光纤传感器基本原理1
第四章光纤色散测量

L表示一对单模或多模光纤的相互作用长度,d表示纤芯之间的距离。 光纤包层被减薄或完全剥去,足以产生渐逝场耦合。d、L或n2稍有 变化,光探测器的接收光强就有明显变化、从而实现光强调制、这 一原理已应用于水听器。
三、反射系数型
由菲涅尔反射公式
光波在入射面上的光强分配服从菲涅耳公式,菲涅耳反 射系数公式与n(n3/n1 )有关。如果n3介质在外界条件 (压力、温度等)影响下引起折射率发生变化,就会引起反 射系数发生变化,引起反射光强改变。利用这个原理,可设 计压力或温度传感器。
测其强度变化,就可知道外界
物理量的大小。
5.2.4
折射率强度调制
调制方法:
1. 利用光纤折射率的变化引起传输波损耗变化的 光强调制; 2. 利用折射率的变化引起渐逝波耦合度变化的光 强调制;
3. 利用光纤折射率的变化引起光纤光强反射系数
改变的透射光强调制。
一、光纤折射率变化型
一般光纤的纤芯和包层的折射率温度系数不 同。在温度恒定时,包层折射率n2与纤芯折射率 n1之间的差值是恒定的。当温度变化时, n2 、 n1之间的差发生变化,从而改变传输损耗。因此,
以某一温度时接收到的光强为基准,根据传输功率
的变化可确定温度的变化。
根据此原理可制成温度报警装置。
二、渐逝波耦合型
通常,渐逝波在光疏媒质中深人距离有几个波长时.能量就 可以忽略不计了。如果采用一种办法使渐逝场能以较大的振幅穿过 光疏媒质,并伸展到附近的折射率高的光密媒质材料中,能量就能 穿过间隙,这一过程称为受抑全反射。
作业
1、由图5-2,已知光纤芯直径为2r=200um, 数据孔径NA=0.5,光纤间距a=100um。当 反射位置d分别为200um和320um时, 耦合 功率F为何值?
光纤传感器的原理是

光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。
它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。
光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。
一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。
通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。
光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。
二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。
1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。
它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。
当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。
2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。
它通过纤芯中的光散射来判断外界物理量的变化。
光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。
通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。
3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。
它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。
通过测量光的强度变化,可以获得物理量的信息。
三、应用领域光纤传感器在诸多领域有着广泛的应用。
1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。
通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。
2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。
光纤传感器基本原理

光纤传感器基本原理
光纤传感器基本原理是利用光纤的特殊性质,将光信号转换为电信号。
在光纤传感器中,光源发出的光经过光纤传播,在光纤的某一点与外界的物理量进行相互作用后,光信号发生变化。
传感器的探测部分是光纤的一段,在传感区域内,光信号的幅度、相位、频率等参数会随着被测量的物理量发生变化。
光纤传感器的工作原理基于光的干涉、散射、吸收等现象。
其中,基于光纤干涉原理的传感器是最常见的类型。
这类光纤传感器一般采用法布里-珀罗特(F-P)干涉仪的结构。
当光纤中
的光信号遇到传感器传感区域的物理量变化时,传感区域的折射率发生改变,导致传感区中的干涉光程差发生变化。
这一变化会通过反射回到光纤,进而对干涉光信号产生影响。
通过测量干涉光信号的变化,可以推断出传感区域中物理量的变化情况。
除了光纤干涉原理外,还有其他一些基于光纤散射和吸收的传感器原理。
光纤散射传感器是利用光在光纤中发生散射的特性,通过测量光的散射强度或相位变化来得到物理量的信息。
光纤吸收传感器则是利用光在光纤中被介质吸收的特性,通过测量吸收光信号的强度变化来推断物理量的变化。
光纤传感器具有体积小、响应速度快、抗电磁干扰强等优点,广泛应用于温度、压力、拉力、位移等物理量的测量领域。
随着技术的不断进步,光纤传感器的精度和可靠性也在不断提高,为工业自动化、医疗、环境监测等领域的应用提供了可靠的检测手段。
光纤传感器基本原理

光纤传感器基本原理光纤传感器是一种利用光纤作为传感元件的传感器,它通过光纤中的光信号的强度、频率或相位的变化来感知和测量环境参数的传感器装置。
光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,广泛应用于测量、通信、工业自动化等领域。
首先是光源部分:光源可以是激光器、LED等产生光信号的装置。
光源通过光纤传输光信号到目标位置,其中包括了传感器测量的环境参数。
然后是光纤部分:光纤是光信号传输的介质,通常由一根或多根光纤组成。
光纤可以是单模光纤或多模光纤,其核心材料通常是高纯度玻璃或塑料。
光信号通过光纤的内部反射来传输,通过改变光纤的长度、形状或者在光纤表面附加外界物质等方式,可以实现对环境参数的测量。
最后是光电检测器部分:光电检测器用于接收光信号并将其转化为电信号。
光电检测器可以是光电二极管、光电转换器等。
当光信号到达光电检测器时,光信号激发光电检测器产生电流变化,进而将光信号转化为电信号。
通过测量电信号的特征,如电流的强度、频率或相位的变化,可以获得环境参数的信息。
光纤传感器的工作原理有很多种,最常见的是基于光强度的测量。
当环境参数发生变化时(如温度、湿度、压力等),这些变化会导致光信号的强度发生变化。
光纤传感器通过测量光信号的强度变化来确定环境参数的变化情况。
另外一种常见的光纤传感器工作原理是基于光频率的测量。
当环境参数变化时,这些变化会引起光信号的频率移动。
通过测量光信号频率的变化,可以确定环境参数的变化情况。
还有一种光纤传感器工作原理是基于光相位的测量。
当环境参数变化时,这些变化会导致光信号的相位变化。
通过测量光信号相位的变化,可以确定环境参数的变化情况。
总之,光纤传感器利用光的传导性能来实现环境参数的测量和检测。
通过光源产生光信号,光信号经过光纤传输并最终转化为电信号。
根据光信号的强度、频率或相位的变化,可以获得环境参数的变化情况。
光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,在各个领域得到广泛应用。
光纤传感器的原理

光纤传感器的分类
光纤传感器按工作方式可分点式、准分布式
和分布式三类 。 根据光纤在传感器中的作用,光纤传感器可 分为功能型、非功能型、拾光型三类。 传感技术的发展经历了三个阶段,即结构型 传感器、物性型传感器和智能型传感器。 按光在光纤中被调制的原理不同,光纤传感 器可分为:强度、相位、偏振态、频率和波 长调制型等。迄今为止,光纤传感器能够测 定的物理量已达七十多种。
相位敏感的光时域反射技术
基于前面的研究成果,相位敏感的光时域反
射分布式光纤传感系统开始实际应用于的地 面入侵探测。 2005年,J.C.Juarez等人采用掺铒光纤结 合法-珀腔构成光纤激光器,输出激光线宽小 于3KHz,可以在12km的光纤上探测出人的 地面入侵情况并能够定位,并用于周界报警 监测,其系统示意如下图所示。
点分布式只能对某一特定点进行传感测量,其余的
光纤作为信号传输介质。 下图为单点式光纤传感系统
准分布式传感系统一般包括光纤传感器阵列和多个
复用光纤传感器等 下图为典型的串联式准分布式光纤传感系统的结构
分布式光纤传感技术中,光纤既是传输介质又是传
感元件 ,如下图
准分布式系统测量精度高、可测量参 数多、信号处理较简单、实时性强; 而分布式系统空间分辨率高、能够实 现空间上连续检测、系统利用率高。
研究发现,当激发光进入光纤中,会产生相
关的光散射。光纤中的光散射主要包括瑞利 散射(Rayleigh Scattering),喇曼散射 (Raman Scattering)和布里渊散射(Brillouin Scattering)三种类型的光散射。 当外界环境发生变化时,这些散射光的中心 频率或散射强度会随外界相应的参数发生改 变,通过对散射光的检测可以实现对外界环 境相关参数的测量。由于信号光在光纤中任 意处都会产生散射,所以光纤的任意一段都 可以看作是传感单元,通过对散射光的连续 测量,从而实现渊散射的分布式光纤传感 技术
第五章光纤传感基本原理-频率调制

m
1,2,
光纤传感器基本原理
5.6 偏振调制机理
线偏振光,光波的光矢量方向始终不变,只是它的大小随 相位改变。光矢量与光的传播方向组成的平面为线偏振光的振 动面。
圆偏振光,光矢量大小保持不变,而它的方向绕传播方向 均匀地转动,光矢量末端的轨迹是一个圆。
椭圆偏振光,光矢量的大小和方向都在有规律地变化,且光 矢量的末端沿着一个椭圆转动。
黑体光谱辐射能量密度、 温度及波长三者之间的关系。
5.5.3 光纤黑体探测技术
光纤传感器基本原理
光纤黑体探测技术,就是以黑体做探头,利用光纤传输热辐射波, 不怕电磁场干扰,质量轻,灵敏度高,体积小,探头可以做到0.1mm。
光纤传感器基本原理
5.5.4 光纤法布里-珀罗滤光技术
0 m
2nd cos m /
FL 108
可检测到信号
5.4.2 光纤多普勒系统的局限性
光纤传感器基本原理
一般多普勒探测器最大只能实现液体中几毫米处粒子的运动
速度虚测像量半,径只ri适 a用du 于携带粒子的流体或混浊体中悬浮物质的速度 测量数。值速孔度径测NA量i 范NA围du 为μm/s~m/s,相应的频偏为Hz-MHz。
ne n0 0kE2
非寻常光折射率
寻常光折射率
大多数情况下,ne-n0>0
光纤传感器基本原理
5.6.2 克尔效应
不加外电场,无光通过,克尔盒关闭;加外电场,有光通过,
克尔盒开启。
光程差:
ne
n0
l
k
0
U d
2
l
N1、N2相互垂直,与 电场分别成±45°。
相位差:
2
kl
U d
2
光纤传感器基本原理1

实现纵向、径向应变最简便的方法是采用一个空心的 压电陶瓷圆柱筒(PZT),在这个圆柱筒上缠绕一圈或多圈 光纤,并在其径向或轴向施加驱动信号,由于PZT筒的直 径随驱动信号变化,故缠绕在其上的光纤也随之伸缩。光 纤承受到应力,光波相位随之变化。
(2)温度应变效应
若光纤放置在变化的温度场中,并把温度场变化等效 为作用力F时,那么作用力F将同时影响光纤折射率、和 长度L的变化。由F引起光纤中光波相位延迟为
(3)反射系数型
光波在入射界面上的光强分配由菲涅尔公式描述,界面强度 反射系数由菲涅尔反射公式给出
由反射系数的菲涅尔公式知道, 当光波以大于临界面(θc=sin-1n)的θ角 入射到n1、n3介质的界面上时,若n3 介质由于压力或温度的变化引起n3的 微小改变,相应会引起反射系数的变 化,从而导致反射光强的改变,利用 这一原理可以设计出压力或温度传感 器。
二、强度调制机理
强度调制光纤传感器的基本原理是待测物理量引起 光纤中的传输光光强变化。通过检测光强的变化实现对 待测量的测量,其原理如下图所示。
Pi Pi
P0 P0
强度调制方式很多,大致可分为以下几种:反射式强度 调制、透射式强度调制、光模式强度调制以及折射率和吸 收系数强度调制等等。一般透射式、反射式和折射率强度 调制称为外调制式,光模式称为内调制式。
(1)光纤折射率变化型
一般光纤的纤芯和包层的折射率温度系数不同。在温度恒定 时,包层折射率n2与纤芯折射率n1之间的差值是恒定的。当温 度变化时, n2 、 n1之间的差发生变化,从而改变传输损耗。因 此,以某一温度时接收到的光强为基准,根据传输功率的变化可 确定温度的变化。
(2)渐逝波耦合型
通常,渐逝波在光疏媒质中深入距离有几个波长时.能量就 可以忽略不计了。如果采用一种办法使渐逝场能以较大的振幅穿 过光疏媒质,并伸展到附近的折射率高的光密媒质材料中,能量 就能穿过间隙,这一过程称为受抑全反射。
光纤传感器的原理及应用

统外部观察 、 监视系统 内部情 况, 其原理 图如 下图 4所示 。它 由物镜 、 传像束 、 传光束、 目镜组成 。光源发出的光通过光束 照 射到被测物 体上 , 明视场 , 照 通过物镜和传像 束把 内部结构 图 像送出来, 以便观察或照相 。
接 收装置转换为 电信号 ,经过信 号处理电路处理后便 可 以正
聂 帅华 , , 西 南 昌 人 , 男 江 本科 在 读 。研 究方 向 : 子技 术 , 电 通信 工程 。
6 8—
一
应 用 技 术 与 研 究 囊
中的光强度产生调制。可直接连接光探测器变成 电信号 ( 即调 制的强度包括 电信号) 。
3 . 相 位 调 制 光 纤 传 感 器 .2 2
一
部分反射回纤芯。 但当入射角e 小于临界入射角e 时, 。 光线
反复逐 次全反射 , 呈锯齿波形状在纤芯 内向前传播 , 最后从光
纤 的 另一 端 射 出 , 就 是 光 纤 的 传 光 原理 【 这 2 _ 。
器解调后 , 获得被测参数 。
32 光 纤 传 感 器 分类 .
就 不 会 透 射 出 界面 , 全 部 被 反 射 , 在纤 芯 和 包 层 的 界 面 上 而 光
点介绍了光纤传 感器 的原理及 其在 各方面的广泛应用 。光 纤
传 感 器 的 应 用 远 不 止 于 此 , 了上 述 应 用 之 外 , 传 感 器 在 全 除 纤 光 网络 安 全 、 长 油 田使 用 、 物 传 感 、 联 网 等 各 方 面 也 有 延 生 物 重 要 应 用 , 且我 们 相 信 光 纤传 感 器 还 会 得 到进 一 步 的 发 展 , 并 应 用 到 人们 生活 的方 方 面 面 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.基本结构
光纤传感器是把被测量的状态转变为可测的光信号 的装置。光受到被测量的调制,已调光经光纤耦合到光 接收器,使光信号变为电信号,经信号处理系统得到被 测量。
2.分类
传 感 原 理
被 测 对 象
功能型光纤传感器:利用光纤本身的特性把光纤作 为 敏感元件。 非功能型光纤传感器:利用其它敏感元件感受被测 量 的变化,光纤仅作为传输介 质,传输来自远外或难以接 近 光纤温度传感器 场所的光信号, 光纤位移传感器 光纤浓度传感器 光纤电流传感器 光纤流速传感器等
4.折射率强度调制
(1)利用光纤折射率的变化引起传输波损耗变化的光强调制;
(2)利用折射率的变化引起渐逝波耦合度变化的光强调制;
(3)利用折射率的变化引起光纤光强反射系数改变的透射光 强制。
(1)光纤折射率变化型
一般光纤的纤芯和包层的折射率温度系数不同。在温度恒定 时,包层折射率n2与纤芯折射率n1之间的差值是恒定的。当温 度变化时, n2 、 n1之间的差发生变化,从而改变传输损耗。因 此,以某一温度时接收到的光强为基准,根据传输功率的变化可 确定温度的变化。
2.透射式强度调制
发送光纤与接收光纤对准,光强调制信号加在移动的遮光 板上,或直接移动接收光纤,使接收光纤只能收到发射光纤发 出的部分光,从而实现光强调制。
3.光模式强度调制
利用光在微弯光纤中强度的衰减原理,将光纤夹在两块具 周期性波纹的微弯板组成的变形器中构成调制器。从波导理论 的观点来看,当光纤发生弯曲时,传输光会有一部分泄漏到包 层中去,这种泄漏是光纤内发生模式耦合的结果,这些耦合模 变为辐射模,造成传播光能量的损耗。 若采取适当的方式探测光强的变化,则可知道位移变化量, 据此可以制作出温度、压力、振动、位移、应变等光纤传感器。
(2)温度应变效应
若光纤放臵在变化的温度场中,并把温度场变化等效 为作用力F时,那么作用力F将同时影响光纤折射率、和 长度L的变化。由F引起光纤中光波相位延迟为
式中第一项表示折射率变化引起的相位变化;第二项 表示光纤几何长度变化引起的相位变化,式中没有考虑光 纤直径变化对相位变化的影响。若上式用温度变化△T和相 位变化描述,则有
(2)渐逝波耦合型
通常,渐逝波在光疏媒质中深入距离有几个波长时.能量 就可以忽略不计了。如果采用一种办法使渐逝场能以较大的振 幅穿过光疏媒质,并伸展到附近的折射率高的光密媒质材料中, 能量就能穿过间隙,这一过程称为受抑全反射。
(3)反射系数型
光波在入射界面上的光强分配由菲涅尔公式描述,界面强 度反射系数由菲涅尔反射公式给出
1.反射式强度调制
调制机理:输入光纤将光源的光射向被测物体表面,再 从被测面反射到另一根输出光纤中,其光强的大小随被测表 面与光纤间的距离而变化。
▲当d <a/2T,即a>2dT( dT为发射光锥的底面积半径,且T = tg(sin-1NA))时, 耦合进输出光纤的光功率为零; 当d>(a十2r)/2T时,输出光纤与输入光纤的像发出的光锥底端相交,其相交 的截面积恒为πr2,此光锥的底面积为π(2dT)2,故在此范围内间隙的传光系数 为(r/2dT)2; 当a/2T≤d≤(a+2r)/2T时,耦合到输出光纤的光通量由输入光纤的像发出的光 锥底面与输出光纤相重叠部分的面积所决定,重叠部分如下图所示。
光纤传感原理与技术是以光纤的导波现象为基础的,光 从光纤射出时,光的特性得到调制,通过对调制光的检测, 便能感知外界的信息,实现对各种物理量的测量,这就是光 纤传感器的基本原理。 光纤传感器是用待测量对光纤内传输的光波参量进行调制 得到调制信号,该信号经光纤传输至光探测器进行解调,从而 获得待测量值的一种装臵。与传统的传感器不同,它将被测信 号转换为光信号的形式取出。
(2)利用半导体的吸收特性进行强度调制 大多数半导体的禁带宽度Eg都随着温度T的升高而几乎线 性地减小。因此,它们的光吸收边的波长λg(T)将随着T的升 高而变化。如果选用辐射谱与λg(T)相适应的发光二极管,那 么通过半导体的光强将随着T的升高而下降,测量透过的光强, 即可确定温度。
半导体晶格吸收型温度传感器,它的结构是把半导体晶体 制成薄片,在片子的两侧固定上光纤,用不锈钢管保护。
1.相位调制
相位调制是通过干涉仪进行的,在光纤干涉仪中,以 敏感光纤作为相位调制元件。敏感光纤臵于被测能量场中, 由于被测场与敏感光纤的相互作用,导致光纤中光相位的 调制。 光波通过长度为L的光纤后,出射光波的相位延迟为
2
(1)应力应变效应
L L
光波在外界因素的作用下,相位的变化可以写成如下形式 L L L L L n L a L n a
强度调制光纤传感器的基本原理是待测物理量引起 光纤中的传输光光强变化。通过检测光强的变化实现对 待测量的测量,其原理如下图所示。
P0 Pi P0
Pi
强度调制方式很多,大致可分为以下几种:反射式强度 调制、透射式强度调制、光模式强度调制以及折射率和吸 收系数强度调制等等。一般透射式、反射式和折射率强度 调制称为外调制式,光模式称为内调制式。
由反射系数的菲涅尔公式知道, 当光波以大于临界面(θc=sin-1n)的θ角 入射到n1、n3介质的界面上时,若n3 介质由于压力或温度的变化引起n3的 微小改变,相应会引起反射系数的变 化,从而导致反射光强的改变,利用 这一原理可以设计出压力或温度传感 器。
5.光吸收系数强度调制
(1)利用光纤的吸收特性进行强度调制 X射线、γ射线等辐射线会使光纤材料的吸收损耗增加, 使光纤的输出功率降低,从而构成强度调制辐射量传感器。
式中,a为光纤芯的半径; 第一项表示由光纤长度变化引起的相位延迟(应变效应); 第二项表示感应折射率变化引起的相位延迟(光隙效应); 第三项表示光纤的半径改变所产生的相位延迟(泊松效应)。
纵向应变引起的相位变化 径向应变引起的相位变化 光弹效应引起的相位变化 一般形式的相位变化
实现纵向、径向应变最简便的方法是采用一个空心的 压电陶瓷圆柱筒(PZT),在这个圆柱筒上缠绕一圈或多圈 光纤,并在其径向或轴向施加驱动信号,由于PZT筒的直 径随驱动信号变化,故缠绕在其上的光纤也随之伸缩。光 纤承受到应力,光波相位随之变化。
三、相位调制机理
相位调制光纤传感器的基本传感原理:通过被测能 量场的作用,使光纤内传播的光波相位发生变化,再用 干涉测量技术把相位变化转换为光强变化,从而检测出 待恻的物理量。 光纤中光的相位由光纤波导的物理长波、折射率及 其分布、波导横向几何尺寸所决定,可以表示为k0nL, 其中k0为光在真空中的波数,n为传播路径上的折射率, L为传播路径的长度。一般说,应力、应变、温度等外界 物理量能直接改变上述三个波导参数,产生相位变化, 实现光纤的相位调制。
输出光纤端面受光锥照射的表面所占的百分比为 1 arccos( ) (1 ) sin[arccos1 )] 1 ( r r r
P0 r 2 ) F (耦合效率) 被输出光纤接收的入射光功率百分数为 ( ) ( Pi r 2dT
第八章、光纤传感器基本原理
光纤技术是正在迅猛发展中的一门新兴技术。光纤是光波 导的一种,具有损耗低、频带宽、线径细、重量轻、可挠性好、 抗电磁干扰、耐化学腐蚀、原料丰富、制造过程能耗少、节约 大量有色金属等突出优点,从而引起了人们的高度重视。
一、光纤传感器简介
光纤传感技术是20世纪70年代中期发展起来的一门新技术。 它是随着光导纤维实用化与光通信技术的发展而形成的。 光 纤作为远距离传输光波信号的媒质,最早用于光通信技术中。 但是,在实际光通信过程中发现,光纤受到外界环境因素的 影响,如压力、温度、电场、磁场等环境条件变化时,将引起 光纤传输的光波量,如光强、相位、颇率、偏振态等变化。因 此.科技人员推测.如果能测量出光波量变化的大小,就可以 知道导致这些光波量变化的压力、温度、电场、磁场等物理量 的大小.于是就出现了光纤传感器技术。
被 调 制 的 光 波 参 数
强度调制光纤传感器
相位调制光纤传感器 频率调制光纤传感器
偏振调制光纤传感器 波长调制(颜色)光纤传感器
2.光波参数
在光纤中传输的光波:E=E0cos(ω t+φ ) 上式包含五个参数,即强度E02、频率ω、波长λ0=2πc/ω、 相位(ωt+φ)和偏振态
二、强度调制机理