数的关系;开放型.18.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k -1≠0且△=(-2)2-4(k-1)>0解得:k <2且k≠1考点:1根的判别式;2一元二次解析:k <2且k≠1 【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0, 解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.19.(2)【解析】由题意得:即点P 的坐标解析: ,2). 【解析】由题意得:441a a =⇒= 2y x ⇒=222OD x x =⇒=⇒=,即点P 的坐标)2.20.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表: 男1 男2 女1 女2 男1 (男1男2) (男1女1解析:23【解析】 【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得. 【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.∠P=50°【解析】【分析】根据切线性质得出PA=PB,∠PAO=90°,求出∠PAB的度数,得出∠PAB=∠PBA,根据三角形的内角和定理求出即可.【详解】∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.22.(1)证明见解析;(2)29【解析】【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD ⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴225+2=29【点睛】本题考查切线的判定.23.(1)对称轴x=1;(2)b=-2;(3)m=3;(4)见解析【解析】【分析】(1)根据图表直接写出此二次函数的对称轴即可; (2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值; (4)由题意采用描点法画出图像即可. 【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3. (4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键. 24.x 1=2,x 2=3 【解析】 【分析】先移项,再利用提公因式法因式分解求出方程的根. 【详解】3(x -2)2-x (x -2)=0 (x -2)[3(x -2)-x ]=0 (x -2)(2x -6)=0 x -2=0或2x -6=0 ∴x 1=2,x 2=3. 【点睛】本题考查了用因式分解法解一元二次方程,用提公因式法因式分解可以求出方程的根. 25.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米. 【解析】 【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论; (2)设广场中间小路的宽为x 米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.。
2018-2019学年上 学期期末考试九年级数学试题(含答案)
2018—2019学年九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.(3分)下面左侧几何体的左视图是()A.B.C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)x2﹣8x+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.(3分)下面左侧几何体的左视图是()A.B.C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x,可列方程为()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=950 【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(x+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=x2的图象向上平移2个单位,得到二次函数y=(x+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(x+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=x2的图象向上平移2个单位,得到二次函数y=x2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H 的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=ax+c的图象如图所示,则二次函数y=ax2+x+c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=ax+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=ax2+x+c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(x﹣1)(x+2)的对称轴方程是x=﹣.【解答】解:y=﹣(x﹣1)(x+2)=﹣(x2+x﹣2)=﹣(x+)2+,∴二次函数y=﹣(x﹣1)(x+2)的对称轴为x=﹣,故答案为:x=﹣.15.(3分)如图,点A在曲线y=(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=A D=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)x2﹣8x+12=0.【解答】解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书300﹣10x本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为:300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在x轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(k>0,x>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC=S△COD?如果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥x轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴k=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥x轴于G,交BC于F,∵CB∥x轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=x﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=x,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=x﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=x+2⑤,联立④⑤解得,或(舍),∴P'(﹣1,+1).即:点P的坐标为(﹣1,+1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=kx+1(k>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(x+2)(x﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(x+2)(x﹣4)或y=﹣x2+x+4或y=﹣(x﹣1)2+.(2)如图1中,作PE⊥x轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣x+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=kx+1中,得到k=,∴直线DP的解析式为y=x+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=x+1,PQ⊥PD,∴直线PQ的解析式为y=﹣x+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(x,0),则QD2=x2+1,QP2=(x﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴x2+1+(x﹣2)2+16=13,整理得x2﹣2x+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
每日一学:辽宁省沈阳市于洪区2019届九年级上学期数学期末考试试卷_压轴题解答
每日一学:辽宁省沈阳市于洪区2019届九年级上学期数学期末考试试卷_压轴题解答
答案辽宁省沈阳市于洪区2019届九年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2019于洪.九上期末) 如图,已知二次函数y =ax +bx+c (a≠0)的对称轴为直线x =﹣1,图象经过B
(﹣3,0)、C (0,3)两点,且与x 轴交于点A.
(1) 求二次函数y =ax +bx+c (a≠0)的表达式;
(2) 在抛物线的对称轴上找一点M ,使△ACM 周长最短,求出点M 的坐标;
(3) 若点P 为抛物线对称轴上的一个动点,直接写出使△BPC 为直角三角形时点P 的坐标.
考点: 二次函数的实际应用-几何问题;~~ 第2题 ~~
(2019于洪.九上期末) 矩形ABCD 与CEFG ,如图放置,点B 、C 、E 共线,点C
、D 、G 共线,连接
AF ,取AF 的中点H
,连接
GH ,若 , ,则 ________.
~~ 第3题 ~~
(2020息.九上期末) 若将函数y=2x 的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )
A . y=2(x ﹣1)﹣3
B . y=2(x ﹣1)+3
C . y=2(x+1)﹣3
D . y=2(x+1)+3
辽宁省沈阳市于洪区2019届九年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
2222222
解析:
~~ 第2题 ~~
答案:
解析:
~~ 第3题 ~~
答案:D
解析:。
第一学期初三九年级数学期末试卷(含答案)
鞍山市2018---2019学年度九年级上学期期末考试数学试卷参考答案一、选择题( 每小题3分,共24分)C A CD C B B C二、填空题(每小题3分,共24分)9.xy 6-=;10.171222-+-=x x y ;11.7m ;12.6π;13.3;14. 120°;15. 15.4;16.237+三、(每题8分,共16分)17.(1)原方程变形为 0)6)(2(=+-x x ------2分所以,0)6(,0)2(=+=-x x -------3分解得,6,221-==x x ----4分(2)1,4,5=-==c b a -----1分04154)4(422<-=⨯⨯--=-=∆ac b ----3分所以,原方程无解。
18. (1)()()222441488360b ac m m m ∆=-=+--=+≥------3分 92m ≥------4分 (2)由题意,8),1(222121-=+-=+m x x m x x 。
---1分因为,242)(11221=-+x x x x -----2分所以,24)8(2)1(422=--+m m -----3分 621+-=m ,621--=m (舍去)-------4分四、(每题10分,共20分)19.(1)正确画出△A 1B 1C 1;-----5分(2)△ A 2B 2C 2,------5分20.(1)证明正确-----5分(2)证明正确------5分五、(每题10分,共20分)21.(1)xy 3-=-----6分 (2))0,321(),0,321(+±-±-----4分22. (1)设该快递公司每月的投递总件数的月平均增长率为x由题意得,1.12)1(102=+x ------2分''解得1.2,1.0-==x x (舍)-------4分设该快递公司每月的投递总件数的月平均增长率为10%。